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On the n-fold symmetric product of a space

with a σ-(P )-property cn-network (ck-network)

Luong Q. Tuyen, Ong V. Tuyen

Abstract. We study the relation between a space X satisfying certain generalized
metric properties and its n-fold symmetric product Fn(X) satisfying the same

properties. We prove that X has a σ-(P )-property cn-network if and only if so
does Fn(X). Moreover, if X is regular then X has a σ-(P )-property ck-network
if and only if so does Fn(X). By these results, we obtain that X is strict σ-space
(strict ℵ-space) if and only if so is Fn(X).
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1. Introduction and preliminaries

In 1931, K. Borsuk and S. Ulam introduced the notion of a symmetric product

of an arbitrary topological space, see [1]. Moreover, they also show that the n-

fold symmetric product Fn(X) can be obtained as a quotient space of Cartesian

product Xn. Recently, C. Good and S. Maćıas in [3], L.-X. Peng and Y. Sun in [4],

Z. Tang, S. Lin and F. Lin in [5], studied the symmetric products of generalized

metric spaces. They considered several generalized metric properties and studied

the relation between a space X satisfying such property and its n-fold symmetric

product satisfying the same property.

In this paper, we also study the relation between a space X satisfying certain

generalized metric properties and its n-fold symmetric product satisfying the same

properties. We prove that X has a σ-(P )-property cn-network if and only if so

does Fn(X). Moreover, if X is regular then X has a σ-(P )-property ck-network

if and only if so does Fn(X). By these results, we obtain that X is strict σ-space

(strict ℵ-space) if and only if so is Fn(X).

Throughout this paper, all spaces are Hausdorff, N denotes the set of all positive

integers.

Given a space X , we define its hyperspaces as the following sets:

(1) CL(X) = {A ⊂ X : A is closed and nonempty};
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(2) 2X = {A ∈ CL(X) : A is compact};

(3) Fn(X) =
{

A ∈ 2X : A has at most n points
}

, where n ∈ N.

Set CL(X) is topologized by the Vietoris topology defined as the topology gener-

ated by

B = {〈U1, . . . , Uk〉 : U1, . . . , Uk are open subsets of X, k ∈ N},

where

〈U1, . . . , Uk〉 =

{

A ∈ CL(X) : A ⊂
⋃

i≤k

Ui, A ∩ Ui 6= ∅ for each i ≤ k

}

.

Note that, by definition, 2X and Fn(X) are subspaces of CL(X). Hence, they are

topologized with the appropriate restriction of the Vietoris topology. Moreover,

(1) space CL(X) is called the hyperspace of nonempty closed subsets of X ;

(2) space 2X is called the hyperspace of nonempty compact subsets of X ;

(3) space Fn(X) is called the n-fold symmetric product of X .

On the other hand, it is obvious that Fn(X) ⊂ Fn+1(X) for each n ∈ N.

Remark 1.1 ([3], Remark 2.1). Let X be a space and let n ≥ 2. Note that F1(X)

is closed in Fn(X) and ξ : F1(X) ։ X given by ξ({x}) = x is a homeomorphism.

Notation 1.2 ([3], Notation 2.2). Let X be a space and let n ∈ N. To simplify

notation, if U1, . . . , Us are open subsets of X then 〈U1, . . . , Us〉n denotes the

intersection of the open set 〈U1, . . . , Us〉 of the Vietoris topology, with Fn(X).

Notation 1.3 ([3], Notation 2.3). Let X be a space and let n ∈ N. If {x1, . . . , xr}

is a point of Fn(X) and {x1, . . . , xr} ∈ 〈U1, . . . , Us〉n, then for each j ∈ {1, . . . , r},

we let Uxj
=

⋂

{U ∈ {U1, . . . , Us} : xj ∈ U}. Observe that 〈Ux1
, . . . , Uxr

〉n ⊂

〈U1, . . . , Us〉n.

Lemma 1.4 ([4], Lemma 21). Let X be a space and let n ∈ N. If C is a compact

subset of Fn(X), then
⋃

C is a compact subset of X .

Definition 1.5. Let P be a family of subsets of a space X . Then:

(1) Family P is point-finite, if each point x ∈ X belongs only to finitely many

members of P .

(2) Family P is point-countable, if each point x ∈ X belongs only to count-

ably many members of P .

(3) Family P is compact-finite, if for each compact subset K ⊂ X , the set

{P ∈ P : P ∩K 6= ∅} is finite.

