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On the nontrivial solvability of systems

of homogeneous linear equations over Z in ZFC

JAN SAROCH

Abstract. Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we inves-
tigate in ZFC the following compactness question: for which uncountable car-
dinals k, an arbitrary nonempty system S of homogeneous Z-linear equations is
nontrivially solvable in Z provided that each of its subsystems of cardinality less
than k is nontrivially solvable in Z?
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1. Introduction and preliminaries

Throughout the paper, group means always an abelian group, i.e. a Z-module.
Following [7], we say that a system S of homogeneous Z-linear equations with
a set X = {x;: 4 € I} of variables is nontrivially solvable in a group H if there
exists a mapping f: X — H \ {0} such that, whenever ZjeJ a;jr; = 0is an
equation from S (where J is a finite subset of I and a; € Z for each j € J), then
> jes @if(x;) =0 holds in H.

This notion of nontriviality is a little bit unusual. If we assume instead that
the mapping f goes to H and it is not constantly zero on all z € X that appear in
the system .S, we say that the system S is weakly nontrivially solvable in H. More
natural as it might be, this weaker notion has got one significant disadvantage:
unlike with nontrivial solvability, if a system S is weakly nontrivially solvable
and T is a nonempty subsystem of S, then T need not be weakly nontrivially
solvable. Notice also that an empty system S is (weakly) nontrivially solvable by
definition.

Motivated by the work [7], our aim is to characterize the class S (or WS) of all
infinite cardinals s such that any system S of homogeneous Z-linear equations is
nontrivially (or weakly nontrivially, respectively) solvable in Z provided that each
subsystem 7' C S of cardinality less than x is nontrivially (weakly nontrivially,
respectively) solvable in Z. In [7, Section 2.2], the authors present several well-
known examples of countable S which show in Zermelo—Fraenkel set theory (ZF)
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that Xg € SUWS. They also discuss various interesting related questions in ZF:
among other things, they provide a model of ZF without choice where 8; ¢ S
while they note that the result is not known in Zermelo—Fraenkel set theory with
axiom of choice (ZFC).

In this short note, we use s-free groups with trivial dual to show that ZFC
actually proves X, € S for each o < wy - w. Moreover, it is consistent with ZFC
that S = WS = 0 (see the discussion below Corollary 2.5 for both results). On
the other hand, we are able to prove that k € WS N'S whenever there exists
a regular L, ,-compact cardinal less than or equal to k, see Corollary 2.2 and
Theorem 3.2.

For an unexplained terminology, we recommend, for instance, the very well-
written extensive book [4].

2. The case of S

Recall that, given an infinite cardinal k, a filter F on a set I is called k-
complete if F is closed under intersections of systems of cardinality less than .
In particular, every filter is trivially Ng-complete.

Given an uncountable cardinal v, we say that a cardinal x is L, -compact if
every k-complete filter on any set I can be extended to a v-complete ultrafilter.
Observe that a cardinal p is £,,,-compact whenever there exists an £,,-compact
cardinal A such that A < p. This is obviously a large cardinal notion since
the existence of an L,,-compact cardinal implies the existence of a measurable
cardinal.

Alternatively, one can define the notion of L,,-compact cardinal by means of
infinitary £, logic. We will not follow this approach, however the fact that there
exists such a connection becomes rather apparent in the following proposition
where the language L can be allowed to be of the infinitary type L£,,. Although
the proof of Proposition 2.1 is rather standard, see for instance the if part of [8,
Proposition 4.1], we present it here for the reader’s convenience.

Proposition 2.1. Let A be a regular L,,,-compact cardinal, L a first-order lan-
guage and Z an L-structure with the domain Z such that |Z| < v. Then a sys-
tem S consisting of first-order L-formulas in variables from a set X is realized
in Z provided that each of its subsystems T of cardinality less than X is realized
in Z.

PRrROOF: First, let E denote the set ZX of all mappings from X to Z. By the
assumption for each T € [S]<* there exists e € E such that Z = ¢le] for
each ¢ € T. Let F be the filter on E generated by the sets Er = {e € E:
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Z = ple] for all ¢ € T'}. Since A is regular, we see that F is a A-complete filter.
Let G denote an extension of F to a v-complete ultrafilter.

