
Comment.Math.Univ.Carolin. 60,3 (2019) 415–419 415

An alternative proof of the uniqueness of martingale-

coboundary decomposition of strictly stationary processes

Takehiko Morita

Abstract. P. Samek and D. Volný, in the paper “Uniqueness of a martingale-
coboundary decomposition of a stationary processes” (1992), showed the unique-
ness of martingale-coboundary decomposition of strictly stationary processes.
The original proof is given by reducing the problem to the ergodic case. In this
note we give another proof without such reduction.
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1. Introduction

Let (Ω,A, P ) be a probability space and let T be an invertible measure-
preserving transformation on (Ω,A, P ). We are interested in a strictly stationary
process {Xn}n∈Z defined by Xn = f ◦ T n for n ∈ Z, where f is a real-valued
measurable function. Given a sub σ-algebra M of A satisfying M ⊂ T−1M, we
consider the filtration M = {Mn}n∈Z with Mn = T−nM for n ∈ Z. We say that
the process {Xn}n∈Z has a martingale-coboundary decomposition with respect to
the filtration M if there exist a real-valued measurable function g and an inte-
grable function m such that the equation f = m + g − g ◦ T holds a.s. (almost
surely) and {m ◦ T n}n∈Z is a sequence of martingale differences with respect to
the filtration M, i.e. m ◦T n is Mn+1-measurable and the conditional expectation
E[m ◦ T n |Mn] of m ◦ T n given Mn vanishes a.s. for each n ∈ Z. Note that in
our situation it is enough to assume that m is M1-measurable and E[m |M] = 0
a.s. P. Samek and D. Volný proved the following theorem in [3].

Theorem 1.1. Let f and M be as above. Suppose that there exist real-valued

measurable functions g1, g2 and integrable functions m1, m2 such that

f = m1 + g1 − g1 ◦ T a.s. and f = m2 + g2 − g2 ◦ T a.s.

hold and {m1 ◦T n}n∈Z and {m2 ◦T n}n∈Z are sequences of martingale differences

with respect to the filtration M. Then we have

m1 = m2 a.s. and (g1 − g2) ◦ T = g1 − g2 a.s.
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In [3] the theorem is proved by reducing it to the case when T is ergodic. So
their method needs to translate the problem to an appropriately chosen factor of T
having the ergodic decomposition, i.e. to a factor defined on a space admitting the
regular conditional probabilities. The purpose of this note is to give an alternative
proof of Theorem 1.1 which is free from the method of ergodic decomposition.

As mentioned in [3] necessary and sufficient conditions for the existence of such
a decomposition are discussed in [4] in connection with the central limit theorem
for stationary processes. D. Volný in [4] studied the case when both f and g
are integrable as well as the case when both f and g are square-integrable in the
decomposition. We note that the point of the uniqueness result in [3] is that it is
given without integrability of g. In fact, under the integrability of g, one can find
that the proof of Theorem 1.1 is a sort of exercise of Birkhoff’s ergodic theorem
and Doob’s martingale convergence theorem.

2. Lemmas

We start with introducing the notation and some well known facts which we use
frequently. As references we give [1] and [5]. For A, B ∈ A, if P (A \B) = 0, we
write as A ⊂ B a.s. If both A ⊂ B a.s. and B ⊂ A a.s. hold, i.e. P (A∆B) = 0, we
write as A = B a.s. For an integrable function h, we put h∗ = lim supn→∞

(1/n)×
∑n−1

k=0 h ◦ T k. By the Birkhoff individual ergodic theorem, we know that h∗ is

integrable, h∗ = limn→∞(1/n)
∑n−1

k=0 h ◦ T k a.s., h∗ ◦ T = h∗ a.s., and Eh = Eh∗,
where E[X ] denotes the expectation of a random variable X with respect to P
(for simplicity we often write it as EX). For the later convenience we note that
h∗ = E[h | I] a.s., where I denotes the sub σ-algebra of A consisting of all the
elements A ∈ A satisfying T−1A = A. Indeed, h∗ has a version which is I-
measurable. In addition, if A ∈ I, we have

∫

A
h∗ dP = limn→∞(1/n)

∑n−1
k=0

∫

A
h◦

T k dP = limn→∞(1/n)
∑n−1

k=0

∫

T−kA
h ◦T k dP =

∫

A
h dP since T preserves P and

A = T−1A.
Throughout the paper we use shorthand notation (X ∈ B) to denote the set

{ω ∈ Ω: X(ω) ∈ B} for a random variable X and a set B ∈ A. For A ∈ A,
we put A∗ = (I(A)∗ > 0), where I(A) is the indicator of the set A. Clearly,
A∗ satisfies A∗ = T−1A∗ a.s. Finally, for random variables Y1, . . . , Yn and a, b ∈ R

with a < b, we denote by Hn(a, b;Y1, . . . , Yn) the upcrossing number from a to b
of Y1, Y2, . . . , Yn.

