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The centre of a Steiner loop and the maxi-Pasch problem

Andrew R. Kozlik

Abstract. A binary operation “·” which satisfies the identities x · e = x, x ·x = e,
(x · y) · x = y and x · y = y · x is called a Steiner loop. This paper revisits
the proof of the necessary and sufficient conditions for the existence of a Steiner
loop of order n with centre of order m and discusses the connection of this
problem to the question of the maximum number of Pasch configurations which
can occur in a Steiner triple system (STS) of a given order. An STS which
attains this maximum for a given order is said to be maxi-Pasch. We show that
loop factorization preserves the maxi-Pasch property and find that the Steiner
loops of all currently known maxi-Pasch Steiner triple systems have centre of
maximum possible order.
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1. Introduction

A Steiner triple system of order v, STS(v), is a pair (V,B) where V is a set of v

points and B is a collection of triples of distinct points taken from V such that

every pair of distinct points from V appears in precisely one triple. Such systems

exist if and only if v ≡ 1 or 3 (mod 6), see [14]. Given an STS (V,B) one can

define a binary operation “·” on the set L = V ∪{e} by assigning x · e = e ·x = x,

x ·x = e for all x ∈ L and x ·y = z whenever {x, y, z} ∈ B. The induced operation

satisfies the identities

(1) x · e = x, x · x = e, (x · y) · x = y, x · y = y · x

for all x and y in L. Any binary operation satisfying these four identities is called

a Steiner loop. The process described above is reversible. Given a Steiner loop

one can obtain an STS by assigning {x, y, x · y} ∈ B for all x, y ∈ V , x 6= y.

There is therefore a one-to-one correspondence between Steiner triple systems

and nontrivial Steiner loops. Thus a Steiner loop of order n exists if and only if

n = 1 or n ≡ 2 or 4 (mod 6). In the remainder of this paper we replace the loop

operation “·” with juxtaposition.
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The most well known examples of Steiner triple systems come from finite ge-

ometry. Let V = F
k
2 \ {0} and let B be the collection of all {x,y, z} such that

x,y, z ∈ V are pairwise distinct and x + y + z = 0. Then (V,B) is a projec-

tive STS(2k − 1). Its corresponding Steiner loop is (Fk
2 ,+). A Steiner loop is

associative if and only if it is isomorphic to (Fk
2 ,+), see [5].

In a Steiner triple system, a collection of four triples on six points is called

a Pasch configuration or quadrilateral. It is easily seen that this structure is

necessarily of the form {a, b, c}, {a, d, f}, {b, f, g}, {c, d, g} up to relabeling. For

example an STS(7) contains seven distinct Pasch configurations. A Steiner triple

system is said to be anti-Pasch if it does not contain a Pasch configuration.

Theorem 1.1 ([10], [15]). An anti-Pasch STS(v) exists if and only if v ≡ 1 or

3 (mod 6) and v 6= 7, 13.

A loop L with neutral element e is said to have the inverse property if for

each x ∈ L there exists an element x−1 such that x−1(xy) = y = (yx)x−1 for

every y ∈ L. Every Steiner loop has the inverse property, since defining x−1 := x

satisfies the required condition.

The left nucleus Nλ, middle nucleus Nµ and right nucleus N̺ of a loop L are

defined as

Nλ(L) = {x ∈ L : x(yz) = (xy)z for all y, z ∈ L},
Nµ(L) = {y ∈ L : x(yz) = (xy)z for all x, z ∈ L},
N̺(L) = {z ∈ L : x(yz) = (xy)z for all x, y ∈ L}.

The nucleus of L, defined as N(L) = Nλ(L)∩Nµ(L)∩N̺(L), is a subgroup of L.

The centre of a loop L is defined as

Z(L) = N(L) ∩ {x ∈ L : xy = yx for all y ∈ L}.

The three nuclei coincide for any inverse property loop [1, Theorem VII.2.1]. Thus

if L is a Steiner loop, then the three nuclei coincide and N(L) = Z(L). Because

the centre of a Steiner loop is an associative Steiner loop, its cardinality is a power

of 2.

