
Comment.Math.Univ.Carolin. 61,3 (2020) 345–362 345

Asymptotic properties

of a ϕ-Laplacian and Rayleigh quotient

Waldo Arriagada, Jorge Huentutripay

Abstract. In this paper we consider the ϕ -Laplacian problem with Dirichlet
boundary condition,

−div
(

ϕ(|∇u|)
∇u

|∇u|

)

= λg(·)ϕ(u) in Ω, λ ∈ R and u|∂Ω = 0.

The term ϕ is a real odd and increasing homeomorphism, g is a nonnegative
function in L∞(Ω) and Ω ⊆ R

N is a bounded domain. In these notes an analysis
of the asymptotic behavior of sequences of eigenvalues of the differential equation
is provided. We assume conditions which guarantee the existence of stationary
solutions of the system. Under these rather stringent hypotheses we prove that
any extremal is both a minimizer and an eigenfunction of the ϕ-Laplacian. It
turns out that if, in addition, a suitable ∆2-condition holds then any number
greater than or equal to the minimum of the Rayleigh quotient is an eigenvalue
of the differential equation.
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1. Introduction

This paper is part of a vast program devoted to the study of solutions of dif-

ferential operators in the divergence form. We consider the ϕ-Laplacian problem

with Dirichlet boundary condition

(1.1)







−div
(

ϕ(|∇u|) ∇u

|∇u|
)

= λ g(x)ϕ(u), x ∈ Ω, λ ∈ R,

u = 0 on ∂Ω.

The domain Ω ⊆ R
N is bounded and satisfies a segment condition, g 6≡ 0 is

a nonnegative function in L∞(Ω) and ϕ : R → R is an odd, increasing and not

necessarily differentiable homeomorphism.

The space of solutions of (1.1) has been characterized in the article [3], only in

the case Ω = R
N . In the same article a classical Lagrange multipliers rule is em-

ployed to prove that under additional, stringent restrictions on g and ϕ, nontrivial

DOI 10.14712/1213-7243.2020.020



346 W. Arriagada, J. Huentutripay

solutions of the Laplace operator exist and are nonnegative. Regularity (Hölder

continuity), positivity and vanishing at infinity of the solutions have subsequently

been proved in [4]. In the article [2] the asymptotic properties of blow-up (large)

solutions of (1.1) have been treated, when the right-hand side satisfies particular

growth conditions and the left-hand side contains an additional nonlinear term

in |∇u|. In all these references we assume a Lieberman-like condition, see [22,

(1.1)], but the hypothesis of differentiability on ϕ is dropped. This is in striking

contrast with the classical case.

Several sources in the literature address the eigenvalue problem associated with

(1.1) in the particular case of the degenerate p-Laplacian equation with Dirichlet

boundary condition

(1.2)

{

−div(|∇u|p−2∇u) = λg(x)|u|p−2u, x ∈ Ω, λ ∈ R,

u = 0 on ∂Ω

for which ϕ(t) = |t|p−2t. Here, 1 < p < ∞ and the function g is locally integrable

or belongs to some Lebesgue space. In the case g ≡ 1 it is known from [13], [21],

[23] that an infinite sequence {λn} of eigenvalues exists if the associated sequence

of eigenfunctions belongs to a closed subspace of the Sobolev space W 1,p(Ω). The

supremum of the set of eigenvalues is ∞ and the infimum is equal to the first

eigenvalue λ1 of (1.2), also called the principal frequency.

In the nonhomogeneous case where q : Ω → (1,∞) is continuous (Ω is the ad-

herence of Ω) and ϕ(t) = |t|q(x)−2t for t 6= 0 and ϕ(0) = 0, the eigenvalue problem

was analyzed in [11]. Using Ljusternik–Schnirelmann critical point methods the

authors proved that, also in this case, an infinite sequence of eigenvalues exists

and that the supremum of the set of all nonnegative eigenvalues is ∞. Only under

additional hypotheses the infimum of this set is positive, as in the homogeneous

case q(x) = p. Eigenvalue problems involving quasilinear nonhomogeneous oper-

ators in other spaces were studied in [14] but in a different context. Additional

resonance problems and existence of weak solutions under Landesman–Lazer con-

ditions are tackled in [9], [10]. A characterization of the spectra and of the eigen-

functions in the Neumann case are addressed in [8]. Further approaches can be

found in [25], [27].

In this work we determine the asymptotic behavior of subsequences of eigenval-

ues of problem (1.1) under stringent restrictions. The latter ensure the existence

of minimizing sequences formed by nontrivial and nonnegative solutions of (1.1).

