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Vector product and composition algebras

in braided monoidal additive categories
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Abstract. This is an account of some work of Markus Rost and his students
Dominik Boos and Susanne Maurer. It concerns the possible dimensions for
composition (also called Hurwitz) algebras. We adapt the work to the braided
monoidal setting.
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Introduction

This is a fairly detailed account of some work of M. Rost [9] and his students
D. Boos [2] and S. Maurer [8]. I am grateful to J. Baez for alerting us to this
material in a seminar at Macquarie University on 22 January 2003. The stimulus
for revisiting this material was an invitation to participate in the Workshop on
Diagrammatic Reasoning in Higher Education during November 2018 in Newcas-
tle, New South Wales1. It seemed a great opportunity to demonstrate the joy and
power of string diagrams for proving substantial algebraic facts.

The contribution of the present paper is to adapt and generalize the ideas of M.
Rost [9] to the braided monoidal additive setting and to keep the diagrams closer
to those of A. Joyal and the author in [5], [6]. In this context, the goals are to prove
that there are not many dimensions in which vector product algebras can exist
and that the category of vector product algebras is equivalent to the category of
composition algebras. These structures have their origins in A. Hurwitz’ papers
[3], [4]. Recent relevant work includes J. C. Baez [1] and B. W. Westbury [10].
Background category theory can be found in S. Mac Lane [7].
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1. Axiomatics

Definition 1. A vector product algebra (vpa) over a commutative ring R is an R-
module V equipped with a symmetric non-degenerate bilinear form • : V ⊗V → R

and a linear map ∧ : V ⊗ V → V such that

x ∧ y = −y ∧ x,(1.1)

(x ∧ y) • z = (z ∧ x) • y,(1.2)

(x ∧ y) ∧ z + x ∧ (y ∧ z) = 2(x • z)y − (x • y)z − (y • z)x.(1.3)

We call “ •” the inner or dot product and “∧” the exterior or vector product.
Condition (1.1) expresses the antisymmetry of “∧” and (1.2) the cyclic symmetry;
together they mean that (x ∧ y) • z is an alternating function of the variables.
Condition (1.3) may seem strange or unfamiliar; however, we have the following
observation.

Proposition 1. Assume 2 = 1 + 1 is cancellable in R. Then

(a) (1.1) is equivalent to (1.4),

(1.4) x ∧ x = 0;

(b) (1.2) is equivalent to (1.5),

(1.5) (x ∧ y) • z = x • (y ∧ z);

(c) in the presence of (1.1), equation (1.3) is equivalent to (1.6),

(1.6) (x ∧ y) ∧ x = (x • x)y − (x • y)x.

Proof: (a) Put x = y in (1.1) to obtain 2x∧x = 0; then cancel the 2. Conversely,
apply (1.4) to x + y in place of x, use linearity, and apply (1.4) twice more to
obtain x ∧ y + y ∧ x = 0.
(b) Using (1.2) twice, we have (x ∧ y) • z = (z ∧ x) • y = (y ∧ z) • x = x • (y ∧ z).
Conversely, using (1.5) at the second step, (z ∧ x) • y = y • (z ∧ x) = (y ∧ z) • x =
x • (y ∧ z).
(c) Substitute y = x in (1.3) to obtain 0+x∧(x∧z) = 2(x•z)x−(x•x)z−(x•z)x =
(x •z)x−(x •x)z; but x∧(x∧z) = −(x∧z)∧x by (1.1), yielding (1.6). Conversely,
replace x by x+ z in (1.6) then x by x− z in (1.6) and subtract the two results.
We obtain twice (1.3); cancel the 2. �

Remark. In other words, for such a ring, (1.4), (1.5), (1.6) can be taken as alter-
native axioms for a vpa. Notice that Properties (1.4) and (1.6) involve expressions
in which terms have variables repeated. This causes a problem for defining the
concept in a monoidal category since the diagonal function V → V ⊗V , x 7→ x⊗x

is not linear. The reason (1.6) should seem more familiar than (1.3) is that as
undergraduates we learn the property

(1.7) (x ∧ y) ∧ z = (x • z)y − (x • y)z
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for vectors in R
3. This condition (1.7) does not have repeated variables. Note

that (1.6) is a special case of (1.7). Moreover, (1.1) and (1.7) imply (1.3) over
any commutative ring.

