On the *n*-fold symmetric product of a space with a σ -(*P*)-property *cn*-network (*ck*-network)

LUONG Q. TUYEN, ONG V. TUYEN

Abstract. We study the relation between a space X satisfying certain generalized metric properties and its *n*-fold symmetric product $\mathcal{F}_n(X)$ satisfying the same properties. We prove that X has a σ -(P)-property *cn*-network if and only if so does $\mathcal{F}_n(X)$. Moreover, if X is regular then X has a σ -(P)-property *ck*-network if and only if so does $\mathcal{F}_n(X)$. By these results, we obtain that X is strict σ -space (strict \aleph -space) if and only if so is $\mathcal{F}_n(X)$.

Keywords: σ -(P)-property; cn-network; ck-network; strict σ -space; strict \aleph -space Classification: 54B20, 54D20

1. Introduction and preliminaries

In 1931, K. Borsuk and S. Ulam introduced the notion of a symmetric product of an arbitrary topological space, see [1]. Moreover, they also show that the *n*fold symmetric product $\mathcal{F}_n(X)$ can be obtained as a quotient space of Cartesian product X^n . Recently, C. Good and S. Macías in [3], L.-X. Peng and Y. Sun in [4], Z. Tang, S. Lin and F. Lin in [5], studied the symmetric products of generalized metric spaces. They considered several generalized metric properties and studied the relation between a space X satisfying such property and its *n*-fold symmetric product satisfying the same property.

In this paper, we also study the relation between a space X satisfying certain generalized metric properties and its *n*-fold symmetric product satisfying the same properties. We prove that X has a σ -(P)-property *cn*-network if and only if so does $\mathcal{F}_n(X)$. Moreover, if X is regular then X has a σ -(P)-property *ck*-network if and only if so does $\mathcal{F}_n(X)$. By these results, we obtain that X is strict σ -space (strict \aleph -space) if and only if so is $\mathcal{F}_n(X)$.

Throughout this paper, all spaces are Hausdorff, $\mathbb N$ denotes the set of all positive integers.

Given a space X, we define its *hyperspaces* as the following sets:

(1) $CL(X) = \{A \subset X : A \text{ is closed and nonempty}\};$

(2) $2^X = \{A \in CL(X) : A \text{ is compact}\};$

(3) $\mathcal{F}_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ points}\}, \text{ where } n \in \mathbb{N}.$

Set CL(X) is topologized by the *Vietoris topology* defined as the topology generated by

 $\mathcal{B} = \{ \langle U_1, \dots, U_k \rangle \colon U_1, \dots, U_k \text{ are open subsets of } X, \ k \in \mathbb{N} \},\$

where

$$\langle U_1, \dots, U_k \rangle = \left\{ A \in CL(X) \colon A \subset \bigcup_{i \le k} U_i, \ A \cap U_i \neq \emptyset \text{ for each } i \le k \right\}.$$

Note that, by definition, 2^X and $\mathcal{F}_n(X)$ are subspaces of CL(X). Hence, they are topologized with the appropriate restriction of the Vietoris topology. Moreover,

- (1) space CL(X) is called the hyperspace of nonempty closed subsets of X;
- (2) space 2^X is called the hyperspace of nonempty compact subsets of X;
- (3) space $\mathcal{F}_n(X)$ is called the *n*-fold symmetric product of X.

On the other hand, it is obvious that $\mathcal{F}_n(X) \subset \mathcal{F}_{n+1}(X)$ for each $n \in \mathbb{N}$.

Remark 1.1 ([3], Remark 2.1). Let X be a space and let $n \ge 2$. Note that $\mathcal{F}_1(X)$ is closed in $\mathcal{F}_n(X)$ and $\xi \colon \mathcal{F}_1(X) \twoheadrightarrow X$ given by $\xi(\{x\}) = x$ is a homeomorphism.