We first take a sequence {λn} of eigenvalues and assume that the correspond-

ing sequence of eigenfunctions is uniformly bounded (in the precise sense of the

norm). In Theorem 3.1 we prove that λ = lim inf
n

λn is itself an eigenvalue of

the equation. Next, we define the Rayleigh quotient R globally on a punctured
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Orlicz–Sobolev space and note that it is Fréchet differentiable there, provided

a suitable ∆2-condition be fulfilled. This last property allows to compute min-

ima and maxima (local and global) and stationary solutions (extremals) of the

eigenvalue problem (1.1). We demonstrate that any minimizing sequence {vn}
gives always birth to a minimizing sequence {un} of nontrivial and nonnegative

eigenfunctions of (1.1) with the same asymptotic behavior. If the sequence {un}
converges to an extremal u of R then λ = Λ1. In this case the stationary solu-

tion u is both a minimizer and an eigenfunction of the problem with associated

eigenvalue Λ1.

In Theorem 4.2 we prove the existence of a minimizer provided the Rayleigh

quotient be unbounded on sequences of eigenfunctions which tend to zero or infin-

ity in norm. (This asymptotic condition is a sort of coercivity.) In addition, in this

case we prove that any real number greater than or equal to the minimum value

Λ1 is an eigenvalue of the equation if a ∆2-condition is fulfilled. These results im-

pose stringent constraints on the system (1.1) as the Rayleigh quotient might not

even admit any extremals at all. The problem whether further characterizations

are possible when the coercivity condition is dropped, is still open. A description

of the properties of the eigenvalues based solely on asymptotic assumptions on

the associated sequence of eigenfunctions is seemingly a difficult problem.

2. Orlicz and Orlicz–Sobolev spaces

This is a brief survey on Orlicz–Sobolev spaces. For further details we refer the

reader to [15], [19], [29] and, in the nonhomogeneous case of variable exponents,

to [26], [27], [30].

Orlicz–Sobolev spaces somewhat generalize the classical Sobolev spaces

W 1,p(Ω): the role played by the convex map t 7→ |t|p/p is assumed now by

a more general real map denominated an N -function. That is, a convex, even and

continuous function Φ: R → [0,∞) satisfying Φ(t) = 0 if and only if t = 0 and

such that

Φ(t)

t
→ 0 as t → 0 and

Φ(t)

t
→ ∞ as t → ∞.

Equivalently, the N -function Φ can be represented in the integral form

(2.1) Φ(t) =

∫ t

0

ϕ(s) ds

where ϕ : R → R is an odd, nondecreasing, right-continuous function satisfying

ϕ(t) = 0 if and only if t = 0 and ϕ(t) → ∞ as t → ∞. It is not hard to verify
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that such a map satisfies the estimate

(2.2)
(

ϕ(|~u|) ~u

|~u| − ϕ(|~v|) ~v|~v|
)

· (~u − ~v) ≥ 0

for any pair of nonzero vectors ~u,~v in R
N [6, Lemma 3.2]. If the inverse ϕ−1

exists then the integral

Φ(t) =

∫ t

0

ϕ−1(s) ds

is an N -function as well, called the conjugate (or complementary) of Φ. It is

known that Young’s inequality st ≤ Φ(t) + Φ(s) holds for s and t ∈ R and that

equality is attained if and only if t = ϕ−1(s). Therefore, Φ(ϕ(t)) = tϕ(t)−Φ(t) ≤
tϕ(t). Since Φ(2t) ≥

∫ 2t

t ϕ(s) ds ≥
∫ 2t

t ϕ(t) ds = tϕ(t), we obtain the useful

inequality

(2.3) Φ(ϕ(t)) ≤ Φ(2t)

which will be repeatedly employed in these notes.

The Sobolev conjugate N -function Φ∗ of Φ is defined by

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)

s1+1/N
ds

where Φ−1 denotes the inverse function of Φ|[0,∞). It is known, see [7], that the

Sobolev conjugate exists if and only if

(2.4)

∫ 1

0

Φ−1(s)

s1+1/N
ds < ∞ and lim

t→∞

∫ t

0

Φ−1(s)

s1+1/N
ds = ∞.

Let Φ be an N -function. The Orlicz class LΦ(Ω) is the set of (equivalence

classes of) real-valued measurable functions u such that Φ(u) ∈ L1(Ω). In general,

LΦ(Ω) is not a vector space, see [19]. The linear hull (span) LΦ(Ω) of the Orlicz

class LΦ(Ω) is called the Orlicz space generated by Φ. It is known that LΦ(Ω) is

a complete space with respect to the Luxemburg norm,

‖u‖(Φ) = inf

{

k > 0:

∫

Ω

Φ
( |u|
k

)

dx ≤ 1

}

.

The usual (norm) convergence in LΦ(Ω) is introduced as follows:

un → u in LΦ(Ω) if lim
n→∞

‖un − u‖(Φ) = 0.

The space LΦ(Ω) is defined analogously (after replacing Φ by Φ in the defini-

tions above). It is known that if Φ and Φ are complementary N -functions, then
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the improved Hölder’s inequality

(2.5)

∫

Ω

|uv| dx ≤ 2‖u‖(Φ)‖v‖(Φ)

holds for all u ∈ LΦ(Ω) and v ∈ LΦ(Ω), see [19].