Definition 2.

(com) A vpa V is called commutative when the wedge operation is zero: for all
x, y ∈ V , x ∧ y = 0.

(ass) A vpa V is called associative when (1.7) holds.

Remark. The words “commutative” and “associative” do not mean the opera-
tions of V have these properties in the usual sense. They apply to the following
multiplication on R⊕ V :

(1.8) (α, x)(β, y) = (αβ − x • y, αy + βx + x ∧ y).

Indeed, (1.8) is the formula for multiplication of quaternions when V = R
3 with

usual inner and vector products.

2. Monoidal concepts

For a commutative ring R, the category ModR of R-modules (called R-vector
spaces when R is a field) and linear functions becomes a monoidal category with
tensor product given by tensoring over R; so, up to isomorphism, R is the unit
object for tensoring.

Let V denote any monoidal category in which the tensor product functor is
denoted by ⊗ : V × V → V and the unit object by I. Here is the notion of
non-degeneracy for a morphism A ⊗ B → I in V . A little later we will consider
the notion of symmetry for such a morphism when A = B.

Definition 3. A morphism ε : A⊗B → I is called a counit for an adjunction (or
duality) A ⊣ B when, for all objects X and Y , the function

(2.1) V (X,Y ⊗A) → V (X ⊗B, Y ),

sending X
f
−→ Y ⊗ A to the composite X ⊗ B

f⊗1B
−−−−→ Y ⊗ A ⊗ B

1Y ⊗ε
−−−→ Y , is

a bijection. Taking X = I and Y = B, we obtain a unique morphism η : I →

B ⊗ A, called the unit of the adjunction, which maps to the identity of B under
the function (2.1).

Proposition 2. A morphism ε : A⊗B → I is a counit for an adjunction A ⊣ B

if and only if there exists a morphism η : I → B ⊗A satisfying the two equations
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depicted in (2.2).

= =
εε

η η

AA B

A

B

B

A

B

(2.2)

When there is no ambiguity, we denote counits by cups ∪ and units by caps ∩.
So (2.1) becomes the more geometrically “obvious” operation of pulling the ends
of the strings as in (2.3). These are sometimes called the snake equations.

= =

A A B

B A

B

A B

(2.3)

Now suppose the monoidal category is braided. Then we have isomorphisms

cX,Y : X ⊗ Y −→ Y ⊗X(2.4)

which we depict by a left-over-right crossing of strings in three dimensions; the
inverse is a right-over-left crossing.

X XY Y
(2.5)

The braiding axioms reinforce the view that it behaves like a crossing.

= =

f

fg

g

=
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=

X ⊗ Y Y ⊗ ZX YZ

=

Z X X Y Z

The following Reidemeister move or Yang–Baxter equation is a consequence.

=

We will refer to these properties as the geometry of braiding as justified by [5].

Proposition 3. If V is braided and A ⊣ B with counit and unit depicted by ∪

and ∩ then B ⊣ A with counit and unit depicted by

Proof: One of the snake equations is proved by the calculation

= ==

while the other is dual. �

Definition 4. Objects with duals have dimension: if A ⊣ B then the dimension
d = dA of A is the following element of the commutative ring V (I, I).

=d

AB

A B

Definition 5. A morphism g : A⊗A → X is called symmetric when

A⊗ A
cA,A

−−−→ A⊗A
g
−→ X = A⊗A

g
−→ X.



586 R. Street

(Clearly the condition is equivalent to using the inverse braiding in place of the
braiding.) In particular, a self-duality A ⊣ A with counit ∪ is called symmetric
when

=

By Proposition 3 and uniqueness of units, it follows that

=

For a symmetric self-dual object A, the dimension is simply

=d

Proposition 4. If A ⊣ A and B ⊣ B are symmetric self-dualities and f : A → B

is a morphism then

= = fff

Proposition 5. If A ⊣ A is a symmetric self-duality and g : I → A ⊗ A is

a morphism then

g = g

Proof: Both sides are equal to:

g

�
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Proposition 6. If A ⊣ A is a symmetric self-duality then the following Reide-

meister move holds

=

Proof: By dragging the bottom strings to the right and up over the top string
we see that the proposition is the same as

=

However, applying the snake equation and the geometry of braiding to the left-
hand side, we are left with the expression for symmetry of the counit. �

Proposition 7. If V is a braided monoidal category then the set V (I, I) of

endomorphisms of the tensor unit I is a commutative monoid under composition.

