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Roughness in G-graphs

BBl N. ONAGH

Abstract. G-graphs are a type of graphs associated to groups, which were pro-
posed by A. Bretto and A. Faisant (2005). In this paper, we first give some
theorems regarding G-graphs. Then we introduce the notion of rough G-graphs
and investigate some important properties of these graphs.
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1. Introduction

In [12] Z. Pawlak proposed rough set theory as an extension of set theory
in 1982. Also, N. Kuroki and P.P. Wang in [11] introduced the notion of rough
subgroups with respect to a normal subgroup of a group and investigated some
properties of the lower and the upper approximations in a group.

The Cayley graphs are the popular representations of groups by graphs, first
studied by A. Cayley in [8] and [9]. Another type of graphs associated to groups
are G-graphs. A. Bretto and A. Faisant introduced these graphs to study the
graph isomorphism problem [2]. For more information on the properties of G-
graphs, we refer to [1]-]7].

In [13], the notions of rough edge Cayley graphs, pseudo-Cayley graphs, rough
vertex pseudo-Cayley graphs and rough pseudo-Cayley graphs have been intro-
duced and their properties have been investigated.

In this paper, we first give some theorems regarding G-graphs. We then intro-
duce the notion of rough G-graphs and investigate their important properties.

2. Preliminaries

In the following, we first briefly review some definitions and terminologies re-
lated to groups, rough sets, and graphs. For rough set and graph-theoretic con-
cepts not defined here, we refer to [11] and [14], respectively. In this paper, all
groups and graphs are finite.
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2.1 Group definitions. Let G be a group and g € G. Denote by o(G) and o(g)
the order of G and g, respectively. Let S be a nonempty subset of a group G such
that every g € G can be written as form g = s;, ...s;,, where s;,,...,8;, € S.
Then we say that G is generated by S and write G = (S). Throughout this paper,
let Dy, = (r,s: o(r) = n, o(s) = 2, srs = r~!) be the dihedral group of order
2n, n > 2.

Let H be a subgroup of a group G. Then G can be partitioned in the disjoint
union of all the right cosets of H. A right transversal for H in G is a set Tﬁ =
{ta}acr C G such that for each right coset Hg, there is precisely one « € I such

that Ht, = Hg. If H = (t) then we use T)® instead of T(?)-

2.2 The lower and upper approximations in a group. Let G be a group,
N be a normal subgroup of G and A be a nonempty subset of G. Then the sets
N_(A) :={z € G: Nz C A} and NNA) := {z € G: Nz N A # (} are called
the lower and upper approximations of A with respect to N, respectively, and
(N_(A),N"(A)) is called the rough set of A in G.

Proposition 2.1 ([10], [11]). Let H and N be two normal subgroups of a group G.
Let A and B be two nonempty subsets of GG. Then:
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The following proposition is a modified version of Propositions 2.4 and 2.5
in [11].

Proposition 2.2 ([10]). Let H and N be two normal subgroups of a group G.
Let A be a nonempty subset of G. Then:

() (H 0 N)-(4) 2 H-(A)UN-(4) 2 H_(4) 1 N-(4);

(ii) (HN N)MA) C HMNA)NN"A) C HMNA) UN"NA).

2.3 Graph definitions. Let I' = (Vr, Er) be a graph. Denote by ||T']| the
number of edges in I'. A graph T is called an empty graph if its edge set is empty.
A graph I is a subgraph of T' (written IV C T") if Vv C Vp and Er C Er. The
union I'y U Ty of two graphs I'; and I'y is a graph with vertex set Vr, UV, and
edge set Er, U Er,. The intersection I'y N e of Iy and I'y is defined analogously.
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Let r > 2 be an integer. A graph I' is called r-partite if Vi can be partitioned
into r subsets, or parts, in such a way that no edge has both ends in the same
part.

Let S be a nonempty subset of a group G. For any s € S, we have G =
U,er. (s)@, where T := TS is a right transversal for (s) in G. Consider the cycles

(s)x := (z, sz, 5%, ..., s°) 1)

of the permutation gs:  — sz on G. The set (s)x is called the support of the
cycle (s)z. A G-graph ¢(G, S) is a graph with vertex set V' := (J, g Vs, where
Vs = {(s)x: € T,} are such that for each (s)z, (t)y € V, if [{s)z N (t)y|:=1>1
then the vertices (s)z and (¢)y are linked by [ edges. We consider ¢(G, ) as null
graph (0,0). One can see that for any s € S and = € Ty, the vertex (s)z has o(s)
loops. We denote by ¢(G,S) the graph constructed by deleting all loops from
©(G, S). The graph ¢(G, S) is also called G-graph.
Hereafter, we just deal with G-graph @(G, S).