Let EΦ(Ω) be the closure (for the norm-topology) of L∞(Ω) in LΦ(Ω). The

space EΦ(Ω) is separable and Banach for the inherited norm. In general, EΦ(Ω) ⊆
LΦ(Ω) ⊆ LΦ(Ω) but it is known that EΦ(Ω) = LΦ(Ω) if and only if Φ satisfies

a ∆2-condition at infinity. This means that for r > 1 there exists α(r) > 0 such

that

(2.6) Φ(rt) ≤ α(r)Φ(t) for t > T

where T is also positive. If T = 0 then Φ is said to satisfy a global ∆2-condition

and in this case we write Φ ∈ ∆2. It is known that if Φ and Φ satisfy a ∆2-

condition at infinity then the spaces LΦ(Ω) and LΦ(Ω) are reflexive and separable,

see [16]. It is also known that LΦ(Ω) can be identified with the dual space of

EΦ(Ω) and LΦ(Ω) with the dual of EΦ(Ω), see [15].

Lemma 2.1 ([18]). Let Φ be an N -function. Let {un} be a sequence in LΦ(Ω)

such that limn→∞ un(x) = u(x) for a.e. x ∈ Ω. Suppose that there exists r ∈
EΦ(Ω) such that |un(x)| ≤ r(x) for a.e. x ∈ Ω and every n. Then u ∈ EΦ(Ω) and

un → u in LΦ(Ω).

The next proposition somewhat provides a converse to Lemma 2.1.

Proposition 2.1. Let u be a function and {un} be a sequence in LΦ(Ω) such

that un → u in LΦ(Ω). Then there exists a subsequence {unk
} and h ∈ LΦ(Ω)

such that

(a) unk
(x) → u(x) for a.e. x ∈ Ω;

(b) |unk
(x)| ≤ h(x) for a.e. x ∈ Ω.

Proof: Since {un} is a Cauchy sequence in LΦ(Ω) there exists a subsequence

{unk
} such that ‖unk+1

− unk
‖(Φ) < ε/2k for any integer k. Let us define fm =

∑m
k=1 |unk+1

− unk
| ∈ LΦ(Ω). Hence,

∥

∥

∥

fm
ε

∥

∥

∥

(Φ)
≤ 1

ε

m
∑

k=1

‖unk+1
− unk

‖(Φ) < 1.

Define f(x) = limm→∞ fm(x). Fatou’s lemma yields

∫

Ω

Φ
( |f(x)|

ε

)

dx ≤ lim inf
m→∞

∫

Ω

Φ
( |fm(x)|

ε

)

dx ≤ 1
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and hence f ∈ LΦ(Ω). On the other hand, note that if nm > nk then

|unm
(x)− unk

(x)| ≤ |unm
(x)− unm−1

(x)| + · · ·+ |unk+1
(x) − unk

(x)|
≤ f(x)− fnk−1

(x)

and hence {unk
} is a Cauchy sequence which converges a.e. in Ω to a function u.

Taking m → ∞ in the inequality above produces |u(x) − unk
(x)| ≤ f(x) for a.e.

x ∈ Ω. Notice that Φ(|u(x) − unk
(x)|/ε) → 0 for a.e. x ∈ Ω as k → ∞ and also

Φ(|u(x) − unk
(x)|/ε) ≤ Φ(f(x)/ε) ∈ L1(Ω). The dominated convergence thus

yields

lim
k→∞

∫

Ω

Φ
( |u(x)− unk

(x)|
ε

)

dx = 0

and since ε is arbitrary, ‖u − unk
‖(Φ) → 0 as k → ∞. The unicity of the limit

implies u = u and by the triangle inequality, |unk
(x)| ≤ |unk

(x)−u(x)|+ |u(x)| ≤
f(x) + |u(x)|. Finally, we set h(x) = f(x) + |u(x)| and the proposition is proved.

�

2.1 Orlicz–Sobolev spaces. The Orlicz–Sobolev space W 1LΦ(Ω) (W
1EΦ(Ω))

is the vector subspace of functions in LΦ(Ω) (EΦ(Ω)) with first distributional

derivatives in LΦ(Ω) (EΦ(Ω), respectively). The spaces W 1LΦ(Ω) and W 1EΦ(Ω)

are Banach when endowed with the norm

‖u‖1,Φ = ‖u‖(Φ) + ‖∇u‖(Φ)

where we have employed the notation ‖∇u‖(Φ) =
∑N

i=1 ‖∂uxi
‖(Φ). Usually,

W 1LΦ(Ω) and W 1EΦ(Ω) are identified with subspaces of the products ΠLΦ and

ΠEΦ (we omit Ω to lighten notations). The natural imbedding of W 1EΦ(Ω) into

ΠEΦ proves that W 1EΦ(Ω) is separable since EΦ(Ω) is itself separable. The

space W 1LΦ(Ω) is not separable in general and is closed for the weak-∗ topology

σ = σ(ΠLΦ,ΠEΦ), see [15, page 167].