For each (x,2) € X x Z, put E,, = {e € E: e(r) = z} and define f € ZX
by the assignment f(z) = z < E, . € G. This is possible since the ultrafilter G
picks for each fixed x € X exactly one element from the disjoint partition £ =
U.cz Ex,z; recall that |Z] < v.

Now let ¢ € S be arbitrary and 1, ...,z, be variables freely occurring in ¢.
Then ) # Ef,) N N1 Eu, fz) € G, and so f € E¢,y. We conclude that S is
realized in Z using the evaluation f. (I

Corollary 2.2. Let k be a cardinal and A < k a regular L,,,,,-compact cardinal.
Then every system S of homogeneous Z-linear equations in variables from a set X
is nontrivially solvable in 7 whenever each of its subsystems of cardinality less
than k is nontrivially solvable in Z. In other words k € S.

PROOF: In the system S replace each equation ¢ in variables z1,...,z, € X by
the formula ¢ & A", ; # 0 and use Proposition 2.1. O

Before we turn our attention to the negative part, we need one preparatory
lemma which holds in the general context of R-modules over an infinite commu-
tative noetherian domain. Recall that an R-module M is noetherian provided
that it does not contain an infinite strictly increasing chain of submodules. A com-
mutative ring R is noetherian if R is noetherian as a module over itself.

For a module M € Mod-R and an ordinal number o, an increasing chain
M = (My: a < o) of submodules of M is called a filtration of M if My = 0,
Mg = Ua<[‘3 M, whenever 8 < ¢ is a limit ordinal, and M, = M.

Lemma 2.3. Let R be an infinite commutative noetherian domain, M a free
R-module of rank p > Ng, and M = (M, : a < o) be a filtration of M where for
all « < 0, Mo+1 = My + {ao) with a, € M \ M. For each a < o, let z, € R be
arbitrary.

Then there is a homomorphism v: M — R such that ¥(ay) # 2z, for alla < o.

PROOF: First, assume that u = Rg. Let {g,: n < w} be a set of free generators
of M. For each a < o, we express a, as »
of wand b, € R\ {0} for every n € I,.

Using the fact that a free R-module of finite rank is noetherian, we infer that
for each n < w the set A, = {a <o: 1, C{0,1,...,n}} is finite. Note that o =
U, <o An- On the free generators of M, we recursively construct a homomorphism
¥: M — R as follows:

Let 9(go) be arbitrary such that for each o € Ag, boa®(go) # zo. There is
always an applicable choice by the hypothesis on R. Assume that n > 0, ¥(gn—1)
is defined, and t(ay) # 24 for each « € A, ;.

nel. bnagn, where I, is a finite subset
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We define 1(g,,) arbitrarily in such a way that for each « € A,, \ A,,—1 we have

bna"/’(gn) 7é Za — Z bka"/’(gk)~

keI \{n}

This is possible, since A, \ A,,—1 is finite, b, # 0 for each « from this set, and R
is an infinite domain. It immediately follows that 1 (as) # 2z, for each o € A,,.
Now, let 4+ be an uncountable cardinal. Again, let {gg: 8 < p} be a set of free
generators of M, and put Gg = (gs: 8 € B) for all B C p.
We use ideas from [6, Section 7.1]. First, we set A, = (an) < M. We say that
a subset S of the ordinal ¢ is ‘closed’ if every a € S satisfies

ManAaC > A
peS,f<La

Notice that any ordinal a < ¢ is a ‘closed’ subset of . For a ‘closed’ sub-
set S, we define M(S) = > g Aa. The results from [6, Section 7.1] give us the
following:

(1) For asystem (S;: ¢ € I) of ‘closed’ subsets,
as well.

(2) For S,5 ‘closed’ subsets of o, we have S C 5" < M(S) C M(S5’).

(3) Let S be a ‘closed’ subset of o and X be a countable subset of M. Then
there is a ‘closed’ subset S’ such that M (S)UX C M(S’) and |S"\ S| < N;.

ier Si and Uiel S; is ‘closed’

Using the properties listed above, we are going to construct a filtration ' =
(M(S4): a < ) of M such that for each o < p: a) S, is ‘closed’; b) Sat1 \ Sa
is countable; and c) there exists B, C u such that G, = M(S,) and a C B,.