2. The centre of a Steiner loop

This section briefly revisits the proof of the necessary and sufficient conditions

for the existence of a Steiner loop of order n with centre of order m published by

D. Donovan and A. Rahilly, see [6] and [7]. In some cases simpler or alternative

proofs of the original results are demonstrated.



The centre of a Steiner loop and the maxi-Pasch problem 537

A subloop K of L is said to be normal in L if xK = Kx, x(yK) = (xy)K

and (xK)y = x(Ky) for all x, y ∈ L. The factor loop L/K is then defined in the

usual way. Clearly, for any loop L the centre Z(L) is normal in L.

Lemma 2.1. Let L be a Steiner loop of order n with centre of orderm and let k be

the largest integer such that 2k divides n. Then m = 2i, where i ∈ {0, 1, . . . , k}.
If n 6= 2k, then m 6= 2k.

Proof: As noted in the introduction, m is a power of 2. Since the factor loop

L/Z(L) satisfies the identities (1), it is also a Steiner loop, and we either have

n/m = 1 or we have n/m ≡ 2 or 4 (mod 6). In the former case the loop is

associative, thus n = 2k and m = 2k. In the latter case, in order for n/m to be

even, m must be at most 2k−1. �

Lemma 2.2. If there exists a Steiner loop of order n with centre of order m,

then there exists a Steiner loop of order 2n with centre of order 2m.

Proof: Let L be a Steiner loop of order n. Then L × F2 is also a Steiner loop,

since it satisfies the identities (1), and its centre is Z(L)× F2. �

Proposition 2.3. A Steiner loop of order n with a nontrivial centre exists if and

only if n ≡ 4 or 8 (mod 12) or n = 2.

Proof: If n ≡ 4 or 8 (mod 12) or n = 2, then there exists a Steiner loop of

order n/2. By Lemma 2.2 there then exists a Steiner loop of order n with centre

of order at least 2. If n ≡ 2 or 10 (mod 12) and n 6= 2, then by Lemma 2.1 the

centre of every Steiner loop of order n is trivial. �

With the help of a computer running the model builder Mace4, see [16], we can

obtain a census of the centres of Steiner loops of order up to 20. The three unique

Steiner triple systems of orders 1, 3 and 7 are projective, thus their corresponding

loops all satisfy Z(L) = L. The Steiner loops of the unique STS(9) and of both

STS(13)s all have trivial centre. There are only two STS(15)s up to isomorphism

that induce a loop with a nontrivial centre. One is the projective STS(15) and

the other is the system with automorphism group of order 192, i.e. System # 2

in [3]. The latter has centre of order 2. There are only three STS(19)s up to

isomorphism that induce a loop with a nontrivial centre. They are the unique

systems with automorphism groups of orders 108, 144 and 432. Each has centre of

order 2. In light of the next theorem, it does not come as a surprise that these are

precisely the three systems with 84 Pasch configurations, which is the maximum

possible for any STS(19), see [13].

The next result is analogous to [6, Theorem 4]. We demonstrate a simpler

proof by approaching the problem from a more algebraic perspective.
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Theorem 2.4. Let (V,B) be an STS and let L be its Steiner loop. For any x ∈ L

the following conditions are equivalent:

(1) The element x lies in the centre of L.

(2) If x, y and z are pairwise distinct elements of V , then the set {x, y, z}
generates a sub-STS(3) or a sub-STS(7) in (V,B).

(3) For each y, z ∈ L, the subloop 〈x, y, z〉 is of order at most 8.

Proof: Let x ∈ Z(L) \ {e} and y, z ∈ V be pairwise distinct elements such

that {x, y, z} does not lie in B. By definition {x, y, xy}, {x, z, xz}, {y, z, yz} ∈ B,
and since (xy)(xz) = ((xy)x)z = yz, we also have {xy, xz, yz} ∈ B. Further-

more {x, yz, xyz}, {y, xz, xyz}, {z, xy, xyz} ∈ B. These seven triples form a sub-

STS(7). Thus (1) implies (2).