Let D(Ω) denote the space of infinitely-differentiable functions with compact

support in Ω. We define the spaces W 1
0LΦ(Ω) and W 1

0EΦ(Ω) to be respectively

the σ-closure and the norm-closure of D(Ω) in W 1LΦ(Ω):

W 1
0LΦ(Ω) = D(Ω)

σ
and W 1

0EΦ(Ω) = D(Ω)
‖·‖1,Φ

.

The space W 1
0LΦ(Ω) is Banach with the norm ‖·‖1,Φ inherited from W 1LΦ(Ω).

The following Poincare’s inequality [15]

(2.7)

∫

Ω

Φ(u) dx ≤
∫

Ω

Φ(d |∇u|) dx
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(where d is twice the diameter of Ω), ensures that the norm

‖u‖o = ‖∇u‖(Φ)

is an equivalent norm on W 1
0LΦ(Ω). To ease notations in this manuscript, we will

write

Y = W 1
0LΦ(Ω) and Y0 = W 1

0EΦ(Ω).

The domain Ω satisfies a segment condition, see [1, Section 3.21], if every x ∈ ∂Ω

has a neighborhood Ux and a nonzero vector yx ∈ R
N such that if z ∈ Ω ∩ Ux

then z + tyx ∈ Ω for 0 < t < 1. It is well-known, see [15], that if Ω satisfies

a segment condition then Y0 = Y ∩ ΠEΦ. Let us consider the following Banach

spaces of distributions

Z0 = {θ ∈ D′(Ω): θ = θ0 −
N
∑

i=1

∂θi
∂xi

with θ0, θi ∈ EΦ(Ω)}

and

Z = {θ ∈ D′(Ω): θ = θ0 −
N
∑

i=1

∂θi
∂xi

with θ0, θi ∈ LΦ(Ω)}

endowed with the quotient norms. If Ω satisfies a segment condition then the

dual of Z0 can be identified (algebraically and topologically) with Y under the

natural pairing 〈·, ·〉 : Y × Z0 → R,

(2.8) 〈u, θ〉 =
∫

Ω

uθ0 dx+

N
∑

i=1

∫

Ω

∂u

∂xi
θi dx,

see [17]. Therefore Y can be viewed as the dual of a separable Banach space [16,

Sections 2.1 and 2.2]. Similarly the dual of Y0 can be identified with Z. The

tuple (Y, Y0;Z,Z0) is called a complementary system, see [15].

Lemma 2.2 ([5, Corollary III.26]). Any bounded sequence in the dual of a sepa-

rable Banach space admits a subsequence which converges in the weak-∗ topology.

3. The asymptotic limit of the eigenvalues

In this paper, the function ϕ defining the ϕ-Laplacian in (1.1) is to be a real,

odd, increasing and not-necessarily differentiable homeomorphism of the real line

and Φ is the N -function generated by ϕ via (2.1). In the sequel, if r ∈ (0, N)

then r∗ = Nr/(N − r) and r = r/(r− 1) will denote the Sobolev and Hölder con-

jugate exponents, respectively. To guarantee some regularity on the functionals

associated with our problem, we will hereafter assume the following hypotheses:

(H1) the domain Ω satisfies a segment condition;
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(H2) the function g on the right-hand side of (1.1) is nontrivial and nonnegative

in Ω;

(H3) there exist two numbers 1 < p ≤ q < N such that

(3.1) lim
t→0+

t ϕ(t)

Φ(t)
= p and lim

t→∞

t ϕ(t)

Φ(t)
= q.

Remark 3.1. The three requirements above imply the following properties.

(i) Since t 7→ tϕ(t)/Φ(t) is continuous, conditions (3.1) imply that there exist

two positive numbers pΦ and qΦ, which depend only on p and q, such that

(3.2) pΦ ≤ t ϕ(t)

Φ(t)
≤ qΦ for t 6= 0.

In particular, Φ ∈ ∆2. It is known [12, Lemma 2.5] that pΦ > 1 if and

only if Φ ∈ ∆2.

(ii) The requirement q < N in (H3) ensures that estimates (2.4) are met [18,

Proposition 6.1], i.e., the N -function Φ∗ exists. In turn, Theorem 3.2

in [7] guarantees that the imbedding Y →֒ EP (Ω) is compact for any

N -function P which verifies

lim
t→∞

P (t)

Φ∗(kt)
= 0 for all k > 0.

For example, the N -function P = Φ satisfies this condition [14, Proposi-

tion 2.1] and hence the embedding Y →֒ LΦ(Ω) is compact.

Since Φ ∈ ∆2 we have LΦ(Ω) = LΦ(Ω). In addition, by (2.3) the functions

ϕ(u) and ϕ(|∇u|) belong to LΦ(Ω) provided u ∈ W 1LΦ(Ω). Hölder’s inequality

(2.5) thus implies that the following definition is consistent (i.e., the integrals on

both sides of the equality are finite).