We proceed by the transfinite recursion, starting with Sg = Bg = (). Let S,
and B, be defined and o < p. Then |S,| + |Bo| < p (using b) and c)). Let
B° D B, U{a} be any subset of u with |[B%\ B,| = Xo. By (3), we find S° D S,
such that M(S%) O Gpo and |S°\ S,| < R;. Assuming B", S™ are defined for
n < w, we can find B"T! D B" with |[B"*1\ B"| < ¥; such that Ggnt1 2 M(S™),
and S"1 D S™ with |[S"T1\ S"| < N; such that M(S"™) O Gpnti. Put
Sat1 = Upep 5™ and Bay1 = U, ., B". This completes the isolated step. In
limit steps, we simply take unions. Since M (S,) = M, we have S, = o by (2).

Now, for each o < p we have the countable sets C, = Bo+1 \ Bo and T, =
Sa+1 \ Sa, and the canonical projection my: M(Sa+1) = Ge,. Let 7 be the
ordinal type of (T,, <), and fix an order-preserving bijection i: 7 — Ty,.

Since Sy U (Sat1 N PB) is ‘closed’ for any 8 < o by (1), the part (2) yields that
the chain (Ng: 8 < 7) of modules defined as Ng = M (Sy U (Sa41 Ni(B))) for
B <7, and N; = M(Sq41) is strictly increasing. Notice that Ng = M (S,).
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If we put N g = m4[Np] for all B < 7, it follows that the strictly increasing chain
(Ng: B < 1) is a filtration of the free module G¢,, of countable rank. Moreover,
for each 8 < 7, we have N g11 =N g + (7o (a;(5)))-

Finally, we recursively define the homomorphism : M — R. Let o < p and
assume that ¢ [ G, is constructed with the property (a,) # 2, for all v € S,.
By the already proven part for p = Rg, we can define ¢ | G¢,, in such a way that
Y(malay)) # 2y —Y(ay — ma(ay)) for all v € Ty; observe that the right-hand side
of the inequality is already defined since a, — m,(ay) € Gp,. We immediately get

¥(ay) # zy for all v € Sgyq. O

Remark. Inspecting the proof more closely, we see that, instead of avoiding just
one element z,, we could have actually avoided a finite set Z, C R.

For the negative part, we start with an uncountable cardinal x and a k-free
group G with the trivial dual property, i.e. with the property G* :=
Hom(G,Z) = 0; here, k-free means that any less than k-generated subgroup
of G is free. We will discuss the existence of such groups, as well as the question
whether G can be taken with |G| = , later on. Firstly, we show how the existence
of such G implies that k &€ S.

Let us denote by A the cardinality of G and express G as a quotient '/ K where
F is a free group of rank A. Notice that A > k. Let m: F — F/K denote the
canonical projection and let {e,: @ < A} be a set of free generators of the group F'.
For each A C )\, let F4 denote the subgroup of F' generated by {e,: a« € A}. We
can without loss of generality assume that

Im(w | Fg) C Im(7 | Fg41) for each ordinal 8 < A. (%)

The group K is also free of rank A. If it had a smaller rank, G would have
possessed a free direct summand—a contradiction with G* = 0. Let {kg: 8 < A}
denote a set of (free) generators of the group K. Counsider the uncountable set

S = { D aapta =0: B <A Jg € N, (Ya € Jp) (dap €Z) ) aagea = kﬁ}

a€ldg acldg

of homogeneous Z-linear equations with the set {x,: a < A} of variables. We will
show that this is the desired counterexample.

First of all, S does not have even a weakly nontrivial solution in Z. Indeed,
any such solution would define a nonzero homomorphism 1 from F' to Z which
is zero on K. Hence i would provide for a nonzero homomorphism from G to Z,
a contradiction.
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On the other hand, we can show

Proposition 2.4. Any system T C S of cardinality less than k is nontrivially
solvable in Z.

PRrROOF: Let A € [A\]<® be an infinite set such that whenever z, appears in an
equation from T then o € A. Put M =1Im(w | Fy).

Since G is k-free, M is a free group (of infinite rank). Let o denote the ordinal
type of A and fix an order-preserving bijection i: ¢ — A. For each a < o, set
M, = (m(eyp)): B < a). Then (My: a < o) is a filtration of M such that
May1 = Mo + (m(ei(a))) where m(e;(q)) & My for all a < o (using (x)).