Proposition 2.3 ([2], [3]). Let T':= ¢(G,S) be a G-graph. Then:

(i) Graph T is connected if and only if G = (S5).
(ii) Graph T is a simple graph if and only if for all distinct s,t € S,
(s) Nty =1¢.

3. More facts on G-graphs
In this section, we give some basic facts regarding G-graphs.

Proposition 3.1. Let I' := $(G, S) be a G-graph. Then T is an r-partite graph,
where r < |S].

PROOF: If there exist s,t € S such that (s) = (¢), then for every x € G, (s)x =
(t)x and so (s)z = (t)z. Moreover, T, = T} and then Vi = V;. Set r := [{V;:
s € S}|. Obviously r < |S]. One can easily see that I is r-partite. O

Example 3.2. Let G = Zg and S = {1,2,3,4,5}. Obviously, V3 = V5 and
Vo = V4. So, the G-graph ¢(G, S) is 3-partite (see Figure 1).

A modified version of Proposition 2 in [2] for G-graph $(G, S) is as follows:

Proposition 3.3. Let I' := $(G,S) be a G-graph. Then, for every v € Vi,
deg(v) = o(s)(r — 1) and ||T|| = (r(r — 1)/2)o(G), where r = |{Vs: s € S}|.

Theorem 3.4. Let p(G,S1) and (G, S2) be two G-graphs such that S; C So.
Then @(G, Sl) g (ﬁ(G, Sg)
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(0,1,2,3,4,5)
(0,2,4) (0,3)
(1,4)
(1,3,5) » (2,5)

FIGURE 1. $(Z¢,{1,2,3,4,5}).

ProoFr: Let S1 C S5. Then

Vaa,s) = U Vs C ( U Vs) u ( U V;) = V5(6,5.)-
s€S1 SESY SES>—S1
Thus Vg(a,s1) S Va(@,s2)-

Now, suppose that there exist p > 1 edges between two distinct vertices (s)z
and (f)y in @(G, S1). Since (s)x € Vs and (t)y € V4, there are p edges between
every vertex in Vs and every vertex in V;. This implies that |(s) N (¢)| = p.
Hence there exist p edges between (s)z and (t)y in ¢(G,S2). So ¢(G,S1) C
?(G, Ss). O

Remark 3.5. The converse of Theorem 3.4 is not necessarily true. For example,
B(Ze,{1,2.3}) C F(Ze, {3,4,5)) but {1,2,3} ¢ {3,4,5}.

Corollary 3.6. Let 'y := ¢(G,S1) and T's := (G, S2) be two G-graphs. Then:

(1) IMuly C QZ(G, S U SQ),'
(ii) I''NnI'y D (,E(G, SN SQ)

PROOF: (i) Since S1,S2 C S; U Sz, by Theorem 3.4, we have I'y,T'y C
QZ(G, Sl @] SQ) Therefore Fl @] FQ Q @(G, Sl U SQ)

(ii) Similarly, since S1 NSy C S, .59, it follows that (ﬁ(G, SN SQ) CTIy,T5. So
(TO'(G,Sl ﬂSQ)QFlﬂFQ. O

Remark 3.7. The converse of Corollary 3.6 is not necessarily true. For example:

(1) Let Fl = QZ(Z(;, {1}) and FQ = @(ZG, {4}) Then Fl UFQ 2 @(ZG, {1, 4})

(ii) Let Iy := @(Ze,{1,4}) and Ty := $(Zs,{2,4,5}). Then I't NTy ¢
P(Zg, {43).

Theorem 3.8. Let ¢(G1,S5) and (G, S) be two G-graphs. Then ¢(G4,S5) C
¢(Ga, S) if and only if G C Gs.
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PROOF: Let Gi C Gz and (s)r € Vzq,,5)- Then s € S and x € 1. Suppose
that (s)z & Vi(a,,s)- Since z € Go = UyeTf2 (s)y, there exists y € T2 such
that 2 € (s)y. On the other hand, x € (s)z. Hence (s)x = (s)y. So (s)z = (s)y,
a contradiction. Therefore (s)z € Vq,,s) and then Vi, ) € Vi(a,,s)- By
similar argument as in the proof of Theorem 3.4, one can show that Ezq, ) C
E(;E(GZ,S)' Thus Q(Gl,S) - QZ(GQ, S)

Conversely, let ¢(G1,S5) C (G2, S) and g € G;. Let s be an arbitrary fixed
element of S. Since g € G; = UMTSG1 (s)x, there exists € TS such that
g € (s)z. Note that (s)z € V3, g). Hence (s)z € Vq,,s). Therefore (s)z C Go
and then g € G3. Thus G; C Gs. [l

Theorem 3.9. Let T'y := ¢(Hy,S1) and Ty := @(Ha, S2) be two G-graphs, where
Hy and H, are two subgroups of a group G. Then T'y NIy O ¢(H1 N Ha, 51N S?).