Definition 3.1. A function u ∈ Y is called a solution of (1.1) if there exists

λ ∈ R such that
∫

Ω

ϕ(|∇u|) ∇u

|∇u| · ∇v dx = λ

∫

Ω

g(x)ϕ(u)v dx

for all v ∈ Y . If u is a solution of (1.1) and u 6≡ 0 we call λ the eigenvalue of

(1.1) with associated eigenfunction u and vice-versa.

Hypothesis (H2) means g ≥ 0 and the positive part g+ 6≡ 0 in Ω. The latter

implies existence of nonnegative solutions of (1.1), see Theorem 4.1 below. The

core result in this section is provided in the following theorem.
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Theorem 3.1. Let {un} ⊆ Y be a sequence of eigenfunctions of (1.1) and let

{λn} denote the corresponding sequence of eigenvalues. If supn ‖un‖o < ∞ then

(3.3) λ = lim inf
n→∞

λn

is itself an eigenvalue of (1.1).

Proof: Inequality (2.2) (with ~u = ∇u and ~v = ∇un) yields the estimate

(3.4)

∫

Ω

ϕ(|∇u|) ∇u

|∇u| · (∇u −∇un) dx ≥ λn

∫

Ω

g(x)ϕ(un)(u− un) dx

for any integer n and u ∈ Y . Note that {un} is bounded in Y which is the dual

of a separable space. Lemma 2.2 implies un
∗
⇀ ζ in σ(Y, Z0) where ζ ∈ Y . Item

(ii) in Remark 3.1 and Proposition 2.1 yield, up to a subsequence, un(x) → ζ(x)

for a.e. x ∈ Ω and un(x) ≤ h(x) for a.e. x ∈ Ω with h ∈ LΦ(Ω). It follows that

〈un, θ〉 → 〈ζ, θ〉 for all θ ∈ Z0 where 〈·, ·〉 is the pairing (2.8). The remark above

Definition 3.1 implies ϕ(|∇u|) ∈ EΦ(Ω). Thus, if we choose θ0 = 0 and

θi =
ϕ(|∇u|)
|∇u|

∂u

∂xi

for all indices i = 1, . . . , N , then the dual convergence 〈un, θ〉 → 〈ζ, θ〉 yields
∫

Ω

ϕ(|∇u|) ∇u

|∇u| · ∇un dx →
∫

Ω

ϕ(|∇u|) ∇u

|∇u| · ∇ζ dx

for any u ∈ Y . On the other hand, ϕ(un) → ϕ(ζ) a.e. in Ω. Inequality (2.3)

implies ϕ(un) ≤ ϕ(h) ∈ LΦ(Ω) and then Lemma 2.1 and Hölder’s inequality (2.5)

produce

∫

Ω

g(x)ϕ(un)u dx →
∫

Ω

g(x)ϕ(ζ)u dx and

∫

Ω

g(x)ϕ(un)un dx →
∫

Ω

g(x)ϕ(ζ)ζ dx.

If we let n → ∞ in (3.4)

∫

Ω

ϕ(|∇u|) ∇u

|∇u| · (∇u −∇ζ) dx ≥ λ

∫

Ω

g(x)ϕ(ζ) (u − ζ) dx

for any u ∈ Y , where λ = lim infn→∞ λn. We write u = ζ+t v where t is a nonzero

real number and v ∈ Y . If t > 0 then

∫

Ω

ϕ(|∇(ζ + tv)|) ∇(ζ + t v)

|∇(ζ + tv)| · ∇v dx ≥ λ

∫

Ω

g(x)ϕ(ζ)v dx



354 W. Arriagada, J. Huentutripay

and the reversed inequality is obtained for t < 0. Since t is arbitrary and as ϕ is

increasing, taking the limit t → 0 yields
∫

Ω

ϕ(|∇ζ|) ∇ζ

|∇ζ| · ∇v dx = λ

∫

Ω

g(x)ϕ(ζ)v dx

for all v ∈ Y . The conclusion follows. �

4. Connection with the Rayleigh quotient

Let us denote by R+ the set of nonnegative real numbers. Definition 3.1 mo-

tivates the introduction of the operators J,G : Y → R+ ∪ {∞}

J(u) =

∫

Ω

Φ(|∇u|) dx and G(u) =

∫

Ω

g(x)Φ(u) dx.

It is known that J is finite since Φ ∈ ∆2 (the converse is also true). The compact

embedding in item (ii) of Remark 3.1 ensures that G is finite as well [28, Re-

mark 3.1]. It is also known [14, Lemma 3.4] that if Φ ∈ ∆2 then J is of class C1

with Fréchet derivative

J ′(u)(v) =

∫

Ω

ϕ(|∇u|) ∇u

|∇u| · ∇v dx, u, v ∈ Y.

On the contrary, G is always of class C1 [17, page 898] with Fréchet derivative

G′(u)(v) =

∫

Ω

g(x)ϕ(u)v dx, u, v ∈ Y.

Integration of (3.2) and the definition of the Luxemburg norm yield the useful

estimates

(4.1) min{‖u‖pΦ

o , ‖u‖qΦo } ≤ J(u) ≤ max{‖u‖pΦ

o , ‖u‖qΦo } for any u ∈ Y.

