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On congruence permutable G-sets

Attila Nagy

Abstract. An algebraic structure is said to be congruence permutable if its arbi-
trary congruences α and β satisfy the equation α ◦ β = β ◦ α, where ◦ denotes
the usual composition of binary relations. To an arbitrary G-set X satisfying
G∩X = ∅, we assign a semigroup (G,X, 0) on the base set G∪X∪{0} containing
a zero element 0 /∈ G ∪X, and examine the connection between the congruence
permutability of the G-set X and the semigroup (G,X, 0).

Keywords: G-set; congruence permutable algebras; semigroup

Classification: 20E15, 20M05

1. Introduction and motivation

An algebraic structure A is said to be congruence permutable if for every

congruences α and β on A, the equation α ◦ β = β ◦ α is satisfied, where ‘◦’

denotes the usual composition of binary relations. Recall that for arbitrary binary

relations α and β on a set X , α ◦ β = {(a, b) ∈ X × X : (∃x ∈ X) (a, x) ∈ α,

(x, b) ∈ β}. Every group is congruence permutable, but this cannot be said about

the G-sets and the semigroups. In [2], finite congruence permutable transitive

right G-sets play an important role in the description of a special type of finite

congruence permutable semigroups. To a finite group G and a finite congruence

permutable transitive right G-set N∗ = G/Ga (Ga is a subgroup of G and G/Ga

is the right coset space of G modulo Ga), the authors assign a semigroup (in

[2, Construction 1]), and prove (in [2, Theorem 2]) that a finite semigroup S

is a congruence permutable semigroup which is a semilattice of a group G and

a nil semigroup such that the identity element of G is a right identity element

of S and SN = {0} if and only if S is isomorphic to a semigroup defined in

Construction 1 of [2].

It is easy to see that Construction 1 of [2] also gives a semigroup when the

group G is arbitrary and an arbitrary right G-set is considered instead of the

special right G-set N∗. This fact and the result of Theorem 2 of [2] inspire us
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to find connection between the congruence permutability of right G-sets and the

semigroups assigned to them.

In our present paper, to an arbitrary group G and an arbitrary right G-set X

(satisfying G ∩X = ∅), we shall assign a semigroup (G,X, 0) (containing a zero

0 /∈ G∪X), and examine the connection between the congruence permutability of

the right G-set X and the semigroup (G,X, 0). First we characterize the congru-

ence permutable semigroup (G;X ; 0) by the help of the right G-set X . We prove

that the semigroup S = (G,X, 0) is congruence permutable if and only if the right

G-set X is transitive and congruence permutable, see Theorem 1. We define the

notion of the orbit subsemigroup of the semigroup (G,X, 0) and characterize arbi-

trary congruence permutable right G-sets by the help of the semigroup (G,X, 0)

and the orbit subsemigroups of (G,X, 0). We prove that a right G-set X is con-

gruence permutable if and only if the semigroup (G,X, 0) is segregated (which

means that every congruence α on (G,X, 0) satisfies the following condition: if A

and B are different orbits of X such that (a0, b0) ∈ α for some a0 ∈ A and b0 ∈ B

then (a, b) ∈ α for all a, b ∈ A ∪ B) such that it has at most two orbit subsemi-

groups, and every orbit subsemigroup of (G,X, 0) is congruence permutable, see

Theorem 2.

2. Preliminaries

Let G be a group with the identity element e. By a G-set we shall mean a right

G-set, that is, a nonempty set X together with a mapping

X ×G 7→ X ; (x, g) 7→ xg ∈ X,

satisfying the equations xe = x and (xg)h = x(gh) for every x ∈ X and every

g, h ∈ G.

A G-set X is said to be transitive if for every x, y ∈ X there is a g ∈ G such

that xg = y. A transitive G-subset of a G-set X is called an orbit of X . Clearly,

any G-set is a disjoint union of its orbits.

Every G-set X can be considered as a unary algebra (X ;G) with the set G of

operations where the operation g ∈ G is defined by the role g(x) = xg for every

x ∈ X .