The following is crucial in our argument.

Lemma 2.1. Let g be a real-valued measurable function. If P ((g 6= g ◦ T )) > 0,
we can find s, r ∈ R with s < r such that P ((g < s)∗ ∩ (g ≥ r)) > 0.

Proof: Assume that P ((g 6= g◦T )) > 0. First we show that there exists an r ∈ R

such that P ((g < r)∗ ∩ (g ≥ r)) > 0. For if P ((g < r)∗ ∩ (g ≥ r)) = 0 holds for
every r ∈ R, we see that g = g◦T a.s. as follows. By definition 0 ≤ I((g < r))∗ ≤ 1
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and (g < r)∗ = (I((g < r))∗ > 0). Therefore the Birkhoff ergodic theorem yields

(2.1) P ((g < r)) =

∫

Ω

I((g < r))∗ dP =

∫

(g<r)∗
I((g < r))∗ dP ≤ P ((g < r)∗).

On the other hand P ((g < r)∗ ∩ (g ≥ r)) = 0 implies that (g < r)∗ ⊂ (g < r)
a.s. Therefore we have (g < r)∗ = (g < r) a.s. by the inequality (2.1). Thus
we obtain (g < r) = T−1(g < r) a.s. since I((g < r))∗ = I((g < r))∗ ◦ T a.s.
holds. Hence we see that P ((g < r)∗ ∩ (g ≥ r)) = 0 for every r ∈ R implies
that (g < r) = T−1(g < r)(= (g ◦ T < r)) a.s. for every r ∈ R. By taking the
complement we also have (g ≥ r) = (g ◦T ≥ r) a.s. for every r ∈ R. Therefore we
see g = g◦T a.s. as follows. For r ∈ R we have ∅ = (g < r ≤ g) = (g◦T < r ≤ g) =
(g < r ≤ g◦T ) a.s. This yields that P ((g < g◦T )) = P

(
⋃

r∈Q(g < r ≤ g◦T )
)

= 0

and P ((g ◦ T < g)) = P
(
⋃

r∈Q(g ◦ T < r ≤ g)
)

= 0. Consequently, we arrive at
g = g ◦ T a.s.

Now we can take r ∈ R satisfying P ((g < r)∗ ∩ (g ≥ r)) > 0. Note that (g <
r−1/n) ↑ (g < r) as n ↑ ∞. Since I((g < r−1/n))∗ is increasing a.s. as n ↑ ∞ and
E[I((g < r− 1/n))∗] = P ((g < r− 1/n)) ↑ P ((g < r)) = E[I((g < r))∗] as n ↑ ∞,
it is easy to see that I((g < r − 1/n))∗ ↑ I((g < r))∗ = supk∈N I((g < r − 1/k))∗

a.s. as n ↑ ∞. Thus we have (g < r)∗ = (I((g < r))∗ > 0) = (supn∈N I((g <
r − 1/n))∗ > 0) =

⋃

n∈N(I(g < r − 1/n))∗ > 0) =
⋃

n∈N(g < r − 1/n)∗ a.s.
Obviously this yields (g < r)∗∩ (g ≥ r) =

⋃

n∈N(g < r−1/n)∗∩ (g ≥ r) a.s. Thus
we can find an N ∈ N satisfying P ((g < r− 1/N)∗ ∩ (g ≥ r)) > 0. We obtain the
desired result with s = r − 1/N . �

The next lemma is a modification of Lemma in [3], which does work without
assuming the ergodicity of T .

Lemma 2.2. Let g be a real-valued measurable function. If P ((g 6= g ◦ T )) > 0,
we can find a, b ∈ R with a < b such that the upcrossing number Hn(a, b) =
Hn(a, b; g − g ◦ T, . . . , g − g ◦ T n) from a to b of g − g ◦ T, . . . , g − g ◦ T n satisfies

lim sup
n→∞

1

n
EHn(a, b) > 0.

Proof: By Lemma 2.1 we can take s, r ∈ R with s < r such that P ((g < s)∗ ∩
(g ≥ r)) > 0. Therefore we can find an interval [u, v) ⊂ [r,∞) such that
P ((g < s)∗ ∩ (u ≤ g < v)) > 0. We note that we can choose the interval
small enough that the following can hold.