Lemma 4.1 ([28, Lemma 3.2]). Let un
∗
⇀ u in Y for the weak-∗ topology

σ(Y, Z0). Then:

(a) the operator J is σ(Y, Z0)-lower-semi-continuous: J(u) ≤ lim inf J(un);

(b) the operator G is σ(Y, Z0)-continuous: G(un) → G(u).

The next theorem is proved in [17]. In the unbounded case Ω = R
N this result

remains true only if additional conditions on the right-hand side of (1.1) are met,

see [3].

Theorem 4.1. Let µ be a positive number. The optimization problem

inf{J(u) : u ∈ Y, G(u) = µ}(4.2)
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has a nontrivial solution uµ ∈ Y . Moreover, define the nonzero number

(4.3) λµ =

∫

Ω ϕ(|∇uµ|)|∇uµ| dx
∫

Ω
g(x)ϕ(uµ)uµ dx

.

Then uµ is a nonnegative eigenfunction of problem (1.1)with associated eigenvalue

λ = λµ.

Observe that bounds (3.2) imply

∫

Ω

g(x)ϕ(uµ)uµ dx ≥ pΦ

∫

Ω

g(x)Φ(uµ) dx = pΦ µ > 0

and therefore the quantity λµ is well defined.

4.1 Rayleigh quotient. In the sequel we denote by Y ∗ = Y \{0}. Define the

Rayleigh quotient R : Y ∗ → R by the formula R(u) = J(u)/G(u). Inequality (2.7)

and the ∆2-condition on Φ imply

R(u) ≥ 1

α(d) ‖g‖∞
> 0

where α(d) is the constant in (2.6), d is twice the diameter of Ω and ‖·‖∞ is the

norm in L∞(Ω). In particular, the number Λ1 = inf {R(u) : u ∈ Y ∗} is positive.

Definition 4.1. A nonzero sequence {vn} ⊆ Y with

lim
n→∞

R(vn) = Λ1

is called R-minimizing. A sequence {vn} ⊆ Y is bounded if supn ‖vn‖o < ∞.

The sequence is asymptotic to zero if ‖vn‖o → 0 and is asymptotic to infinity if

‖vn‖o → ∞.

Lemma 4.2. Let {vn} ⊆ Y be an R-minimizing sequence. There exists a se-

quence {un} ⊆ Y satisfying the following properties:

(a) the element un is a nontrivial and nonnegative eigenfunction of (1.1) for

every integer n;

(b) the sequence {un} is R-minimizing and the associated sequence of eigen-

values {λn} is bounded;

(c) the sequence {un} is either asymptotic to zero, asymptotic to infinity or

bounded if and only if {vn} is asymptotic to zero, asymptotic to infinity

or bounded, respectively.

Proof: For each nonnegative integer n we define the number µn = G(vn). Since

Λ1 is positive it must necessarily be that µn > 0 as well for n sufficiently large.
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Then we let un ∈ Y be the (nontrivial, nonnegative) solution to (4.2) with µ = µn.

Formula (4.3) provides an eigenvalue λn ∈ R with corresponding eigenfunction un.

On the other hand, by definition we have J(un) ≤ J(vn) and G(un) = G(vn) =

µn > 0 for n sufficiently large. Hence, there exists a real sequence εn → 0 such

that Λ1 ≤ R(un) ≤ R(vn) ≤ Λ1 + εn and this proves that {un} is R-minimizing.

Note that this chain of inequalities yields

Λ1

R(vn)
≤ R(un)

R(vn)
=

J(un)

J(vn)
and

1

Λ1 + εn
≤ 1

R(vn)

for every positive integer n. Merging together the latter estimates produces

Λ1

Λ1 + εn
J(vn) ≤ J(un).

Since J(un) ≤ J(vn) the statement (b) is thus a simple consequence of estimates

(4.1). On the other hand inequalities (3.2) yield

pϕ
qϕ

R(un) ≤ λn ≤ qϕ
pϕ

R(un)

and hence the sequence of eigenvalues is bounded. �

4.2 The energy operator. Let Λ be a positive number. The functional TΛ :

Y → R,

(4.4) TΛ(u) = J(u)− ΛG(u)

is called the energy operator associated with equation (1.1). Define

r0(Λ) = inf{TΛ(u) : u ∈ Y }.

By analogy, a nonzero sequence {vn} ⊆ Y satisfying limn→∞ TΛ(vn) = r0(Λ) is

called TΛ-minimizing. Minor modifications to the proof of Lemma 4.2 yield the

following result.