In fact, composition agrees with tensor for such endomorphisms.

Proof:

f

gf

fg

g ==

�

If V is a braided monoidal additive category then there is an addition in each
hom set V (X,Y ) such that

(2.6)
h ◦ 0 ◦ k = 0, h ◦ (f + g) ◦ k = h ◦ f ◦ k + h ◦ g ◦ k ,

U ⊗ 0⊗ V = 0, U ⊗ (f + g)⊗ V = U ⊗ f ⊗ V + U ⊗ g ⊗ V .

When ambiguity is possible, we sometimes write 0X,Y for the zero 0 in the abelian
group V (X,Y ). In particular, V (I, I) is a commutative ring; the multiplicative
identity is depicted by an empty string diagram ∅ as distinct from the zero 0II .

3. Scarcity of vector product algebras

Definition 6. A vector product algebra (vpa) in a braided monoidal additive
category V is an object V equipped with a symmetric self-duality V ⊣ V (depicted
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by a cup ∪) and a morphism ∧ : V ⊗ V → V (depicted by a Y) such that the
following three conditions hold.

= −
(3.1)

=(3.2)

=+ 2 −−
(3.3)

A vpa is associative when it satisfies

= −

(3.4)

Using (3.1) and (3.2), we see that (3.4) is equivalent to (3.5).

= −

(3.5)

By adding (3.4) and (3.5) we obtain (3.3). So (3.3) is redundant in the definition
of associative vpa.

Proposition 8. The following is a consequence of (3.1) and (3.2).

=
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Proof: Using (3.1) and (3.2) for the first equality below then the geometry of
braiding for the second, we have

=− =

However, the left-hand side is equal to the left-hand side of the equation in the
proposition by (3.1) while the right-hand sides are equal by symmetry of inner
product ∪. �

Corollary 9.

=

Proof: Proposition 8 yields

=

and the snake equations (2.3) yield the result. �

Corollary 10.

=

Proof: Using Corollary 9, we see that both sides are equal to

and we have the result. �

Corollary 11.

= 2+ −−

Proof: Attach a ∩ on the right input strings in all five terms of (3.4) and apply
Corollary 9 to the two terms on the left-hand side. �
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Corollary 12. Condition (3.3) is equivalent to the following equation.

= 2+ −−

Proof: Attach a ∪ on the right side of the output strings of all five terms of (3.3).
The right-hand side is what we want. On the left-hand side apply symmetry of “ •”
to the first term, and the alternating form axioms (3.1) and (1.2) to the second
term. Each step can be reversed. �

Theorem 13. For any associative vector product algebra V in any braided

monoidal additive category V , the dimension d = dV satisfies the equation

d(d− 1)(d− 3) = 0

in the endomorphism ring V (I, I) of the tensor unit I.

Proof: We perform two string calculations each beginning with the following
element of V (I, I).

(3.6)

Using (3.5) twice and (2.6), we obtain

− +−

in which, using Proposition 6 and the geometry of braiding, each term reduced to
a union of disjoint circles:

d− dd− dd+ ddd = d(d− 1)2.
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Return now to (3.6) and apply Proposition 8 to obtain

in which we see we can apply (3.4) to obtain the following difference.

−

In both terms we can apply (3.1).

− +

Now use geometry in the first term and Proposition 8 in the second.

− +

Apply Proposition 6 to the first term and the snake identity to the second to
obtain

− + = ++ = 2
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where the first equality uses (3.1) and the second uses Proposition 8 on the first
terms. However, using Proposition 8 and then (3.5), we obtain

= = − +

so, using Proposition 6 and geometry, we again obtain terms which consist of one
and two disjoint circles. This shows that (3.6) is equal to 2(−d + d2). The two
calculations therefore imply d(d − 1)2 = 2d(d− 1). So 0 = d(d − 1)(d− 1− 2) =
d(d− 1)(d− 3) as required. �

Proposition 14. Let V be any vector product algebra in an additive braided

monoidal category V such that 2 is cancellable in the abelian group V (I, V ).
Then the following three equations hold.

