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Continuous images of Lindelöf p-groups,

σ-compact groups, and related results
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Abstract. It is shown that there exists a σ-compact topological group which can-
not be represented as a continuous image of a Lindelöf p-group, see Example 2.8.
This result is based on an inequality for the cardinality of continuous images of
Lindelöf p-groups (Theorem 2.1). A closely related result is Corollary 4.4: if
a space Y is a continuous image of a Lindelöf p-group, then there exists a cov-
ering γ of Y by dyadic compacta such that |γ| ≤ 2ω . We also show that if
a homogeneous compact space Y is a continuous image of a cdc-group G, then
Y is a dyadic compactum (Corollary 3.11).
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1. Introduction and preliminaries

All spaces considered below are assumed to be Tychonoff. We use, with a few
exceptions, the terminology and notation from [7], [9], and [4], [5]. If X is a set,
then |X | is the cardinality of this set. Let N = {1, 2, . . .} be the set of positive
integers with the discrete topology. For a space X and a cardinal number τ , we
say that the Lindelöf degree l(X) of X does not exceed τ , if every open covering
µ of X contains a subcovering µ0 such that |µ0| ≤ τ . A space X is a paracom-

pact p-space if there exists a perfect mapping of X onto some metrizable space,
see [1]. Lindelöf p-spaces are preimages of separable metrizable spaces under per-
fect mappings. It is well-known that every Lindelöf Σ-space is a continuous image
of a Lindelöf p-space—in fact, this can be accepted as a definition of Lindelöf Σ-
spaces, see [10]. But for topological groups the situation is different. A Lindelöf
Σ-group is a topological group which is a Lindelöf Σ-space. Similarly, a Lindelöf
p-group is a topological group which is a Lindelöf p-space. It has been shown
in [3] that there exists a Lindelöf Σ-group which cannot be represented as a con-
tinuous image of a Lindelöf p-group. However, the group presented in [3] was not
σ-compact. Notice that σ-compact spaces are Lindelöf Σ-spaces. In this paper,
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we investigate further what are the reasons for Lindelöf Σ-groups not to be con-
tinuous images of Lindelöf p-groups. We establish some cardinal inequalities for
mappings, which bring forward these reasons, see Sections 2, 3, 4, Theorem 2.1,
for example, and we discover many σ-compact topological groups of this kind.

An important role in this article belongs to coverings of spaces by dyadic com-
pacta. In the last section, we define a cardinal function in these terms and apply
it to formulate some quite general theorems on mappings. Topological groups are
somehow involved in all of them, and this assumption cannot be dropped. These
theorems describe certain situations in which there is no continuous surjection of
one space onto another. Theorems 4.6, 4.9, Corollary 4.7 are among the main
results in this direction.

2. Some theorems on continuous images of small paracompact

p-groups

Theorem 2.1. Suppose that f is a continuous mapping of a paracompact p-group
G onto a space Y which is covered by a countable family η of closed subspaces
with countable tightness. Suppose also that the Lindelöf degree l(G) of G does
not exceed 2ω. Then |Y | ≤ 2ω. If, in addition, G is Lindelöf, then Y is separable.

This theorem will be proved with the help of several results below, where the
first statement is a suitable combination of some well-known facts.

Proposition 2.2. For every paracompact p-groupG such that the Lindelöf degree
l(G) of G does not exceed 2ω, there exists a disjoint covering γ of G such that
the following conditions are satisfied:

(1) |γ| ≤ 2ω;
(2) every F ∈ γ is a dyadic compactum.

If, in addition, G is Lindelöf, then we can select the covering γ so that conditions
(1) and (2) are satisfied, and there exists a countable subfamily µ of γ such that⋃
µ is dense in G.