Lemma 4.3. Let {vn} ⊆ Y be a TΛ-minimizing sequence. If Λ > Λ1 then there

exists a sequence {un} ⊆ Y satisfying the following properties:

(a) the element un is a nontrivial and nonnegative eigenfunction of (1.1) for

every integer n;

(b) the sequence {un} is TΛ-minimizing;

(c) the sequence {un} is either asymptotic to zero, asymptotic to infinity or

bounded if and only if {vn} is asymptotic to zero, asymptotic to infinity

or bounded, respectively.
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Proof: For each n we define the number µn = G(vn). Notice that µn ≥ 0 for

all n since Φ is even and increasing. It is obvious as well that G(vn) = 0 only

for a finite number of integers n because otherwise there would exist an infinite

subsequence {vnk
} for which r0(Λ) = limk→∞ TΛ(vnk

) = limk→∞ J(vnk
) ≥ 0.

However, since Λ > Λ1, there exists v ∈ Y such that Λ1 < R(v) < Λ and this

implies TΛ(v) < 0. Therefore, we can assume that µn is strictly positive for

all n. We define un ∈ Y to be the (nontrivial, nonnegative) solution to (4.2) with

µ = µn.

On the other hand, there exists a real sequence εn → 0 such that r0(Λ) ≤
TΛ(un) ≤ TΛ(vn) ≤ r0(Λ) + εn and then {un} is TΛ-minimizing. Moreover, since

J(un) ≤ J(vn), estimates (4.1) imply that if {vn} is asymptotic to zero then so

is {un} and if the latter is asymptotic to infinity then so is {vn}. Further, simple

rearrangement of the terms in the inequalities above yields in this case

r0(Λ)

r0(Λ) + εn
J(vn) ≤ J(un)− ΛG(un)

εn
r0(Λ) + εn

≤ J(un)

for any natural n. It is thus clear that if {vn} is asymptotic to infinity then so is

{un} and if the latter is asymptotic to zero then so is the former sequence. �

4.3 Extremals. Let Φ ∈ ∆2. It is easy to see that the energy functional (4.4)

is Fréchet differentiable with Fréchet derivative T ′
Λ(u)(v) = J ′(u)(v)−ΛG′(u)(v)

for all u, v ∈ Y . The differentiability of the functionals J and G ensures that

the Rayleigh quotient is Fréchet differentiable as well at any u ∈ Y such that

G(u) 6= 0. The Gâteaux variations of J and G exist in any directions and thus

δR =
J + δJ

G+ δG
− J

G
=

J + δJ

G

(

1 +
δG

G

)−1

− J

G

exists as well in any direction. A first-order Taylor expansion for the term (1 +

δG/G)−1 produces

(4.5) δR =
δJ

G
− JδG

G2

(again, to first order). Formula (4.5) hence yields the Fréchet derivative R′ of the

Rayleigh quotient. (The Fréchet-differentiability of R is easily obtained as well

from the product and chain rules, see [20, Chapter XIII, Section 3].) Therefore,

R′ = 0 if and only if J ′ − RG′ = 0.

Consider an R-minimizing sequence {un} ⊆ Y of eigenfunctions of (1.1) and

let {λn} denote the associated sequence of eigenvalues. Suppose that {un} con-

verges to an extremal or stationary function u ∈ Y ∗ of the Rayleigh quotient (i.e.

R′(u)(v) = 0 for all v ∈ Y ). Since G(un) > 0 for n sufficiently large, formula
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(4.5) yields

(4.6) R′(un)(v) =
(

λn −R(un)
)G′(un)(v)

G(un)

where v ∈ Y , provided Φ ∈ ∆2. Since u is nontrivial the continuity of G implies

G(u) > 0 and it is clear that G′(u)(·) 6≡ 0 on Y . Otherwise, hypotheses (3.2)

would imply

0 = G′(u)(u) =

∫

Ω

g(x)ϕ(u)u dx ≥ pΦG(u) > 0.

Taking n → ∞ in (4.6) produces λ = Λ1 (by the continuity of the derivative) and

then Λ1 is an eigenvalue of (1.1) with associated eigenfunction u. It is evident as

well that u minimizes the Rayleigh quotient: Λ1 = R(u). Hence, the existence

of extremals yields a characterization of the quantity (3.3). This condition is

automatically verified if an asymptotic hypothesis on the Rayleigh quotient is

fulfilled.

Theorem 4.2. Let Φ ∈ ∆2. Suppose that the following asymptotic condition

(4.7) lim
n→∞

R(un) = ∞

is fulfilled on any subsequence {un} ⊆ Y of eigenfunctions of (1.1) which is

either asymptotic to zero or infinity. Then there exists a global minimum u ∈ Y ∗

of the Rayleigh quotient. In this case, Λ1 is an eigenvalue of the system with

corresponding eigenfunction u. Moreover,

(a) any Λ > Λ1 is an eigenvalue of (1.1);

(b) there exists 0 < λ0 ≤ Λ1 such that (0, λ0) contains no eigenvalue of (1.1).