= = (1− d)d(1− d)0=

Proof: Using the asymmetry (3.1) of “∧” and the symmetry of “ •”, we obtain

==−

which proves the first equation after transposing and cancelling a 2.
For the second equation, contract Corollary 11 on the left to obtain:

= 2+ −−

in which the second term on the left is 0 using Corollary 9, the first term on
the right is 2 1V by Proposition 6, the second term on the right is 1V using the
snake identities, and the final term is d1V . This proves the second equation of
the proposition.
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Using Corollary 9, the left-hand side of the third equation is equal to the left-
hand side of the equation:

=

which is true by Proposition 8. The second equation of the proposition now gives
the third equation. �

Proposition 15 (T. A. Springer). For any vector product algebra V with 2 can-

cellable in V (I, V ),

= (d− 4)
(3.7)

Proof: From (3.3), we obtain

+ 2 −= −
(3.8)

The first term on the left is the left-hand side l (say) of the equation in the propo-
sition. Proposition 14 applies to the second term on the left yielding (1 − d) ∧.
Applying Corollary 9 to the first term on the right-hand side and using some
geometry, we obtain the left-hand side of

2 = 2

which is equal to the right-hand side by Proposition 6, and this is equal to −2 ∧

by (3.1). The third term on the right-hand side of (3.8) is equal to − ∧ by
a snake equation. The fourth term of the right-hand side of (3.8) is 0 as an easy
consequence of the first identity of Proposition 14.

This leaves us with the equation

l + (1− d) ∧ = −2 ∧ − ∧,

proving that l = (d− 4) ∧, as required. �
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Proposition 16. For any vector product algebra V and any morphism

f : V ⊗ V ⊗ V → X,

the following identity holds.

= ff(3.9)

Proof: Applying Corollary 9 and geometry of braiding to the right-hand side
yields the left-hand side of:

= ff

where the equality holds by Proposition 6 and the geometry of braiding. Now the
result follows by Corollary 10. �

Theorem 17. For any vector product algebra V in any braided monoidal additive

category V such that 2 can be cancelled in V (I, V ) and V (I, I), the dimension

d = dV satisfies the equation

d(d− 1)(d− 3)(d− 7) = 0

in the endomorphism ring V (I, I) of the tensor unit I.

Proof: We perform two string calculations each beginning with the following
element of V (I, I).

(3.10)

The first calculation involves noticing that the diagram of Proposition 15 occurs
twice in (3.10). Using that fact and the third equation of Proposition 14, we obtain
the value

(d− 4)2(1− d)d(3.11)

for (3.10).
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The second calculation begins by considering the equation Ξ obtained by
mounting the following morphism on the top of each term of the equation of
Corollary 12.

The reader should draw the diagram for equation Ξ. The first term on the left-
hand side of Ξ is then none other than the morphism (3.10) in the form of the
left-hand side of Proposition 16 for an appropriate f : V ⊗V ⊗V → I. Notice also
that the second term of the left-hand side of Ξ is equal to the right hand side of
Proposition 16 for the same f . Consequently, the left-hand side of Ξ is twice the
value of (3.10).

Applying Proposition 5 to the first term of the right-hand side of Ξ and using
symmetry, we obtain twice the morphism (3.12).

(3.12)

Applying vpa axioms leads to minus twice the morphism (3.13)

(3.13)

in which we can recognize the left-hand side of Proposition 15. Applying that
Springer proposition and using vpa axioms, we find that the first term on the
right-hand side of Ξ is twice the morphism

(d− 4)
(3.14)
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By the third equation of Proposition 14 we now have that the first term of the
right-hand side of Ξ is

2(d− 4)(1− d)d.