Proof: We can fix a perfect and open mapping f of the spaceG onto a metrizable
spaceM such that f−1(p) is homeomorphic to a compact subgroup of the group G
for each p ∈ M , see [7, Theorems 4.3.20 and 4.3.35]. Put γ = {f−1(p) : p ∈ M}.
Clearly, l(M) ≤ l(X) ≤ 2ω. Since M is metrizable, it follows that |M | ≤ 2ω

and that |γ| ≤ 2ω. Obviously, γ is a covering of G. Thus, condition (1) holds.
Condition (2) also holds. Indeed, every F ∈ γ is homeomorphic to a compact
group. Therefore, every F ∈ γ is a dyadic compactum, by Ivanovskij–Kuz’minov
theorem, see [7, Theorem 4.1.7]. �

We also need the next two statements:

Proposition 2.3. Suppose that f is a continuous mapping of a space X onto
a space Y , where X is covered by a family γ of dyadic compact subspaces of X
such that |γ| ≤ 2ω, and Y is covered by a countable family η of closed subspaces



Continuous images of Lindelöf p-groups, σ-compact groups, and related results 465

of Y such that the tightness of P is countable, for every P ∈ η. Then the
cardinality of Y does not exceed 2ω.

Proof: We can assume that η = {Pi : i ∈ ω}. Fix F ∈ γ, and put ηF = {Fi :
i ∈ ω}, where Fi = f(F ) ∩ Pi. Since η covers Y , we have f(F ) =

⋃
{Fi : i ∈ ω}.

Clearly, every Fi is a compact space with countable tightness. Since f(F ) is also
compact, it follows from Ranchin’s theorem in [11] that the tightness of f(F )
is countable. But f(F ) is a dyadic compactum, since F is a dyadic compactum.
Therefore, f(F ) is metrizable, by a theorem of A.V. Arhangel’skii and V. I. Pono-
marev in [6] on metrizability of every dyadic compactum with countable tightness.
Hence, f(F ) is separable, and |f(F )| ≤ 2ω. Since this is true for every F ∈ γ,
and |γ| ≤ 2ω, we conclude that the cardinality of Y does not exceed 2ω. �

The proof of the next statement is similar to the proof of the preceding state-
ment, so we omit it.

Proposition 2.4. Suppose that f is a continuous mapping of a space X onto
a space Y , and that Z is a dense subspace of X such that Z =

⋃
γ, where

each F ∈ γ is a dyadic compact subspace of X , |γ| ≤ ω, and Y is covered by
a countable family of closed subspaces of Y with countable tightness. Then the
density of Y is countable.

Proof of Theorem 2.1: Proposition 2.2 implies that the mapping f satisfies
all the restrictions imposed on f in Proposition 2.3. Applying Proposition 2.3, we
conclude that the cardinality of Y does not exceed 2ω. Similarly, Proposition 2.2
implies that f satisfies the restrictions imposed on f in Proposition 2.4. Applying
Proposition 2.4, we conclude that Y is separable. Theorem 2.1 is proved. �

The proof of Theorem 2.1 shows that the following version of this theorem also
holds.

Theorem 2.5. Suppose that f is a continuous mapping of a Lindelöf p-group
G onto a space Y such that the tightness of every compact subspace of Y is
countable. Then |Y | ≤ 2ω, and Y is separable.

It is also worth mentioning the next fact which obviously follows from Theo-
rem 2.1, Proposition 2.2, and from the classical Ivanovskij–Kuz’minov theorem,
which says that every compact topological group is a dyadic compactum, see [7,
Theorem 4.1.7]:

Theorem 2.6. Suppose that f is a continuous mapping of a paracompact p-group
G such that the Lindelöf degree l(G) of G does not exceed 2ω, onto a space Y .
Then there exists a family γ of dyadic compact subspaces of Y such that γ
covers Y , and |γ| ≤ 2ω.

Now we present another result of the same type as Theorem 2.1, but with
a slightly different proof.

Let Y be a topological space, and let τ be an infinite cardinal number. We will
say that Y is τ-transparent with respect to the pseudocharacter if there exists
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a family {Yα : α < τ} of closed subspaces of Y such that, for each α < τ , each
y ∈ Yα is a Gδ-point in Yα, and Y =

⋃
{Yα : α < τ}.

Theorem 2.7. Suppose that f is a continuous mapping of a paracompact p-
space X onto a space Y which is covered by a family η = {Yα : α < 2ω} of closed
subspaces with countable pseudocharacter. Suppose also that the Lindelöf degree
l(X) of X does not exceed 2ω. Then |Y | ≤ 2ω.