Notation 1.2 ([3], Notation 2.2). Let X be a space and let $n \in \mathbb{N}$. To simplify notation, if U_1, \ldots, U_s are open subsets of X then $\langle U_1, \ldots, U_s \rangle_n$ denotes the intersection of the open set $\langle U_1, \ldots, U_s \rangle$ of the Vietoris topology, with $\mathcal{F}_n(X)$.

Notation 1.3 ([3], Notation 2.3). Let X be a space and let $n \in \mathbb{N}$. If $\{x_1, \ldots, x_r\}$ is a point of $\mathcal{F}_n(X)$ and $\{x_1, \ldots, x_r\} \in \langle U_1, \ldots, U_s \rangle_n$, then for each $j \in \{1, \ldots, r\}$, we let $U_{x_j} = \bigcap \{U \in \{U_1, \ldots, U_s\} : x_j \in U\}$. Observe that $\langle U_{x_1}, \ldots, U_{x_r} \rangle_n \subset \langle U_1, \ldots, U_s \rangle_n$.

Lemma 1.4 ([4], Lemma 21). Let X be a space and let $n \in \mathbb{N}$. If C is a compact subset of $\mathcal{F}_n(X)$, then $\bigcup C$ is a compact subset of X.

Definition 1.5. Let \mathcal{P} be a family of subsets of a space X. Then:

- (1) Family \mathcal{P} is *point-finite*, if each point $x \in X$ belongs only to finitely many members of \mathcal{P} .
- (2) Family \mathcal{P} is *point-countable*, if each point $x \in X$ belongs only to countably many members of \mathcal{P} .
- (3) Family \mathcal{P} is *compact-finite*, if for each compact subset $K \subset X$, the set $\{P \in \mathcal{P} \colon P \cap K \neq \emptyset\}$ is finite.
- (4) Family \mathcal{P} is *compact-countable*, if for each compact subset $K \subset X$, the set $\{P \in \mathcal{P} \colon P \cap K \neq \emptyset\}$ is countable.
- (5) Family \mathcal{P} is *locally finite*, if for each $x \in X$, there exists a neighborhood V of x such that V meets only finitely many members of \mathcal{P} .

258

(6) Family \mathcal{P} is *locally countable*, if for each $x \in X$, there exists a neighborhood V of x such that V meets only countably many members of \mathcal{P} .

Definition 1.6. For a cover \mathcal{P} of a space X, let (P) be one of the following properties: point-finite, compact-finite, locally finite, point-countable, compact-countable, and locally countable. We said that \mathcal{P} has σ -(P)-property, if \mathcal{P} can be expressed as $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n has (P)-property, and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$.

Definition 1.7 ([2]). Let \mathcal{P} be a family of subsets of a space X. Then,

- (1) Family \mathcal{P} is a *network at* $x \in X$, if for each neighborhood O_x of x there is a set $P \in \mathcal{P}$ such that $x \in P \subset O_x$; \mathcal{P} is a *network* in X if \mathcal{P} is a network at each point $x \in X$.
- (2) Family \mathcal{P} is a *cn*-network at $x \in X$, if for each neighborhood O_x of x, the set $\bigcup \{P \in \mathcal{P} : x \in P \subset O_x\}$ is a neighborhood of x; \mathcal{P} is a *cn*-network in X if \mathcal{P} is a *cn*-network at each point $x \in X$.
- (3) Family \mathcal{P} is a *ck-network at* $x \in X$, if for any neighborhood O_x of x, there is a neighborhood $U_x \subset O_x$ of x such that for each compact subset $K \subset U_x$, there exists a finite subfamily $\mathcal{F} \subset \mathcal{P}$ satisfying $x \in \bigcap \mathcal{F}$ and $K \subset \bigcup \mathcal{F} \subset O_x$; \mathcal{P} is a *ck-network* in X if \mathcal{P} is a *ck*-network at each point $x \in X$.

Remark 1.8 ([2]). Base (at x) \Longrightarrow ck-network (at x) \Longrightarrow cn-network (at x) \Longrightarrow network (at x).