Beginning with minus the second term of the right-hand side of Ξ we have the
calculation:

==(3.15)

and the second equation of Proposition 14 applies to yield

(1− d)
(3.16)

resulting in the value of the second term of the right-hand side of Ξ being

−(1− d)(1 − d)d = −d(1− d)2.(3.17)

The third term on the right-hand side of Ξ is minus the morphism

== (1− d)(1− d)(3.18)

showing that we again obtain the value (3.17).
Putting this all together in Ξ and cancelling a 2, we obtain

(d− 4)2(1− d)d = (d− 4)(1− d)d − d(1− d)2

A little algebra turns this into:

0 = d(d − 1)((d− 4)2 − (d− 4) + (1 − d))

= d(d − 1)(d2 − 10d+ 21)

= d(d − 1)(d− 3)(d− 7)

as claimed. �
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4. Composition algebras

Definition 7. A composition algebra (ca) in a braided monoidal additive cate-
gory V is an object A equipped with a symmetric self-duality A ⊣ A, a multiplica-
tion m : A⊗A → A and an identity e : I → A such that the following conditions
hold.

e e
= ∅

(4.1)

m
=

m
(4.2)

= m

e

=m

e

(4.3)

=

mmm m

+ 2(4.4)

Assume that idempotents split in V . Assume also that multiplication by 2 is
invertible in the ring V (I, I) (and hence in each hom abelian group V (X,Y )).

Define ∧ : A ⊗ A → A by the following equation where it is depicted by a Y-
shaped string diagram.

m
=

m
−2(4.5)
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Proposition 18. The following two equations hold.

= −
(4.6)

=(4.7)

Proof: From (4.2), we easily deduce (4.6).
By putting e on the right-hand input strings in (4.4), using the inverse braiding

on the middle two strings, and applying (4.3), we obtain the left equality in the
following diagram.

= 2+
m

e

m

+
mm

=(4.8)

The right-hand inequality is obtained similarly from (4.4) this time by putting e

on the third strings, putting the braiding on the first and last strings, then using
(4.3) and the symmetry of the duality. Transposing terms in the equality of the
left-hand side of (4.8) with the right-hand side, we obtain twice equation (4.7). �

Applying (4.7) of the proposition and using the unit condition (4.3), we obtain:

Corollary 19.

e e
== 0A⊗A I

(4.9)

Notice that (4.1) says that I
e
−→ A is a split monomorphism with left inverse

p = (A
1A⊗e
−−−→ A⊗A

•

−→ I). This gives the idempotent (4.10) on A.

e

e

−(4.10)

Splitting the idempotent, we obtain a direct sum diagram

I
e

//
A

q
//

p
oo V

i
oo(4.11)
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exhibiting A ∼= I ⊕ V . This is expressed by the following equations.

q

e

i

0IV=

e

e

V

A A

A

V

V

= =0V I

i

(4.12)

q e

i
e

V

AA A V

V

= =

i
+

A A

V

q

A(4.13)

An easy exercise using these equations shows:

Proposition 20. There is a self-duality V ⊣ V with counit and unit supplied by

i
q

VV

VA

A

i
q

V

With this choice of duality for V ,

A

iq =

V V

A

Notice that Corollary 19 now tells us that ∧ : A ⊗ A → A factors through
i : V → A; indeed,

∧ = e p ∧+ i q∧ = 0 + i q∧ = i q ∧ .

Risking ambiguity, we define a wedge for V by

(4.14) ∧ := (V ⊗ V
i⊗i
−−→ A⊗A

∧
−→ A

q
−→ V )
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so that the following square commutes.

(4.15) V ⊗ V
i⊗i

//

∧

��

A⊗A

∧

��

V
i

// A

Proposition 21. We have

(i)

=+ 0

m

i

m

i

(ii)

=+ 0

m

i

m

i

Proof: For (i) put i on the first and e on the second input strings of axiom (4.4)
for a composition algebra. Then use (4.3) and (4.12) to obtain the result.

For (ii) put i on the last and e on the third input strings of axiom (4.4). Then
use (4.3) and (4.12) to obtain the result. �

Proposition 22. We have

i

=

iiiii

m e
m

+ −2

Proof: Let us temporarily write n : V ⊗ V → A for the left-hand side of the
equation. Using Proposition 21 and the counit symmetry, we have the following
calculation. The first step uses Proposition 21 (i) and symmetry, the second step
uses Proposition 21 (ii) and symmetry, while the last step uses Proposition 21 (i)
again.
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=

i

m
=

m

iii
−

m

−
iii

m

i

i

i

=

ii

Consequently,

i
=

n
0.