(2.2) a = v − u < r − s, consequently b = u− s ≥ r − s > a.

Since (g < s)∗ = (I((g < s))∗ > 0), there exist N ∈ N and C ⊂ (g < s)∗ ∩ (u ≤
g ≤ v) such that the following hold.

(2.3) P (C) > 0 and

N
∑

k=1

I((g < s)) ◦ T k ≥ 1.
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From now we follow the argument in [3] for a while. By using (2.2) and (2.3) we
see that

C ∩ T−nNC ⊂

(

u ≤ g < v, u ≤ g ◦ T nN < v, and

N
∑

k=1

I((g < s)) ◦ T nN+k ≥ 1

)

⊂ (u ≤ g < v, u ≤ g ◦ T nN , and g ◦ T nN+k < s for some k, 1 ≤ k ≤ N)

⊂ (g − g ◦ T nN < a, and g − g ◦ T nN+k > b for some k, 1 ≤ k ≤ N)

⊂ (H(n+1)N (a, b) ≥ HnN (a, b) + 1).

holds for n ≥ 1. Therefore we have

n
∑

k=1

I(C ∩ T−nNC) ≤
n
∑

k=1

I((H(k+1)N (a, b) ≥ HkN (a, b) + 1)) ≤ H(n+1)N (a, b).

By dividing each side by n after integration, we obtain

(2.4)
1

n

n
∑

k=1

P ((C ∩ T−nNC)) ≤
1

n
EH(n+1)N (a, b).

On the other hand by the ergodic theorem and the Schwartz inequality we have

lim
n→∞

1

n

n
∑

k=1

P ((C ∩ T−nNC)) =

∫

Ω

I(C) ·E[I(C) | IN ] dP =

∫

Ω

(E[I(C) | IN ])2 dP

≥(E[E[I(C) | IN ]])2 = (E[I(C)])2 = P (C)2 > 0,

where IN is the sub σ-algebra of A consisting of all the elements A ∈ A satisfying
T−NA = A. Combining this with the inequality (2.4), we have

lim sup
n→∞

1

n
EHn(a, b) ≥

P (C)2

N
> 0.

Now the proof of Lemma 2.2 is complete. �

3. Proof of Theorem 1.1

Let g1, g2 and m1, m2 be functions satisfying the assumptions in Theorem 1.1.
By considering the real-valued measurable function g = g1−g2 and the integrable
function m = m1 −m2, it suffices to show the following.

Proposition 3.1. Let g be a real-valued measurable function and let m be an

integrable function. Suppose that

m = g − g ◦ T a.s.
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holds and {m ◦T n}n∈Z is a sequence of martingale differences with respect to M.

Then g = g ◦ T a.s. and consequently, m = 0 a.s.

Proof: Consider the process {Mn}∞n=1 defined by

Mn =

n−1
∑

k=0

m ◦ T k =

n
∑

k=1

(g − g ◦ T k) = g − g ◦ T n.

Clearly {Mn}∞n=1 is a martingale and {m ◦ T n}∞n=0 is a uniformly integrable se-
quence of martingale differences. Therefore by Theorem 2.22 on page 42 of [2],
we have

lim
n→∞

1

n
E|Mn| = 0.

Next, for any a, b ∈ R with a < b we consider the upcrossing number Hn(a, b) =
Hn(a, b;M1, . . . ,Mn) from a to b of M1, . . . ,Mn. Then Doob’s upcrossing in-
equality yields

EHn(a, b) ≤
E[(Mn − a)+]

b− a
≤

E|Mn|+ |a|

b− a
.

Thus we obtain

1

n
EHn(a, b) ≤

E|Mn|+ |a|

(b− a)n
→ 0, n → ∞,

for any a, b ∈ R with a < b.
Therefore if we notice that Mn = g − g ◦ T n for each n ≥ 1, we see that it is

impossible to find a, b ∈ R with a < b such that lim supn→∞
(1/n)EHn(a, b) = 0

holds. Hence by Lemma 2.2 we conclude that P ((g 6= g ◦ T )) = 0. �
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[4] Volný D., Approximating martingales and the central limit theorem for strictly stationary

processes, Stochastic Process. Appl. 44 (1993), no. 1, 41–74.
[5] Walters P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79,

Springer, New York, 1982.

T. Morita:

Department of Mathematics, Graduate School of Science, Osaka University,

1-1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan

E-mail: take@math.sci.osaka-u.ac.jp

(Received May 7, 2018, revised July 30, 2018)