Definition 1.9 ([2]). Let X be a topological space. Then:

- (1) Space X is called a *strict* σ -space, if X has a σ -locally finite cn-network.
- (2) Space X is called a *strict* \aleph -space, if X has a σ -locally finite ck-network.

2. Main results

Let $n \in \mathbb{N}$ and \mathcal{P} be a family of subsets of a space X. If we put

$$\mathfrak{P} = \{ \langle P_1, \dots, P_s \rangle_n \colon P_1, \dots, P_s \in \mathcal{P}, \ s \le n \},\$$

then observe that \mathfrak{P} is a family of subsets of $\mathcal{F}_n(X)$.

Lemma 2.1. Let $\langle U_1, \ldots, U_s \rangle$, $\langle V_1, \ldots, V_r \rangle \subset CL(X)$. If there exists $i_0 \leq s$ such that $U_{i_0} \cap \left(\bigcup_{j \leq r} V_j\right) = \emptyset$, then $\langle U_1, \ldots, U_s \rangle \cap \langle V_1, \ldots, V_r \rangle = \emptyset$.

PROOF: Assume that there exists $i_0 \leq s$ such that $U_{i_0} \cap \left(\bigcup_{j \leq r} V_j\right) = \emptyset$. Then, we have $\langle U_1, \ldots, U_s \rangle \cap \langle V_1, \ldots, V_r \rangle = \emptyset$. Otherwise, there exists $F \in \langle U_1, \ldots, U_s \rangle \cap \langle V_1, \ldots, V_r \rangle$. Hence, $F \cap U_{i_0} \neq \emptyset$, it implies that there exists $x_0 \in F \cap U_{i_0}$. Since $U_{i_0} \cap \left(\bigcup_{j \leq r} V_j\right) = \emptyset$, $x_0 \notin \bigcup_{j \leq r} V_j$. Thus, $F \not\subset \bigcup_{j \leq r} V_j$, this is a contradiction.

Lemma 2.2. If \mathcal{P} has (P)-property then so does \mathfrak{P} .

PROOF: Case 1. (P) is point-finite. Let $F = \{x_1, \ldots, x_r\} \in \mathcal{F}_n(X)$. For each $j \leq r$, since \mathcal{P} is point-finite in $X, \mathcal{P}_j = \{P \in \mathcal{P} \colon x_j \in P\}$ is finite. If we put $\mathcal{P}_0 = \bigcup_{j \leq r} \mathcal{P}_j$, then \mathcal{P}_0 is finite. Moreover, we have

$$\{\mathcal{W}\in\mathfrak{P}\colon F\in\mathcal{W}\}\subset\{\langle P_1,\ldots,P_s\rangle_n\colon P_1,\ldots,P_s\in\mathcal{P}_0,\ s\leq n\}$$

In fact, let $k \leq n$ and $\langle E_1, \ldots, E_k \rangle_n \notin \{\langle P_1, \ldots, P_s \rangle_n \colon P_1, \ldots, P_s \in \mathcal{P}_0, s \leq n\}$. Then, there exists $i_0 \leq k$ such that $E_{i_0} \notin \mathcal{P}_0$. It implies that $x_j \notin E_{i_0}$ for every $j \leq r$. Thus, $F \notin \langle E_1, \ldots, E_k \rangle_n$. Hence, $\langle E_1, \ldots, E_k \rangle_n \notin \{\mathcal{W} \in \mathfrak{P} \colon F \in \mathcal{W}\}$.

Because \mathcal{P}_0 is finite, $\{\mathcal{W} \in \mathfrak{P} \colon F \in \mathcal{W}\}$ is finite. Thus, \mathfrak{P} is point-finite in $\mathcal{F}_n(X)$.

Case 2. (P) is point-countable. Similar to the proof of Case 1.