Proof: Since X is a paracompact p-space, we can fix a perfect mapping g of the
space X onto a metrizable space M , see [1]. Put γ = {g−1(p) : p ∈ M}. Clearly,
l(M) ≤ l(X) ≤ 2ω. Since M is metrizable, it follows that |M | ≤ 2ω and that
|γ| ≤ 2ω. Put ξ = {f(F ) : F ∈ γ}. Clearly, ξ is a covering of Y by compact
subspaces, and |ξ| ≤ 2ω. Put µ = {S∩P : S ∈ ξ, P ∈ η}. We have |µ| ≤ 2ω, since
the same is true for ξ and for η. It is also clear that, for each H ∈ µ, H is compact
and each y ∈ H is a Gδ-point in H . Therefore, every H ∈ µ is a first-countable
compactum, which implies that |H | ≤ 2ω, see [2]. Since |µ| ≤ 2ω and Y =

⋃
µ,

we conclude that |Y | ≤ 2ω. �

Finally, let us show that there exists a σ-compact topological group which
cannot be obtained as a continuous image of a Lindelöf p-group.

Example 2.8. Let c = 2ω and τ = 2c. Fix a discrete space A such that |A| = τ ,
and let b(A) be the one point compactification of A. Then b(A) is a compact
sequential space. In fact, b(A) is an Eberlein compactum, since b(A) is homeo-
morphic to a compact subspace of the space Cp(b(A)) of continuous real-valued
functions on b(A) in the topology of pointwise convergence, see Proposition 3.3.2
in [4]. Now, let G be the free topological group of the space b(A). Then G is
σ-compact and sequential [7, Corollary 7.4.9]. In particular, the tightness of G is
countable. On the other hand, |G| > |A| > 2ω. Therefore, Theorem 2.1 implies
that G cannot be obtained as a continuous image of a paracompact p-group with
the Lindelöf degree less than or equal to 2ω. Hence, G is not a continuous image
of a Lindelöf p-group.

Every σ-compact space Y can be represented as a continuous image of a σ-
compact locally compact space X . This space X is a Lindelöf p-space.

The requirement in Theorem 2.1 that G be a topological group cannot be
dropped.

Example 2.9. Let b(A) be the one point compactification of a discrete space A
with the cardinality 2c, where c = 2ω. Then b(A) is a compact space with count-
able tightness, see Example 2.8. In particular, b(A) is a paracompact p-space,
and b(A) can be mapped onto a one point space by a perfect and open mapping.
We put Y = b(A), and define f as the identity mapping of b(A) onto itself. Then
all conditions in Theorem 2.1 are satisfied, except one: b(A) is not a topological
group. Notice, in connection with Theorem 2.1, that |Y | = 2c > 2ω.
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3. Topological groups with countable disjoint coverings by compact

subspaces

An interesting special case of σ-compact groups constitutes topological groups
which can be covered by a disjoint countable family of compact subspaces. Such
topological groups are called below cdc-groups. If a space X is an image of a topo-
logical group G under a perfect mapping f , and X can be covered by a disjoint
countable family of compact subspaces, then we say that X is a cdc-space. Some
simple examples of such objects are easily available. The product G×N , where
G is a compact group and N is the discrete group of integers, is a cdc-group. The
group of rational numbers is also a cdc-group. In fact, all countable topological
groups are cdc-groups. It is also clear that the product of any finite family of
cdc-groups is a cdc-group. Any closed subgroup of a cdc-group is a cdc-group.

Example 3.1. Suppose that G is a topological group with a compact subgroupH
such that the quotient set G/H is countable. Then G is a cdc-group.

The example is not so special, as the next lemma shows.

Lemma 3.2. Suppose that η is a countable disjoint covering of a topological
group G by compact subspaces. Then every member F of η is a dyadic com-
pactum.

Proof: Clearly, F is a Gδ-subset of G. Since G is a topological group and F
is compact, it follows from a theorem of M.M. Choban in [8] that F is a dyadic
compactum. �

Proposition 3.3. If a space X is an image of a topological group G under
a perfect mapping f , and γ is a disjoint countable covering of X by compact
subspaces, then each member F of γ is a dyadic compactum.