By a congruence of a G-set X we mean an equivalence relation σ of X which

satisfies the following condition: for every a, b ∈ X , the assumption (a, b) ∈ σ

implies (ag, bg) ∈ σ for every g ∈ G (that is, σ is a congruence of the unary

algebra (X,G)).

The next lemma is about the congruence lattice of a transitive G-set X , see [6,

Lemma 3] and [4, Lemma 4.20].
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Lemma 1. Let X be a transitive G-set. Then the congruence lattice Con(X) of

the G-set X is isomorphic to the interval [StabG(x), G] of the subgroup lattice of

the group G, where x is an arbitrary element of X and

StabG(x) = {g ∈ G : xg = x}.

The corresponding isomorphisms are

ϕ : α 7→ Hα = {g ∈ G : (xg , x) ∈ α}

and

ψ : H 7→ αH = {(xg, xh) ∈ A×A : Hg = Hh}

(α ∈ Con(X), H ∈ [StabG(x), G]) which are inverses of each other.

By [7, Lemma 1], α◦β = β◦α is satisfied for congruences α and β of a transitive

G-set X if and only if HαHβ = HβHα is satisfied. Thus the following lemma is

a characterization of the congruence permutable transitive G-sets.

Lemma 2. A transitive G-set X is congruence permutable if and only if HK =

KH is satisfied for every subgroups H and K of G belonging to the interval

[StabG(x), G], where x is an arbitrary element of X .

Arbitrary congruence permutable G-sets are characterized in [8]. A G-set X

is called segregated if every congruence α of the G-set X satisfies the following

condition: if A and B are different orbits of X such that (a0, b0) ∈ α for some

a0 ∈ A and b0 ∈ B then (a, b) ∈ α for all a, b ∈ A ∪ B. By [8, Theorem 3.4] the

following lemma is true.

Lemma 3. A G-set X is congruence permutable if and only if X is a segregated

G-set such that X has at most two orbits and every orbit of X is congruence

permutable.

In the next section, to an arbitrary groupG and an arbitraryG-setX satisfying

G∩X = ∅, we shall assign a semigroup (G,X, 0) containing a zero 0 (0 /∈ G∪X),

and examine the connection between the congruence permutability of the G-set X

and the semigroup (G,X, 0).

For semigroup theoretical terminologies used in our investigation, we refer to

the paper [3] and the books [1], [5].

3. Results

It is clear that every G-set is isomorphic to a G-set X with G ∩X = ∅. In the

next we suppose that the considered G-sets X satisfy this condition.

Construction. Let X be a right G-set (with condition G ∩ X = ∅). Let 0 be

symbol with 0 /∈ G ∪X . On the set S = G ∪X ∪ {0}, define an operation ‘∗’ as
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follows. For arbitrary g, h ∈ G, let g ∗ h = gh, where gh is the original product

of g and h in G. For arbitrary x ∈ X and arbitrary g ∈ G, let x ∗ g = xg. Let

0 ∗ g = 0 for every g ∈ G. If a ∈ X ∪ {0} then for arbitrary s ∈ S, let s ∗ a = 0.

It is easy to check that S is a semigroup in which 0 is the zero element, G is

a subgroup of S, and X ∪ {0} is a zero subsemigroup of S (that is, a ∗ b = 0 for

all a, b ∈ X ∪ {0} ). The semigroup S will be denoted by (G,X, 0).

The next example shows that the congruence permutability of a G-set X and

the congruence permutability of the semigroup (G,X, 0) are not equivalent con-

ditions, in general.

Example. Let X = {a, b} be a two-element set and G be an arbitrary group.

Assume ag = a and bg = b for every g ∈ G. Then the orbits of the G-set X

are {a} and {b}. It is clear that X is a congruence permutable G-set. Let α

and β be equivalence relations on the semigroup S = (G,X, 0) whose classes

are α : {a; 0}, {b}, G and β : {b; 0}, {a}, G. It is easy to see that α and β are

congruences on the semigroup (G,X, 0). Since (a, 0) ∈ α and (0, b) ∈ β, then we

have (a, b) ∈ α ◦ β. If the semigroup (G,X, 0) was congruence permutable then

we would have (a, b) ∈ β ◦ α from which we would get (a, t) ∈ β and (t, b) ∈ α

for some t ∈ (G,X, 0). Since [a]β = {a} and [b]α = {b}, we would get a = b

which is a contradiction. Consequently the semigroup (G,X, 0) is not congruence

permutable.