(4) Family P is compact-countable, if for each compact subset K ⊂ X , the

set {P ∈ P : P ∩K 6= ∅} is countable.

(5) Family P is locally finite, if for each x ∈ X , there exists a neighborhood

V of x such that V meets only finitely many members of P .
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(6) Family P is locally countable, if for each x ∈ X , there exists a neighbor-

hood V of x such that V meets only countably many members of P .

Definition 1.6. For a cover P of a space X , let (P ) be one of the following

properties: point-finite, compact-finite, locally finite, point-countable, compact-

countable, and locally countable. We said that P has σ-(P )-property, if P can

be expressed as
⋃

{Pn : n ∈ N}, where each Pn has (P )-property, and Pn ⊂ Pn+1

for all n ∈ N.

Definition 1.7 ([2]). Let P be a family of subsets of a space X . Then,

(1) Family P is a network at x ∈ X , if for each neighborhood Ox of x there

is a set P ∈ P such that x ∈ P ⊂ Ox; P is a network in X if P is

a network at each point x ∈ X .

(2) Family P is a cn-network at x ∈ X , if for each neighborhood Ox of x, the

set
⋃

{P ∈ P : x ∈ P ⊂ Ox} is a neighborhood of x; P is a cn-network

in X if P is a cn-network at each point x ∈ X .

(3) Family P is a ck-network at x ∈ X , if for any neighborhood Ox of x,

there is a neighborhood Ux ⊂ Ox of x such that for each compact subset

K ⊂ Ux, there exists a finite subfamily F ⊂ P satisfying x ∈
⋂

F and

K ⊂
⋃

F ⊂ Ox; P is a ck-network in X if P is a ck-network at each

point x ∈ X .

Remark 1.8 ([2]). Base (at x) =⇒ ck-network (at x) =⇒ cn-network (at x) =⇒

network (at x).

Definition 1.9 ([2]). Let X be a topological space. Then:

(1) Space X is called a strict σ-space, if X has a σ-locally finite cn-network.

(2) Space X is called a strict ℵ-space, if X has a σ-locally finite ck-network.

2. Main results

Let n ∈ N and P be a family of subsets of a space X . If we put

P = {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P , s ≤ n},

then observe that P is a family of subsets of Fn(X).

Lemma 2.1. Let 〈U1, . . . , Us〉, 〈V1, . . . , Vr〉 ⊂ CL(X). If there exists i0 ≤ s such

that Ui0 ∩
(
⋃

j≤r Vj

)

= ∅, then 〈U1, . . . , Us〉 ∩ 〈V1, . . . , Vr〉 = ∅.

Proof: Assume that there exists i0 ≤ s such that Ui0 ∩
(
⋃

j≤r Vj

)

= ∅. Then, we

have 〈U1, . . . , Us〉 ∩ 〈V1, . . . , Vr〉 = ∅. Otherwise, there exists F ∈ 〈U1, . . . , Us〉 ∩

〈V1, . . . , Vr〉. Hence, F ∩ Ui0 6= ∅, it implies that there exists x0 ∈ F ∩ Ui0 . Since

Ui0 ∩
(
⋃

j≤r Vj

)

= ∅, x0 /∈
⋃

j≤r Vj . Thus, F 6⊂
⋃

j≤r Vj , this is a contradiction.

�
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Lemma 2.2. If P has (P )-property then so does P.

Proof: Case 1. (P ) is point-finite. Let F = {x1, . . . , xr} ∈ Fn(X). For each

j ≤ r, since P is point-finite in X , Pj = {P ∈ P : xj ∈ P} is finite. If we put

P0 =
⋃

j≤r Pj , then P0 is finite. Moreover, we have

{W ∈ P : F ∈ W} ⊂ {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P0, s ≤ n}.

In fact, let k ≤ n and 〈E1, . . . , Ek〉n /∈ {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P0, s ≤ n}.

Then, there exists i0 ≤ k such that Ei0 /∈ P0. It implies that xj /∈ Ei0 for every

j ≤ r. Thus, F /∈ 〈E1, . . . , Ek〉n. Hence, 〈E1, . . . , Ek〉n /∈ {W ∈ P : F ∈ W}.

Because P0 is finite, {W ∈ P : F ∈ W} is finite. Thus, P is point-finite

in Fn(X).

Case 2. (P ) is point-countable. Similar to the proof of Case 1.

Case 3. (P ) is compact-finite. Let A be a compact subset of Fn(X). It

follows from Lemma 1.4 that A =
⋃

A is a compact subset of X . Moreover, since

A ⊂ 〈A〉n, we have

{W ∈ P : W ∩A 6= ∅} ⊂ {W ∈ P : W ∩ 〈A〉n 6= ∅}.