Applying Lemma 2.3 with R = Z and z, = 0 for all v < o, we obtain a ho-
momorphism 1: M — Z such that ¢ (7(ey)) # 0 for all « € A. The assignment
ZTo — Y(m(eq)), a € A, is the desired nontrivial solution of the system 7" in Z. O

Corollary 2.5. Let k be an uncountable cardinal. If there exists a k-free group G
with G* =0, then Kk ¢ SUWS.

The problem of existence of k-free groups with trivial dual turns out to be
rather delicate. Under the assumption V = L (even a much weaker one), there
are k-free groups with trivial dual for any uncountable cardinal x. Moreover,
if k is regular and not weakly compact, then the groups can be constructed of
cardinality &, see [3]. If k is singular or weakly compact, then r-free implies k-
free. For more information on the topic, we refer to [4, Chapter VII]. Anyway, we
have S = WS = () under V = L by Corollary 2.5.

In [5], R. Gobel and S. Shelah show in ZFC that XN,-free groups with cardi-
nality 3,, and trivial dual exist for all 0 < n < w. This is further generalized
in [9] !, where S. Shelah proves in ZFC the existence of k-free groups with trivial
dual for any uncountable k£ < R, .,. On the other hand, he also shows (modulo
the existence of a supercompact cardinal) that it is relatively consistent with ZFC
that there is no R, .,-free group with trivial dual.

By Corollary 2.5, we thus know in ZFC that k ¢ S for K < N,,..,. However, we
do not know what happens for larger cardinals x since the existence of a k-free
group with trivial dual is just a sufficient condition for x ¢ S. We have only
the upper bound given by Corollary 2.2. It might still be possible that S = WS
where Theorem 3.2 contains a decent description of the latter class.

1Very heavy in content.
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3. The case of WS

For the weaker notion of nontrivial solvability, we have the following general
result. Recall that Ker Hom(—,Z) denotes the class of all groups A such that
Hom(A,Z) = 0.

Proposition 3.1. Let k be an uncountable cardinal. The following conditions
are equivalent:

(1) There exists a regular cardinal A < k which is L., .-compact.

(2) There is a regular cardinal A < k such that each group A € Ker Hom(—,Z)
is the sum of its subgroups of cardinality less than A which are contained
in Ker Hom(—, Z).

(3) For any nonempty system S of homogeneous Z-linear equations such that
S has no weakly nontrivial solution in Z, and any C € [S|<", there exists
T € [S]<" such that C C T and T has no weakly nontrivial solution in Z.

PRrROOF: The equivalence of (1) and (2) follows directly from [1, Corollary 5.4].
Let us show that (2) is equivalent to (3). To this end, we are going to use the
following two-way translation.

Given any system S = {k; = 0: j € J} of homogeneous Z-linear equations
with the set X of variables, we can build a group A = F/K where F is freely
generated by the elements of the set X and K is generated by the set {k;: j € J}.
Then Hom(A,Z) = 0 if and only if S has no weakly nontrivial solution in Z. On
the other hand, for a given group A and its presentation F//K where F is freely
generated by a set X, the same equivalence holds for the system S = {k; = 0:
j € J} of homogeneous Z-linear equations where {k;: j € J} is a fixed set of
generators of K expressed as Z-linear combinations of elements from the set X.

Proving (2) = (3), we start with a system S and a set C' € [J]<*. Consider
the group A constructed for S as in the previous paragraph, and let Yy denote
the set of all the elements from X appearing in equations k; =0, j € C.

Let 4 > X be a regular uncountable cardinal such that |C| < p < k. Since
Ker Hom(—, Z) is closed under direct sums and quotients, and p is regular, there
exists, by (2), Go € KerHom(—,Z) such that Gg is a subgroup of A, |Go| < u
and Yy + K :={y+ K: y € Yo} C Go. Now, take any Y; € [X]|<*, Y; C Y7 such
that:

(a) Group Gy is contained in the subgroup of A generated by Y7 + K.

(b) There exists Cy € [J]<* such that (Yp) N K is contained in the subgroup
of K generated by {k;: j € Co}, and Y7 contains all the elements from X
appearing in equations k; = 0, j € Cj.

For this Y7, we obtain, using (2), a subgroup G of A with |G1| < u, and so on.