The next theorem characterizes the congruence permutable semigroup (G,X, 0)

by the help of the G-set X .

Theorem 1. The semigroup S = (G,X, 0) is congruence permutable if and only

if the G-set X is transitive and congruence permutable.

Proof: Assume that the semigroup S = (G,X, 0) is congruence permutable. Let

α, β be arbitrary congruences of the G-set X . Let α′ be the equivalence relation

on the semigroup S = (G,X, 0) defined by α′ = α ∪ ιS , where ιS denotes the

identity relation on S. We show that α′ is a congruence relation on S. Assume

(a, b) ∈ α′ for some a, b ∈ S. We can suppose that a 6= b. Then a, b ∈ X and

(a, b) ∈ α. Let s ∈ S be an arbitrary element. Since s ∗ a = 0 = s ∗ b, then

(s ∗ a, s ∗ b) ∈ α′, and so α′ is a left congruence on the semigroup S. If s ∈ G,

then a ∗ s = as and b ∗ s = bs and so (a ∗ s, b ∗ s) ∈ α ⊆ α′. If s ∈ X ∪ {0},

then a ∗ s = 0 = b ∗ s and (a ∗ s, b ∗ s) ∈ α′. Hence α′ is a right congruence on S.

Consequently α′ is a congruence on S. Similarly, β′ defined by β′ = β ∪ ιS is

a congruence on the semigroup S = (G,X, 0). We show that α ◦ β = β ◦ α. Let

a, b ∈ X be arbitrary elements. Assume (a, b) ∈ α ◦ β. Then there is an element

x ∈ X such that (a, x) ∈ α and (x, b) ∈ β. As α ⊆ α′ and β ⊆ β′, we have



On congruence permutable G-sets 143

(a, b) ∈ α′ ◦ β′. Since S = (G,X, 0) is a congruence permutable semigroup, then

(a, b) ∈ β′ ◦ α′ and so there is an element t ∈ S = (G,X, 0) such that (a, t) ∈ β′

and (t, b) ∈ α′. As X is saturated by α′ and β′, we have t ∈ X and so (a, t) ∈ β

and (t, b) ∈ α. Hence (a, b) ∈ β ◦α. Consequently α◦β ⊆ β ◦α, and by symmetry

α ◦ β = β ◦ α. Hence X is a congruence permutable G-set.

Assume that X has at least two orbits. Let A and B be different orbits of X .

It is clear that A ∪ {0} and B ∪ {0} are ideals of the semigroup (G,X, 0). By

[3, Theorem 4], the ideals of a congruence permutable semigroup form a chain

with respect to inclusion. Then A ⊆ B or B ⊆ A which contradicts A ∩ B = ∅.

Consequently X has one orbit. Thus X is a transitive congruence permutable

G-set.

To prove the converse, assume that X is a transitive congruence permutable

G-set. Let N denote the set X ∪ {0}. First we show that for an arbitrary non-

universal congruence α on the semigroup S = (G,X, 0), we have [g]α ⊆ G for

every g ∈ G, and [0]α = {0} or [0]α = N . Let α be a non-universal congruence

on the semigroup S = (G,X, 0). Assume (a, g) ∈ α for some a ∈ N, g ∈ G. Then

(e ∗ a, g) ∈ α, where e is the identity element of G. As e ∗ a = 0, we get g ∈ [0]α
from which it follows that G ⊆ [0]α. Let a ∈ X be an arbitrary element. Then

X = a ∗ G ⊆ [0]α and so [0]α = S. This contradicts the assumption that α is

a non-universal congruence on S. Consequently [a]α ⊆ N and [g]α ⊆ G for every

a ∈ N and every g ∈ G. Consider the case when [0]α 6= {0}. Then there is an

element a ∈ X such that a ∈ [0]α and so X = a ∗G ⊆ [0]α. Hence [0]α = N .