Since P is compact-finite in X , P0 = {P ∈ P : P ∩A 6= ∅} is finite. On the other

hand, we have

{W ∈ P : W ∩ 〈A〉n 6= ∅} ⊂ {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P0, s ≤ n}.

In fact, let k ≤ n and 〈E1, . . . , Ek〉n /∈ {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P0, s ≤ n}.

Then, there exists i0 ≤ k such that Ei0 /∈ P0. This implies that Ei0 ∩ A = ∅.

By Lemma 2.1, 〈E1, . . . , Ek〉n ∩ 〈A〉n = ∅. Thus, 〈E1, . . . , Ek〉n /∈ {W ∈ P :

W ∩ 〈A〉n 6= ∅}.

Since P0 is finite, {W ∈ P : W ∩A 6= ∅} is finite. Therefore,P is compact-finite

in Fn(X).

Case 4. (P ) is compact-countable. Similar to the proof of Case 3.

Case 5. (P ) is locally finite. Let F = {x1, . . . , xr} ∈ Fn(X). For each

i ≤ r, since P is locally finite in X , there exists an open neighborhood Wi of xi

intersecting only finitely many elements of P . If we put

Vi = Wi \ {xj : j ≤ r, j 6= i},

then Vi is open in X for every i ≤ r, and 〈V1, . . . , Vr〉n is an open neighborhood

of F in Fn(X). On the other hand, 〈V1, . . . , Vr〉n intersects only finitely many

elements of P. In fact, for each i ≤ r, since P is locally finite in X , Pi =

{P ∈ P : P ∩ Vi 6= ∅} is finite. If we put P0 =
⋃

i≤r Pi, then P0 is finite.

Now, let k ≤ n and 〈E1, . . . , Ek〉n /∈ {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P0, s ≤ n}.
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Then, there exists i0 ≤ k such that Ei0 /∈ P0. Thus, Ei0 ∩ Vi = ∅ for every

i ≤ r. By Lemma 2.1, 〈E1, . . . , Ek〉n ∩ 〈V1, . . . , Vr〉n = ∅. Hence, 〈E1, . . . , Ek〉n /∈

{W ∈ P : W ∩ 〈V1, . . . , Vr〉n 6= ∅}. This implies that

{W ∈ P : W ∩ 〈V1, . . . , Vr〉n 6= ∅} ⊂ {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P0, s ≤ n}.

Furthermore, since P0 is finite, {W ∈ P : W ∩ 〈V1, . . . , Vr〉n 6= ∅} is finite. Hence,

P is locally finite in Fn(X).

Case 6. (P ) is locally countable. Similar to the proof of Case 5. �

Lemma 2.3. (1) If P is a cn-network then so is P.

(2) If X is regular and P is a ck-network then so is P.

Proof: Let F = {x1, . . . , xr} ∈ Fn(X) and U be an open neighborhood of F

in Fn(X). Then, there exist open subsets U1, . . . , Us of X such that

F ∈ 〈U1, . . . , Us〉n ⊂ U .

It follows from Notation 1.3 that there exist open subsets Ux1
, . . . , Uxr

of X such

that xj ∈ Uxj
for each j ≤ r, and

F ∈ 〈Ux1
, . . . , Uxr

〉n ⊂ 〈U1, . . . , Us〉n ⊂ U .

(1) For each j ≤ r, we put

Pj = {P ∈ P : xj ∈ P ⊂ Uxj
}.

Then, for each j ≤ r, since P is a cn-network in X ,
⋃

Pj is a neighborhood of xj

in X . This implies that for each j ≤ r, there is Vj open in X such that

xj ∈ Vj ⊂
⋃

Pj .

Moreover, if we put R =
⋃

j≤r Pj then

F ∈ 〈V1, . . . , Vr〉n ⊂
〈

⋃

P1, . . . ,
⋃

Pr

〉

n

⊂
⋃

{〈P1, . . . , Ps〉n : F ∈ 〈P1, . . . , Ps〉n, P1, . . . , Ps ∈ R, s ≤ n}

⊂
⋃

{W ∈ P : F ∈ W ⊂ U}.

On the other hand, since 〈V1, . . . , Vr〉n is open in Fn(X), we have
⋃

{W ∈ P :

F ∈ W ⊂ U} is a neighborhood of F in Fn(X). Therefore, P is a cn-network

in Fn(X).