Proof: Put η = {f−1(F ) : F ∈ γ}. Every member of η is compact, since f
is perfect. It is also clear that η is a countable disjoint covering of G. Since G is
a topological group, it follows from Lemma 3.2 that each member f−1(F ) of η is
a dyadic compactum. Therefore, each F ∈ γ is also a dyadic compactum. �

The next statement will help us to identify a σ-compact topological group
which is not a cdc-group.

Theorem 3.4. Suppose that f is a continuous mapping of a cdc-space X onto
a Tychonoff space Y such that the tightness of every compact subspace of Y is
countable. Then Y has a countable network.

Proof: We can fix a countable disjoint family γ of compact subspaces of X
such that X =

⋃
γ. Put η = {f(F ) : F ∈ γ}. By Proposition 3.3, each F ∈ γ

is a dyadic compactum. Therefore, every member of η is a dyadic compactum.
Clearly, the tightness of every P ∈ η is countable. Since every dyadic compactum
with countable tightness is metrizable, by a theorem in [6], we conclude that each
P ∈ η is a separable metrizable space. Since η is countable, it follows that Y has
a countable network. �
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We have seen in the preceding section (Example 2.8) that there exists a σ-
compact group G with countable tightness such that |G| > 2ω. On the other
hand, the next statement obviously follows from Theorem 3.4:

Corollary 3.5. Every cdc-space X with countable tightness has a countable
network, and hence, the cardinality of it does not exceed 2ω.

Corollary 3.6. There exists a σ-compact sequential zero-dimensional topological
group which is not a cdc-group.

Proof: Indeed, take the free topological group G of an uncountable convergent
sequence b(A), see Example 2.8. Then G is not a cdc-group, since b(A) does not
have a countable network. �

Recall that a linearly ordered topological space is a space the topology of which
is generated by a linear ordering. It is well-known that every linearly ordered
topological space is hereditarily normal, see [9].

Theorem 3.7. Suppose that f is a continuous mapping of a cdc-space X onto
a linearly ordered topological space Y . Then Y has a countable network.

Proof: The argument is similar to the proof of Theorem 3.4. The only new step
is the reference to the following fact: every linearly ordered dyadic compactum is
metrizable. �

The last statement could have been derived from the next one:

Theorem 3.8. Suppose that f is a continuous mapping of a cdc-space G onto
a hereditarily normal space Y . Then Y has a countable network.

Proof: The argument is again similar to the proof of Theorem 3.4. The only
new step is the reference to this fact: every hereditarily normal dyadic compactum
is metrizable. This is so, since there exists a non-normal zero-dimensional space
with the weight ω1. �

As an application of the above theorem, we give the following result which
obviously follows from it:

Corollary 3.9. Suppose that a cdc-group G acts continuously and transitively
on a hereditarily normal space Y . Then Y has a countable network.

Every compact topological group is a cdc-group. Every compactum, which
is a continuous image of a compact topological group, is a dyadic compactum.
Now the next question naturally comes to mind: is every compact space, which is
a continuous image of a cdc-group, dyadic? The answer to this question is in the
negative. An example was given in [3, Example 5.33]. But, we give below some
positive partial results in this direction.

Proposition 3.10. Suppose that a compact space Y is a continuous image of
a cdc-group G. Then Y has a nonempty open subspace W which is homeomorphic
to an open subspace of some dyadic compactum (that is, Y is locally dyadic at
some point).
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Proof: It follows from Lemma 3.2 that there exists a countable covering γ of Y
by dyadic compacta. Clearly, some F ∈ γ contains a nonempty open subset V
of Y . �

We also have the following obvious corollary of the last statement:

Corollary 3.11. Suppose that a homogeneous compact space Y is a continuous
image of a cdc-group G. Then Y is a dyadic compactum.

4. The dyadic covering number

An important technical role in this article belongs to coverings of spaces by
dyadic compacta. Below we define a cardinal function in these terms and apply
it to formulate some quite general theorems on mappings. A special feature of
these theorems is that topological groups are somehow involved in all of them
and that this assumption cannot be dropped. Roughly, the theorems describe
situations in which there is no continuous surjection of one space onto another
space. Theorems 4.6, 4.9, and Corollary 4.7 are among the most general results
in this article in this direction.