Case 3. (P) is compact-finite. Let \mathcal{A} be a compact subset of $\mathcal{F}_n(X)$. It follows from Lemma 1.4 that $A = \bigcup \mathcal{A}$ is a compact subset of X. Moreover, since $\mathcal{A} \subset \langle A \rangle_n$, we have

$$\{\mathcal{W}\in\mathfrak{P}\colon\mathcal{W}\cap\mathcal{A}\neq\emptyset\}\subset\{\mathcal{W}\in\mathfrak{P}\colon\mathcal{W}\cap\langle A
angle_n\neq\emptyset\}.$$

Since \mathcal{P} is compact-finite in X, $\mathcal{P}_0 = \{P \in \mathcal{P} \colon P \cap A \neq \emptyset\}$ is finite. On the other hand, we have

$$\{\mathcal{W}\in\mathfrak{P}\colon\mathcal{W}\cap\langle A\rangle_n\neq\emptyset\}\subset\{\langle P_1,\ldots,P_s\rangle_n:P_1,\ldots,P_s\in\mathcal{P}_0,\ s\leq n\}.$$

In fact, let $k \leq n$ and $\langle E_1, \ldots, E_k \rangle_n \notin \{\langle P_1, \ldots, P_s \rangle_n : P_1, \ldots, P_s \in \mathcal{P}_0, s \leq n\}$. Then, there exists $i_0 \leq k$ such that $E_{i_0} \notin \mathcal{P}_0$. This implies that $E_{i_0} \cap A = \emptyset$. By Lemma 2.1, $\langle E_1, \ldots, E_k \rangle_n \cap \langle A \rangle_n = \emptyset$. Thus, $\langle E_1, \ldots, E_k \rangle_n \notin \{\mathcal{W} \in \mathfrak{P}: \mathcal{W} \cap \langle A \rangle_n \neq \emptyset\}$.

Since \mathcal{P}_0 is finite, $\{\mathcal{W} \in \mathfrak{P} \colon \mathcal{W} \cap \mathcal{A} \neq \emptyset\}$ is finite. Therefore, \mathfrak{P} is compact-finite in $\mathcal{F}_n(X)$.

Case 4. (P) is compact-countable. Similar to the proof of Case 3.

Case 5. (P) is locally finite. Let $F = \{x_1, \ldots, x_r\} \in \mathcal{F}_n(X)$. For each $i \leq r$, since \mathcal{P} is locally finite in X, there exists an open neighborhood W_i of x_i intersecting only finitely many elements of \mathcal{P} . If we put

$$V_i = W_i \setminus \{x_j : j \le r, \ j \ne i\},\$$

then V_i is open in X for every $i \leq r$, and $\langle V_1, \ldots, V_r \rangle_n$ is an open neighborhood of F in $\mathcal{F}_n(X)$. On the other hand, $\langle V_1, \ldots, V_r \rangle_n$ intersects only finitely many elements of \mathfrak{P} . In fact, for each $i \leq r$, since \mathcal{P} is locally finite in X, $\mathcal{P}_i =$ $\{P \in \mathcal{P} \colon P \cap V_i \neq \emptyset\}$ is finite. If we put $\mathcal{P}_0 = \bigcup_{i \leq r} \mathcal{P}_i$, then \mathcal{P}_0 is finite. Now, let $k \leq n$ and $\langle E_1, \ldots, E_k \rangle_n \notin \{\langle P_1, \ldots, P_s \rangle_n \colon P_1, \ldots, P_s \in \mathcal{P}_0, s \leq n\}$. Then, there exists $i_0 \leq k$ such that $E_{i_0} \notin \mathcal{P}_0$. Thus, $E_{i_0} \cap V_i = \emptyset$ for every $i \leq r$. By Lemma 2.1, $\langle E_1, \ldots, E_k \rangle_n \cap \langle V_1, \ldots, V_r \rangle_n = \emptyset$. Hence, $\langle E_1, \ldots, E_k \rangle_n \notin \{\mathcal{W} \in \mathfrak{P} \colon \mathcal{W} \cap \langle V_1, \ldots, V_r \rangle_n \neq \emptyset\}$. This implies that

$$\{\mathcal{W}\in\mathfrak{P}\colon\mathcal{W}\cap\langle V_1,\ldots,V_r\rangle_n\neq\emptyset\}\subset\{\langle P_1,\ldots,P_s\rangle_n\colon P_1,\ldots,P_s\in\mathcal{P}_0,\ s\leq n\}.$$