Let α and β be arbitrary congruences on the semigroup S = (G,X, 0). We

show that α ◦ β = β ◦ α. We can suppose that α and β are not the universal

relations of S. Let b, c ∈ S be arbitrary elements. Assume (b, c) ∈ α ◦ β. Then

there is an element x ∈ S such that (b, x) ∈ α and (x, c) ∈ β. We have two cases.

Case 1: x ∈ G. In this case b, c ∈ G. As G is congruence permutable, there is

an element y ∈ G with (b, y) ∈ β and (y, c) ∈ α. Hence (b, c) ∈ β ◦ α.

Case 2: x ∈ N = X ∪ {0}. In this case b, c ∈ N . We have two subcases. If

[0]β = N or [0]α = N , then (b, c) ∈ β ∪ α ⊆ β ◦ α. Consider the case [0]β =

[0]α = {0}. In this case X is saturated by both α and β. If x = 0, then b = c = 0

and so (b, c) ∈ β◦α. If x ∈ X , then b, c ∈ X. Let α+ and β+ denote the restriction

of α and β to X . Then α+ and β+ are congruences on the G-set X . Moreover

(b, c) ∈ α+◦β+. SinceX is a congruence permutableG-set, we get (b, c) ∈ β+◦α+.

Then there is an element y ∈ X such that (b, y) ∈ β+ and (y, c) ∈ α+ from which

we get (b, y) ∈ β and (y, c) ∈ α, that is, (b, c) ∈ β ◦ α.

Thus we have (b, c) ∈ β◦α in both cases. Hence α◦β ⊆ β◦α, and by symmetry

α ◦ β = β ◦ α. Thus S = (G,X, 0) is congruence permutable. �
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Let X be a G-set. We say that the semigroup (G,X, 0) is segregated if the

G-set X is segregated.

Lemma 4. Let X be a G-set. Then the semigroup (G,X, 0) is segregated if

and only if every congruence α on (G,X, 0) satisfies the following condition: if A

and B are different orbits of X such that (a0, b0) ∈ α for some a0 ∈ A and b0 ∈ B

then (a, b) ∈ α for all a, b ∈ A ∪B.

Proof: It is clear that if α is a congruence on the semigroup (G,X, 0), then

the restriction of α to X is a congruence of the G-set X . Moreover, if α is

a congruence of the G-set X , then α′ = α ∪ ιS is a congruence on the semigroup

S = (G,X, 0), where ιS denotes the identity relation on S = (G,X, 0). Thus the

assertion of the lemma is obvious. �

Let A be an orbit of a G-set X . The subsemigroup (G,A, 0) is called an

orbit subsemigroup of the semigroup (G,X, 0). The next theorem characterizes

arbitrary congruence permutable G-sets by the help of the semigroup (G,X, 0)

and the orbit subsemigroups of (G,X, 0).

Theorem 2. A G-set X is congruence permutable if and only if the semigroup

(G,X, 0) is segregated such that it has at most two orbit subsemigroups, and

every orbit subsemigroup of (G,X, 0) is congruence permutable.

Proof: Let aG-setX be congruence permutable. By Lemma 3, X is a segregated

G-set such that X has at most two orbits and every orbit of X is a congruence

permutable transitive G-set. Then the semigroup (G,X, 0) is segregated by def-

inition, and it contains at most two orbit subsemigroups. By Theorem 1, every

orbit subsemigroup of (G,X, 0) is congruence permutable.

Conversely, assume that the semigroup (G,X, 0) is segregated such that it has

at most two orbit subsemigroups, and every orbit subsemigroup of (G,X, 0) is

congruence permutable. Then the G-set X is segregated by definition, and it

has at most two orbits. Every orbit of X is a congruence permutable G-set by

Theorem 1. Consequently X is a congruence permutable G-set by Lemma 3. �
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