(2) For each j ≤ r, since P is a ck-network in X , there exists a neighborhood

Vxj
⊂ Uxj

such that for each compact subset Aj ⊂ Vxj
, there exists a finite
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subfamily Aj of P satisfying

xj ∈
⋂

Aj and Aj ⊂
⋃

Aj ⊂ Uxj
.

Next, for each j ≤ r, since X is regular, there exists Wxj
open in X such that

xj ∈ Wxj
⊂ W xj

⊂ Vxj
.

Now, if we put VF = 〈Wx1
, . . . ,Wxr

〉n then for each compact subset K ⊂ VF ,

we have
⋃

K ⊂
⋃

j≤r

W xj
.

Moreover, since
⋃

K is compact in X by Lemma 1.4, we have Kj = (
⋃

K) ∩W xj

is compact in X and Kj ⊂ Vxj
. Thus, there exists a finite subfamily Fj ⊂ P such

that

xj ∈
⋂

Fj and Kj ⊂
⋃

Fj ⊂ Uxj
.

Lastly, if we put R =
⋃

j≤r Fj and

F = {〈P1, . . . , Ps〉n : F ∈ 〈P1, . . . , Ps〉n, P1, . . . , Ps ∈ R, s ≤ n}

then F is finite, F ∈
⋂

F and
⋃

F ⊂ 〈Ux1
, . . . , Uxr

〉n. Furthermore, K ⊂
⋃

F . In

fact, for any {y1, . . . , yp} ∈ K, we have {y1, . . . , yp} ⊂
⋃

K. For each k ≤ p, since
⋃

K =
⋃

j≤r Kj , there exists j0 ≤ r such that yk ∈ Kj0 ⊂
⋃

Fj0 . This implies

that {y1, . . . , yp} ∈
⋃

F . Thus, K ⊂
⋃

F ⊂ 〈Ux1
, . . . , Uxr

〉n.

Therefore, P is a ck-network in Fn(X). �

Theorem 2.4. Let X be a space and let n ∈ N. Then:

(1) Space X has a σ-(P )-property cn-network if and only if so does Fn(X).

(2) If X is regular, then X has a σ-(P )-property ck-network if and only if so

does Fn(X).

Proof: Necessity. Assume that P =
⋃

{Pk : k ∈ N} is a cn-network (ck-network)

in X , where each Pk has (P )-property and Pk ⊂ Pk+1 for each k ∈ N. By

Lemma 2.2, we have

Pk = {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ Pk, s ≤ n}

has the (P )-property, and Pk ⊂ Pk+1 for each k ∈ N. Therefore, P =
⋃

{Bk :

k ∈ N} is a cover for Fn(X) having σ-(P )-property. Moreover, observe that

P ⊂ {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P , s ≤ n}.

Now, let W ∈ {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P , s ≤ n}. Then, there exist

P1, . . . , Ps ∈ P such that W = 〈P1, . . . , Ps〉n. Since P =
⋃

{Pk : k ∈ N}, there
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exist ki ∈ N such that Pi ∈ Pki
for each i ≤ s. If we put m = max{ki : i ≤ s}

then P1, . . . , Ps ∈ Pm and m ∈ N. This implies that W ∈ Pm ⊂ P. Thus,

P = {〈P1, . . . , Ps〉n : P1, . . . , Ps ∈ P , s ≤ n}.

It follows from Lemma 2.3 that P is a cn-network (ck-network) in Fn(X).

Sufficiency. Let B =
⋃

{Bk : k ∈ N} be a cn-network (ck-network) in Fn(X)

with σ-(P )-property. Then,

P =
⋃

{Bk|F1(X) : k ∈ N}

is a cn-network (ck-network) in F1(X) with σ-(P )-property, where Bk|F1(X) =

{P ∩ F1(X) : P ∈ Bk} for each k ∈ N. On the other hand, it follows from

Remark 1.1 that ξ : F1(X) ։ X given by ξ({x}) = x is a homeomorphism.

Therefore, X has a σ-(P )-property cn-network (ck-network). �

By Theorem 2.4, we obtain the following corollary.

Corollary 2.5. Let X be a space and let n ∈ N. Then:

(1) Space X is strict σ-space if and only if so is Fn(X).

(2) If X is regular, then X is strict ℵ-space if and only if so is Fn(X).

Question 2.6. Let X be a Hausdorff space and let n ∈ N. If X has a σ-(P )-

property ck-network, then does Fn(X) have a σ-(P )-property ck-network?
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