Furthermore, since \mathcal{P}_0 is finite, $\{\mathcal{W} \in \mathfrak{P} \colon \mathcal{W} \cap \langle V_1, \ldots, V_r \rangle_n \neq \emptyset\}$ is finite. Hence, \mathfrak{P} is locally finite in $\mathcal{F}_n(X)$.

Case 6. (P) is locally countable. Similar to the proof of Case 5.

Lemma 2.3. (1) If \mathcal{P} is a *cn*-network then so is \mathfrak{P} .

(2) If X is regular and \mathcal{P} is a ck-network then so is \mathfrak{P} .

PROOF: Let $F = \{x_1, \ldots, x_r\} \in \mathcal{F}_n(X)$ and \mathcal{U} be an open neighborhood of F in $\mathcal{F}_n(X)$. Then, there exist open subsets U_1, \ldots, U_s of X such that

$$F \in \langle U_1, \ldots, U_s \rangle_n \subset \mathcal{U}.$$

It follows from Notation 1.3 that there exist open subsets U_{x_1}, \ldots, U_{x_r} of X such that $x_j \in U_{x_j}$ for each $j \leq r$, and

$$F \in \langle U_{x_1}, \ldots, U_{x_r} \rangle_n \subset \langle U_1, \ldots, U_s \rangle_n \subset \mathcal{U}.$$

(1) For each $j \leq r$, we put

$$\mathcal{P}_j = \{ P \in \mathcal{P} \colon x_j \in P \subset U_{x_j} \}.$$

Then, for each $j \leq r$, since \mathcal{P} is a *cn*-network in $X, \bigcup \mathcal{P}_j$ is a neighborhood of x_j in X. This implies that for each $j \leq r$, there is V_j open in X such that

$$x_j \in V_j \subset \bigcup \mathcal{P}_j.$$

Moreover, if we put $\mathcal{R} = \bigcup_{j < r} \mathcal{P}_j$ then

$$F \in \langle V_1, \dots, V_r \rangle_n \subset \left\langle \bigcup \mathcal{P}_1, \dots, \bigcup \mathcal{P}_r \right\rangle_n$$
$$\subset \bigcup \{ \langle P_1, \dots, P_s \rangle_n \colon F \in \langle P_1, \dots, P_s \rangle_n, P_1, \dots, P_s \in \mathcal{R}, s \le n \}$$
$$\subset \bigcup \{ \mathcal{W} \in \mathfrak{P} \colon F \in \mathcal{W} \subset \mathcal{U} \}.$$

On the other hand, since $\langle V_1, \ldots, V_r \rangle_n$ is open in $\mathcal{F}_n(X)$, we have $\bigcup \{ \mathcal{W} \in \mathfrak{P} : F \in \mathcal{W} \subset \mathcal{U} \}$ is a neighborhood of F in $\mathcal{F}_n(X)$. Therefore, \mathfrak{P} is a *cn*-network in $\mathcal{F}_n(X)$.

(2) For each $j \leq r$, since \mathcal{P} is a *ck*-network in X, there exists a neighborhood $V_{x_j} \subset U_{x_j}$ such that for each compact subset $A_j \subset V_{x_j}$, there exists a finite

subfamily \mathcal{A}_j of \mathcal{P} satisfying

$$x_j \in \bigcap \mathcal{A}_j$$
 and $A_j \subset \bigcup \mathcal{A}_j \subset U_{x_j}$.