PROOF: Since Hy N Hy C Hy, Ho, by Theorem 3.8, it follows that
(,/E(Hl NHy, S1N SQ) - (,/E(Hl, SN SQ), (/,B(HQ, SN SQ)

Now, since S; NSy C S1,S2, by Theorem 3.4, we have ¢(Hq,S; N Se) C T'y and
©(H2, 51 NSy) C Iy, respectively. Therefore $(Hy N H2,51 NS2) C I'1, Ty and
then G(HlﬁHg,SlﬂSg)gflﬁFg. O

Remark 3.10. The converse of Theorem 3.9 is not necessarily true. For example,
if Fl = Q(ZG, {1, 4}) and FQ = QZ(Z(;, {2, 4, 5}) then Fl N FQ ,¢_ QZ(ZG, {4})

4. Rough G-graphs

In this section, the notions of the lower and upper approximations of a G-
graph with respect to a normal subgroup are introduced and their properties are
investigated.

Definition 4.1. Let G be a group, N be a normal subgroup of G and T" :=
¢(G, S) be a G-graph. Then the graphs I := $(G, N_(S)) and I := ¢(G, N*(5))
are called the lower and upper approximations of I" with respect to IV, respectively
and (T, T) is called the rough G-graph of I' with respect to N.

Example 4.2. Let G =Zg, S ={1,2,3,5,7}, N ={0,2,4,6} and T := (G, 5).
Note that N_(S) = {1,3,5,7} and N*(S) = {0,1,2,3,4,5,6,7}. Then I =
?(Zg,{1,3,5,7}) and T = §(Zg, {0,1,2,3,4,5,6,7}) (see Figure 2).

Theorem 4.3. Let N be a normal subgroup of a group G and T := $(G, S) be
a G-graph. Then T CT CT.

151



152

B.N. Onagh

(0,1,2,3,4,5,6,7)

)
(0,1,2,3,4,5,6,7) (0,2,4,6) (1,3,5,7)

IN r

(0,1,2,3,4,5,6,7)

]

FIGURE 2. Rough G-graph ¢(Zs,{1,2,3,5,7}) with respect to
N ={0,2,4,6}.

PROOF: By Proposition 2.1 (i), we have N_(S) C S C N*(S). Now, Theorem 3.4
implies that ' C T" C T. O

Theorem 4.4. Let N be a normal subgroup of a group G. Let $(G,S;) and
?(G, S2) be two G-graphs. Then:

(i) (G, N_(S1US2)) 2 @(G,N_(51)) UP(G,N_(S2));
(11) @(G,NA(Sl U SQ)) :_> QQ(G,N/\(Sl)) U S’E(G,N/\(SQ))7
(111) @(G,N,(Sl N SQ)) Q @(G,N,(Sl)) N S’E(G,Nf(SQ))7
(iV) (,B(G,N/\(Sl N Sg)) - @'(G,N/\(Sl)) n (TO'(G,N (Sg))

PROOF: (i) By Proposition 2.1 (ii), N_(S1US2) D N_(S1)UN_(S2). On the other
hand, N_(S1) U N_(S2) 2 N_(S1), N_(S2). So N_(S3 U Ss) D N_(S1), N_(S).
Now, by Theorem 3.4, it follows that ¢(G,N_(S; U S2)) 2 &(G,N_(S1)),
@(G,N_(Sg)). Therefore @(G,N_(Sl U Sg)) D @(G,N_(Sl)) U @(G,N_(Sg)).

(i) By Proposition 2.1 (iii) , N*(S; U S3) = N”(S1) U N*(Ss). Now, Corol-
lary 3.6 (i) implies that ¢(G, N"(S1 U S2)) 2 &(G, N"(51)) U@(G, N"(S2)).

(ili) By Proposition 2.1 (iv), N_(S1 N S2) = N_(S1) N N_(S2). Now, Corol-
lary 3.6 (ii) yields ¢(G, N_(S1 N S2)) € ¢(G,N_(51)) N¢(G, N_(S2)).