Moreover, using Proposition 21 (i) twice, and then (4.3) and symmetry, we
obtain

i
=n e

−−

m

−2

m

=
e

i

i

i

i e

i

Now using the first equation of the direct sum property (4.13) and the formula
for q in Proposition 20, we see that n is equal to the right-hand side of the equation
in our proposition. �

Proposition 23. For any composition algebra A in V , the object V as defined

by (4.11), equipped with the self-duality of Proposition 20 and the wedge (4.14),
is a vector product algebra in V .

Proof: It remains to prove the three axioms for a vector product algebra. The
first two axioms are taken care of by Proposition 18: (3.1) follows from (4.6) while
(3.2) follows from (4.7) and symmetry of the self duality.

To prove the remaining axiom (3.3), we prove the equivalent form in Corol-
lary 12. Begin with 4 times the first term on the left-hand side of Corollary 12
where, for now, the strings are all labelled by A. Substitute the formula (4.5)
for ∧ in the two places to obtain a sum of four terms, two of which are negative.

4 + − m−= mmmmmmm
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Apply composition algebra (4.4) to each of the positive terms on the right-hand
side to obtain

− − m−= mmmmmmm4 −

The second term on the left-hand side of Corollary 12 is obtained from the first
by composing with the braiding cA,A⊗A⊗A. So we also obtain an expression for 4
times this second term as a combination of five terms where the first coefficient
is +4 and the other four are −1. Now add the two five term expressions. The
positive terms in each expression are the same so we obtain an 8 as coefficient.
The negative terms factorize. (In sorting out the string diagrams for this, the
reader must note that “ •” and m do not see the difference between preceding with
the braiding or with its inverse.) If we precede this expression by i⊗ i⊗ i⊗ i and
again denote the left-hand side of Proposition 22 by n, we find that the left-hand
side of Corollary 12 is equal to

− −
i

n8
iii

n n n

from which the result follows by using the formula for n in Proposition 22. �

Corollary 24. (dA − 1)(dA − 2)(dA − 4)(dA − 8) = 0.

Proof: As the dimension of X⊕Y is dX+dY , we see from (4.11) that dA = 1+dV .
The result now follows from Proposition 23 and Theorem 17. �

Let CA denote the category of composition algebras; morphisms f : A → B

are those which preserve the operations:

(

A⊗A
f⊗f
−−−→ B ⊗B

•

−→ I
)

=
(

A⊗A
•

−→ I
)

,

(

A⊗A
f⊗f
−−−→ B ⊗B

m
−→ B

)

=
(

A⊗A
•

−→ A
f
−→ B

)

,

(

I
e
−→ A

f
−→ B

)

=
(

I
e
−→ B

)

.

Let VPA denote the category of composition algebras; morphisms h : V → W

are those which preserve the operation “ •” as above and “∧” in the usual sense.

Theorem 25. Let V be a braided monoidal additive category with finite di-

rect sums and splitting of idempotents. Assume also that multiplication by 2 is

invertible in the ring V (I, I). Then the functor Φ: CA → VPA, taking each
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composition algebra A to the vpa V of Proposition 23 and each morphism to its

restriction, is an equivalence of categories.

Proof: That Φ is fully faithful follows from (4.11), (4.5) and Proposition 22
which show how ∧ and m can be defined in terms of each other.

It remains to show that Φ is essentially surjective on objects. Take a vpa V .
Using the direct sums in V , there exists an A as defined by the direct sum diagram
(4.11). A symmetric self-duality for A is defined by

q p

A

V

+= q p

A A A
AA

(4.16)

while we have the identity e as part of diagram (4.11). We define the multiplication
m : A ⊗ A → A by insisting that e is an identity for that multiplication together
with the following two equations.

V

=

qp

−

m

ii i =
m

i

V V

(4.17)

Axioms (4.1), (4.2), (4.3) are then obvious. In axiom (4.4), we replace the four
counits for A ⊣ A occurring in the equation by the right-hand side of (4.16). Then
it suffices to check the result for the sixteen cases obtained by attaching either
of the direct sum injections e or i to the four input strings. The only case that
needs attention is when all four input strings have i attached; this produces the
following condition.

= 2+++(4.18)

However, if you take the vpa axiom (3.3), move the negative terms to the left-hand
side, drag the bottom string in each term up to the right, apply the braiding to the
top middle two strings of each term, and manipulate a little using the earlier vpa
axioms and Proposition 8, we obtain (4.18). Finally, observe that Φ(A) ∼= V . �
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