Next, for each $j \leq r$, since X is regular, there exists W_{x_j} open in X such that

$$x_j \in W_{x_j} \subset \overline{W}_{x_j} \subset V_{x_j}.$$

Now, if we put $\mathcal{V}_F = \langle W_{x_1}, \ldots, W_{x_r} \rangle_n$ then for each compact subset $\mathcal{K} \subset \mathcal{V}_F$, we have

$$\bigcup \mathcal{K} \subset \bigcup_{j \leq r} \overline{W}_{x_j}.$$

Moreover, since $\bigcup \mathcal{K}$ is compact in X by Lemma 1.4, we have $K_j = (\bigcup \mathcal{K}) \cap \overline{W}_{x_j}$ is compact in X and $K_j \subset V_{x_j}$. Thus, there exists a finite subfamily $\mathcal{F}_j \subset \mathcal{P}$ such that

$$x_j \in \bigcap \mathcal{F}_j$$
 and $K_j \subset \bigcup \mathcal{F}_j \subset U_{x_j}$.

Lastly, if we put $\mathcal{R} = \bigcup_{j \leq r} \mathcal{F}_j$ and

$$\mathcal{F} = \{ \langle P_1, \dots, P_s \rangle_n \colon F \in \langle P_1, \dots, P_s \rangle_n, \ P_1, \dots, P_s \in \mathcal{R}, \ s \le n \}$$

then \mathcal{F} is finite, $F \in \bigcap \mathcal{F}$ and $\bigcup \mathcal{F} \subset \langle U_{x_1}, \ldots, U_{x_r} \rangle_n$. Furthermore, $\mathcal{K} \subset \bigcup \mathcal{F}$. In fact, for any $\{y_1, \ldots, y_p\} \in \mathcal{K}$, we have $\{y_1, \ldots, y_p\} \subset \bigcup \mathcal{K}$. For each $k \leq p$, since $\bigcup \mathcal{K} = \bigcup_{j \leq r} K_j$, there exists $j_0 \leq r$ such that $y_k \in K_{j_0} \subset \bigcup \mathcal{F}_{j_0}$. This implies that $\{y_1, \ldots, y_p\} \in \bigcup \mathcal{F}$. Thus, $\mathcal{K} \subset \bigcup \mathcal{F} \subset \langle U_{x_1}, \ldots, U_{x_r} \rangle_n$.

Therefore, \mathfrak{P} is a *ck*-network in $\mathcal{F}_n(X)$.

Theorem 2.4. Let X be a space and let $n \in \mathbb{N}$. Then:

(1) Space X has a σ -(P)-property cn-network if and only if so does $\mathcal{F}_n(X)$.

(2) If X is regular, then X has a σ -(P)-property ck-network if and only if so does $\mathcal{F}_n(X)$.

PROOF: Necessity. Assume that $\mathcal{P} = \bigcup \{\mathcal{P}_k : k \in \mathbb{N}\}$ is a *cn*-network (*ck*-network) in X, where each \mathcal{P}_k has (P)-property and $\mathcal{P}_k \subset \mathcal{P}_{k+1}$ for each $k \in \mathbb{N}$. By Lemma 2.2, we have

$$\mathfrak{P}_k = \{ \langle P_1, \dots, P_s \rangle_n \colon P_1, \dots, P_s \in \mathcal{P}_k, \ s \le n \}$$

has the (P)-property, and $\mathfrak{P}_k \subset \mathfrak{P}_{k+1}$ for each $k \in \mathbb{N}$. Therefore, $\mathfrak{P} = \bigcup \{\mathfrak{B}_k : k \in \mathbb{N}\}$ is a cover for $\mathcal{F}_n(X)$ having σ -(P)-property. Moreover, observe that

$$\mathfrak{P} \subset \{ \langle P_1, \dots, P_s \rangle_n \colon P_1, \dots, P_s \in \mathcal{P}, \ s \le n \}$$