Proof: We first take an R-minimizing sequence {un} in Y ∗. Without loss of

generality, by Lemma 4.2 we can assume that un is a nontrivial and nonnegative

eigenfunction of (1.1) for any natural number n. It is clear that supn ‖un‖o < ∞
(otherwise condition (4.7) yields a contradiction). Since Y is the dual of a sepa-

rable space, Lemma 2.2 implies that there exists u ∈ Y such that un
∗
⇀ u in the

weak-∗ topology σ(Y, Z0). Lemma 4.1 thus yields lim infn→∞ J(un) ≥ J(u) and

limn→∞ G(un) = G(u). Therefore, R(u) = Λ1 provided u 6≡ 0. Assume, on the

contrary, that u ≡ 0. The definition of the limit gives

(Λ1 − ε)G(un) ≤ J(un) ≤ (Λ1 + ε)G(un)

where ε < Λ1 is a positive number. Since G(un) → 0 as n → ∞ we deduce

J(un) → 0 as well. Then inequality (4.1) yields ‖un‖o → 0 as n → ∞. But then

condition (4.7) implies limn→∞ R(un) = ∞ and thus we obtain a contradiction,
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since {un} is R-minimizing. Since u is a local minimum of R the derivative

vanishes there and then
J ′(u)(v)

G′(u)(v)
=

J(u)

G(u)
= Λ1

for every v ∈ Y and thus Λ1 is an eigenvalue of (1.1).

To prove the second part of the theorem, we take a number Λ > Λ1 and consider

r0(Λ) = infY TΛ and choose a TΛ-minimizing sequence {un}. Lemma 4.3 allows

us to assume that un is a nontrivial and nonnegative eigenfunction of problem

(1.1) for every nonzero integer n. It is again clear that {un} is uniformly bounded

in Y . Indeed,

TΛ(un) = J(un)
(

1− Λ

R(un)

)

.

Thus if the sequence {un} were unbounded, inequalities (4.1) and condition (4.7)

would imply TΛ(un) → ∞ as n → ∞ and this is impossible. Lemma 2.2 implies

that there exists uΛ ∈ Y such that un
∗
⇀ uΛ in σ(Y, Z0). By Lemma 4.1, the func-

tional TΛ is σ(Y, Z0)-lower-semi-continuous and then TΛ(uΛ) ≤ lim inf TΛ(un) =

r0(Λ). Thus uΛ is a global minimum of TΛ and hence a stationary solution of

that functional, i.e. T ′
Λ(uΛ)(v) = 0 for all v ∈ Y and thus uΛ is an eigenfunction

with associated eigenvalue Λ. Since Λ > Λ1 it follows that there exists vΛ ∈ Y

such that R(vΛ) < Λ. That is, TΛ(vΛ) < 0 and hence inf{TΛ(u) : u ∈ Y } < 0.

Since TΛ(0) = 0 we have uΛ 6≡ 0.

Next, note that the function r : Y ∗ → R ∪ {∞} given by r(u) = (J ′(u)(u))/

(G′(u)(u)) is well defined since J and G are differentiable. In this case again,

Poincaré’s inequality (2.7) and bound (3.2) imply

r(u) ≥ 1α(d) ‖g‖∞ qΦ > 0

where α(d) is the constant in (2.6) and d is twice the diameter of Ω. Hence the

number

λ0 := inf{r(u) : u ∈ Y ∗}
is strictly positive. Let us assume that λ ∈ (0, λ0) is an eigenvalue of (1.1) with

the associated eigenfunction uλ ∈ Y ∗. Then
∫

Ω

ϕ(|∇uλ|)|∇uλ| dx = λ

∫

Ω

g(x)ϕ(uλ)uλ dx.

Since the left-hand side of the latter equality is positive and as λ < λ0 we have

J ′(uλ)(uλ) ≥ λ0 G
′(uλ)(uλ) > λG′(uλ)(uλ) = J ′(uλ)(uλ).

This is a contradiction. In particular λ0 ≤ Λ1. �

The next example shows the importance of hypothesis (H3) in Section 3.
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Example 4.1. Consider the 2-Laplacian boundary-eigenvalue problem

−u′′ = λu, x ∈ [0, π], λ ∈ R,

u(0) = u(π) = 0

on the Sobolev space W 1,2
0 ([0, π]). In this case it is easily checked that ‖u‖o =

‖u′‖L2[0,π]/
√
2 for any u ∈ W 1,2

0 ([0, π]) and the Rayleigh quotient corresponds to

R(u) =

∫ π

0
(u′(x))2 dx

∫ π

0
(u(x))2 dx

=
‖u′‖2L2[0,π]

‖u‖2L2[0,π]

.

A simple calculation shows that the sequence of eigenfunctions of this problem

is given by un = An sin(nx) where n is any integer and An an arbitrary real

constant. If {λn} denotes the sequence of eigenvalues associated with {un} then

integration by parts proves that R(un) = λn = n2 for any integer n (and hence

Λ1 = 1). Notice that in this case the definition of the norm yields

‖un‖o = n|An|
√
π

2

for any integer n. Therefore, the sequence {un} is asymptotic to zero or infinity

provided n|An| tends to zero or infinity, respectively, as n → ∞. In any case

condition (4.7) is met but the existence of the minimizer does not follow from

Theorem 4.2 since the spectrum is discrete in the one-dimensional case, see [24].
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