(iv) By Proposition 2.1 (v), N*(S1 N S2) € N*(S1) N N*(Sz2). On the other
hand, NA(Sl) n N/\(SQ) g N/\(Sl), N/\(SQ). Then NA(Sl n 52) g NA(Sl),
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N"(S2). Now, by using Theorem 3.4, we have ¢(G, N*(51NS2)) € ¢(G, N"(S1)),
@(G,N"(S3)). Therefore ¢(G,N"(S1 N S2)) C @(G,N"(S1)) N (G, N"(S2)).
[l

Remark 4.5. The converse of Theorem 4.4 is not necessarily true. For example:
(i) Let G = D¢, S1 = {s,r%s}, So = {s,rs}, N = {1,n,7?}, I'1 := ¢(G, S1)
and I's := @(G, S2). Note that N_(S1) = N_(S2) =0 and N_(S1US3) =
{s,rs,7%s}. Then §(G,N_(S1 US2)) € (G, N_(51)) U@(G, N_(S2)).
(i) Let G = Dg, S1 = {r,s}, So = {r?, s}, N = {1,7?}, I'1 = ¢(G,S1)
and Ty = $(G,S). Note that N*(Sy) = {r,r3 s,r%s}, N(S2) =
{1,r2, 5,725} and N*(S1USz) = {1,r,7%,7%,5,7%s}. Then ¢(G, N"(S1 U
S2)) € &(G, N(S1)) U @(GvNA(Sﬂ)-
and 'y := ¢(G, S2). Note that N_ ( ) {1, 4}, ,( 2) = {2,4,5}
and N_(S1 N S2) = {4}. Then ¢(G,N_(S1 N S2)) 2 &(G,N_(S1)) N
$(G, N_(S2))-
(iv) Let G = D¢, S1 = {r,s}, So = {r,rs}, N = {1,r,7*}, T'1 := $(G, S1) and
FQ = QZ(G,SQ) Note that N/\(Sl) = N/\(SQ) = DG and N/\(Sl N SQ) =
{1,7“, 7“2}. Then @'(G,NA(Sl N SQ)) ;_S @(G,NA(Sl)) N @(G,NA(SQ))
Theorem 4.6. Let N and H be two normal subgroups of a group G such that
N CH. Let T':= ¢(G, S) be a G-graph. Then:
(i) 2(G,N-(9)) 2 2(G,H-(9));
(ii) ¢(G,N"(9)) C ¢(G,H"(S)).
PRrROOF: (i) By Proposition 2.1 (viii), N_(S) 2 H_(S). So, Theorem 3.4 yields
H(G,N-(5) 2 3(G.H(5))
(ii) By Proposition 2.1 (ix) and Theorem 3.4, the proof is similar to (i). O

Theorem 4.7. Let N and H be two normal subgroups of a group G. Let I' :=
?(G, S) be a G-graph. Then:
1) (G, (HﬁN) (9) 2 &(G, H-(9)) UB(G,N-(5)) 2 (G, H-(5)) n

(G, N_(5));
) B(CUH N NI(S) € F(GHS) 0 F(ENAS) € FHGHAS) U

cp(G N/\ (9)).
PRrROOF: (i) By Proposition 2.2 (i), (HNN)_(S) 2 H_(S) U N_(S). Now, The-
orem 3.4 implies that (G, (H N N)_(S)) 2 ¢(G,H-(S) UN_(S)). On the
other hand, by Corollary 3.6 (i), we have ¢(G, H_(S)UN_(S)) 2 ¢(G,H-(S))U
¢(G,N_(5)). Obviously ¢(G,H_(S)) U o(G,N_(S)) 2 (G, H-(5)) N
(G,N_(S)). Therefore ¢(G,(H NN)_(S)) 2 ¢(G,H-(5)) Up(G,N_(S)) 2

P(G,H-(5) NG(G, N-(S)).
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(ii) By Proposition 2.2 (ii) , (HNN)"(S) € H*(S)NN"(S). Now, Theorem 3.4
implies that (G, H N N)"(S)) € ¢(G, H"(S)N N"(S)). On the other hand, by
Corollary 3.6 (i), we have ¢(G, H"(S)NN"(S)) € ¢(G, H"(S)) N@(G, N (9)).
Obviously ¢(G, H(S)) N (G, N"(S)) € &(G,HN(S)) U 3(G, N (S)). There-
fore 3(G.(H N N)NS)) € (G, HNS)) N 3(G,NNS)) C 3(G,HNS)) U

o(G,N"(9)). O
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