161



162

J. Saroch

After w steps, we have the group G = ) _ G, € KerHom(—,Z) generated
by Y + K where Y = U, ., Yn € [X]#. By the construction, we have also
G=(y+K:yeY)=()/kj:j<c U, Cn) Finally, we put T = {k; = 0:
J € Uncw Cn}

Now, let us prove the implication =(1) = —(3). First, assume that x is not
L., .-compact. Following [1, Theorem 5.3] and its proof, we start with A = Z!/F
where F is a k-complete filter on I which cannot be extended to an wi-complete ul-
trafilter. From the latter part, it follows that Hom(A, Z) = 0. The k-completeness
of F, on the other hand, assures that any subgroup of A of cardinality less than
can be embedded into Z'.

Consider a system S of homogeneous Z-linear equations associated to the
group A presented as F/K where F is freely generated by a set X. We can
without loss of generality assume that no z € X is contained in K. Let C € [J]<"
be nonempty. We shall show that the system {k; = 0: j € C} has weakly non-
trivial solution in Z.

As in the proof of the other implication, we can possibly enlarge C' to some
D C Jsuch that |[D| <|C|+Npand (y+K:yeY)=(Y)/(k;j: j € D), whereY
denotes the set of all the elements from X appearing in equations k; =0, j € D.
Let us denote the latter group by H and fix an embedding i: H — Z! (which
exists since |H| < k).

Let y € Y be any element appearing in (one of the) equations k; =0, j € C.
Since i(y + K) # 0 there is a projection 7: Z! — Z such that mi(y + K) # 0. The
assignment z — wi(z + K) defines the desired weakly nontrivial solution of the
system {k; =0: j € C} in Z.

It remains to tackle the possibility that x is the least L, ,-compact cardinal
and « is singular. We know by [2] that v = ¢f (k) is greater than or equal to the
first measurable cardinal in this case. Let (kq: o < ) be an increasing sequence
of cardinals less than k converging to k.

Consider the group A = ®a<w A, where for each a < v, A, € Ker Hom(—,Z)
is not a sum of its subgroups of cardinality less than k, which belong to
Ker Hom(—,Z). Assume, for the sake of contradiction, that (3) holds for the
system S of homogeneous Z-linear equations associated to the group A (more
precisely, to its presentation F/K).

By the definition of A, there exists for each a < 7, an element a, € A such
that a, is not contained in any subgroup H of A of cardinality less than x, with
the property Hom(H,Z) = 0.

We know that there is Cy € [J]<" and Yy C X consisting of the elements
from X appearing in the equations k; = 0, j € Cp such that {a,: a < v} C
(y+ K:yeYy) = (Yo)/(k;: j € Co).
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For this Cy, we obtain a corresponding Ty € [J]<" using (3). We continue by
finding Cy € [J]<" and Y} € [X]<" such that Ty C C;, Yo C Y; and (y + K:
yeY) = (Y1)/(k;: j € Cy), and so forth.

Put T = U,coTn = U,co, Cn and Y = |J, ., Y. The system {k; = 0:
j € T} has cardinality less than x (since 7 is uncountable) and it has no weakly
nontrivial solution in Z. Whence the subgroup H = (y+ K: y € Y) = (Y)/(k;:
j € T) of Abelongs to Ker Hom(—, Z). However, this is impossible since a, € H

for o < v satisfying |H| < K. O

In the proof above, we have actually showed a little bit more. In fact, we have
the following

Theorem 3.2. Let k be a cardinal, and assume that x is not at the same time
singular and the least L,,,,,-compact cardinal. The following conditions are equiv-
alent:

(1) Cardinal  is L, ,-compact.

(2) Every system S of homogeneous Z-linear equations is weakly nontrivially
solvable in Z provided that each of its subsystems of cardinality less than k
is weakly nontrivially solvable. In other words, k € WS.

PROOF: The implication ‘(1) = (2)’ follows immediately from ‘(1) = (3)’ in
Proposition 3.1. The other implication then follows from the first part of the
proof of ‘=(1) = —(3)’ in Proposition 3.1. O

As shown in [1], relative to the existence of a supercompact cardinal, there are
models of ZFC where the smallest L, ,-compact cardinal & is singular. In this
only case, we cannot resolve the question whether k € WS although we conjecture
that this is not the case, which would readily imply that at least WS C S always
holds.

Apart from the subtlety above, a possible direction for further research is to
investigate further what more can be proved in ZFC about the class S.
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