Now, let $\mathcal{W} \in \{\langle P_1, \ldots, P_s \rangle_n \colon P_1, \ldots, P_s \in \mathcal{P}, s \leq n\}$. Then, there exist $P_1, \ldots, P_s \in \mathcal{P}$ such that $\mathcal{W} = \langle P_1, \ldots, P_s \rangle_n$. Since $\mathcal{P} = \bigcup \{\mathcal{P}_k \colon k \in \mathbb{N}\}$, there

262

exist $k_i \in \mathbb{N}$ such that $P_i \in \mathcal{P}_{k_i}$ for each $i \leq s$. If we put $m = \max\{k_i : i \leq s\}$ then $P_1, \ldots, P_s \in \mathcal{P}_m$ and $m \in \mathbb{N}$. This implies that $\mathcal{W} \in \mathfrak{P}_m \subset \mathfrak{P}$. Thus,

$$\mathfrak{P} = \{ \langle P_1, \dots, P_s \rangle_n \colon P_1, \dots, P_s \in \mathcal{P}, \ s \le n \}.$$

It follows from Lemma 2.3 that \mathfrak{P} is a *cn*-network (*ck*-network) in $\mathcal{F}_n(X)$.

Sufficiency. Let $\mathfrak{B} = \bigcup \{\mathfrak{B}_k : k \in \mathbb{N}\}$ be a *cn*-network (*ck*-network) in $\mathcal{F}_n(X)$ with σ -(*P*)-property. Then,

$$\mathcal{P} = \bigcup \{\mathfrak{B}_k |_{\mathcal{F}_1(X)} \colon k \in \mathbb{N} \}$$

is a *cn*-network (*ck*-network) in $\mathcal{F}_1(X)$ with σ -(*P*)-property, where $\mathfrak{B}_k|_{\mathcal{F}_1(X)} = \{P \cap \mathcal{F}_1(X) : P \in \mathfrak{B}_k\}$ for each $k \in \mathbb{N}$. On the other hand, it follows from Remark 1.1 that $\xi : \mathcal{F}_1(X) \to X$ given by $\xi(\{x\}) = x$ is a homeomorphism. Therefore, X has a σ -(*P*)-property *cn*-network (*ck*-network).

By Theorem 2.4, we obtain the following corollary.

Corollary 2.5. Let X be a space and let $n \in \mathbb{N}$. Then:

- (1) Space X is strict σ -space if and only if so is $\mathcal{F}_n(X)$.
- (2) If X is regular, then X is strict \aleph -space if and only if so is $\mathcal{F}_n(X)$.

Question 2.6. Let X be a Hausdorff space and let $n \in \mathbb{N}$. If X has a σ -(P)-property ck-network, then does $\mathcal{F}_n(X)$ have a σ -(P)-property ck-network?

References

- Borsuk K., Ulam S., On symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931), no. 12, 875–882.
- [2] Gabriyelyan S. S., Kakol J., On \$\$\mathcal{P}\$-spaces and related concepts, Topology Appl. 191 (2015), 178–198.
- [3] Good C., Macías S., Symmetric products of generalized metric spaces, Topology Appl. 206 (2016), 93–114.
- [4] Peng L.-X., Sun Y., A study on symmetric products of generalized metric spaces, Topology Appl. 231 (2017), 411–429.
- [5] Tang Z., Lin S., Lin F., Symmetric products and closed finite-to-one mappings, Topology Appl. 234 (2018), 26–45.

L.Q. Tuyen:

DEPARTMENT OF MATHEMATICS, DA NANG UNIVERSITY OF EDUCATION, 459 TON DUC THANG STREET, DA NANG CITY, VIETNAM

E-mail: tuyendhdn@gmail.com

O.V. Tuyen:

Ong Ich Khiem High School, Cam Toai Trung Hamlet, Hoa Phong Commune, Hoa Vang District, Da Nang City 556643, Vietnam

E-mail: tuyenvan612dn@gmail.com