Let X be a topological space. Then the dyadic covering number dcn(X) of X
is the smallest cardinal number τ such that there exists a covering γ of X by
dyadic compact subspaces of X with |γ| = τ . Clearly, the next statement follows
from Proposition 3.3:

Proposition 4.1. If a space X is a continuous image of a cdc-space under a con-
tinuous mapping, then dcn(X) ≤ ω.

Obviously, the converse to the above statement also holds. We can give to
Proposition 4.1 a more general form as follows:

Proposition 4.2. If a space Y is a continuous image of a space X under a con-
tinuous mapping, then dcn(Y ) ≤ dcn(X).

The next statement follows immediately from Theorem 2.6:

Corollary 4.3. Suppose that f is a continuous mapping of a paracompact p-
group G such that the Lindelöf degree l(G) of G does not exceed 2ω, onto
a space Y . Then dcn(Y ) ≤ 2ω.

In particular, we have:

Corollary 4.4. If a space Y is a continuous image of a Lindelöf p-group, then
dcn(Y ) ≤ 2ω.

On the other hand, we have the following fact, see Example 2.8, which is now
obvious:

Proposition 4.5. For every cardinal number τ , there exists a σ-compact topo-
logical group G such that dcn(G) > 2τ .
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Theorem 4.6. Suppose that G is a topological group which admits a continuous
mapping h onto a space Z with compact preimages h−1(z) of points in Z. Suppose
also that each point in Z is a Gδ-point, and that |Z| ≤ 2ω. Then, for every
continuous mapping f of G into a space Y , which is covered by a countable
family η of closed subspaces with countable tightness, we have: |f(G)| ≤ 2ω.

Proof: Put γ = {h−1(z) : z ∈ Z}. Clearly, every member of γ is a compact Gδ-
subset of G. Hence, each member of γ is a dyadic compactum, by a theorem of
M.M. Choban in [8]. We also see that |γ| ≤ |Z| ≤ 2ω. Hence, by Proposition 2.3,
we have |f(G)| ≤ 2ω. �

Corollary 4.7. Suppose that G is a topological group with a compact sub-
group H such that the quotient space G/H has a countable network. Then, for
every continuous mapping f of G into a space Y which is covered by a countable
family η of closed subspaces with countable tightness, we have |f(G)| ≤ 2ω.

Proof: The natural quotient mapping q of G onto G/H is perfect, since H is
compact. Every point in Z = G/H is a Gδ-point, since G/H has a countable
network. For the same reason, |G/H | ≤ 2ω. Thus, all conditions in Theorem 4.6
are satisfied. Therefore, by this theorem, |f(G)| ≤ 2ω. �

Corollary 4.8. Suppose that G is a topological subgroup of the topological group
Cp(X), where X is a compact space, and that h is a continuous mapping of G
into a space Z with compact preimages of points in Z. Suppose also that each
point in Z is a Gδ-point, and that |Z| ≤ 2ω. Then |G| ≤ 2ω.

Proof: The tightness of Cp(X) is countable, since X is compact [4, Theo-
rem 2.1.1]. Hence, the tightness of G is also countable. Therefore, the statement
above follows from Theorem 4.6. �

Theorem 4.9. Suppose that X is the product H × Z of a compact topological
groupH with a space Z such that |Z| ≤ 2ω. Then, for every continuous mapping f
of X into a space Y which is covered by a countable family η of closed subspaces
with countable tightness, we have |f(X)| ≤ 2ω.

Proof: Clearly, dcn(X) ≤ 2ω. Hence, by Proposition 2.3, we have |f(G)| ≤ 2ω.
�
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[11] Rančin D.V., Tightness, sequentiality, and closed coverings, Dokl. Akad. Nauk SSSR 232

(1977), no. 5, 1015–1018 (Russian); English translation in Soviet Math. Dokl. 18 (1977),
no. 1, 196–200.

A.V. Arhangel’skii:

Moscow State Pedagogical University Malaya Pirogovskaya Ulitsa, 1/1,
Moskva 119435, Rusko

E-mail: arhangel.alex@gmail.com

(Received November 24, 2018, revised December 18, 2018)