Assume that (2) holds and let x, y, z ∈ L. If these three points are not pairwise

distinct elements of V or if {x, y, z} ∈ B, then 〈x, y, z〉 is a subloop of order 1,

2 or 4 in L. Otherwise, by assumption, 〈x, y, z〉 is a subloop of order 8 in L.

Thus (2) implies (3).

In a Steiner loop every subloop of order at most 8 is necessarily a group.

Thus (3) implies (1). �

It immediately follows from the previous theorem that every anti-Pasch STS(n),

n > 3, gives rise to a Steiner loop with trivial centre. Taking into account the

above census of the centres of Steiner loops of small orders, we have the following

result.

Corollary 2.5. A Steiner loop of order n with trivial centre exists if and only if

n = 1 or n ≡ 2 or 4 (mod 6) and n 6∈ {2, 4, 8}.
The following is an alternative proof of [7, Corollary 3.10].

Lemma 2.6 ([7]). If L is a non-associative Steiner loop of order n with centre

of order m, then m < 1
4n.

Proof: Since L is non-associative, it follows from Theorem 2.4 that there ex-

ist points x, y, z ∈ L such that the order of the subloop 〈x, y, z〉 is strictly

greater than 8. None of these three points lie in the centre and neither does

the point xy, because 〈xy, x, z〉 = 〈x, y, z〉. For any u ∈ Z(L) we have 〈u, x, y〉 =
{e, x, y, xy, u, xu, yu, (xy)u}, where only e and u lie in the centre. Thus if

u, v ∈ Z(L), u 6= v, then 〈u, x, y〉 6= 〈v, x, y〉 and therefore 〈u, x, y〉 ∩ 〈v, x, y〉 =

〈x, y〉. If u ∈ Z(L) \ {e}, then 〈u, x, y〉 is of order 8 and 〈x, y〉 is of order 4, thus
the set

⋃

u∈Z(L)〈u, x, y〉 has cardinality 4(m−1)+4. Finally, note that the point z

does not lie in 〈u, x, y〉 for any u ∈ Z(L). Thus there are at least 4m+1 pairwise

distinct points in L. �

The main result of D. Donovan and A. Rahilly now follows.
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Theorem 2.7 ([7]). Let n = 2kη be a positive integer, where η is odd. A non-

trivial Steiner loop of order n with centre of order m exists if and only if n ≡ 2

or 4 (mod 6), and

(a) η = 1, (n,m) 6= (8, 1) and m = 2i, where i ∈ {0, 1, . . . , k − 3} ∪ {k}, or
(b) η > 1 and m = 2i, where i ∈ {0, 1, . . . , k − 1}.

Proof: The necessity of the conditions follows from Lemmas 2.1 and 2.6 and

from the fact that the unique STS(7) is projective.

If the integers n and m = 2i satisfy the conditions given above, then n/m = 1

or n/m ≡ 2 or 4 (mod 6) but n/m 6∈ {2, 4}. If n/m 6= 8, then by Corollary 2.5

there exists a Steiner loop of order n/m with trivial centre, thus by applying

Lemma 2.2 in i iterations we obtain a Steiner loop of order n with centre of

order m. If n/m = 8, then start instead with the Steiner loop of order 16 that

has centre of order 2 and apply Lemma 2.2 in i− 1 iterations. �

3. Maxi-Pasch Steiner triple systems

Denote the number of Pasch configurations in an STS(v), (V,B), by P (B).
Define

P (v) = max{P (B) : (V,B) is an STS(v)}.
An STS(v), (V,B), is said to be maxi-Pasch if P (B) = P (v). In [17] D. R. Stinson

and Y. J. Wei undertook a preliminary investigation of the bounds on P (v). An

elementary counting argument yields P (v) ≤ v(v − 1)(v − 3)/24. The authors

show that an STS(v) achieves this bound if and only if it is projective. Cur-

rently the only known values when v 6= 2k − 1 are P (9) = 0, P (13) = 13 and

P (19) = 84. D. R. Stinson and Y. J. Wei present several recursive lower bounds

on P (v). B.D. Gray and C. Ramsay in [12] present another recursive lower bound

which is given in Corollary 3.4 below. In [11] M. Grannell and G. Lovegrove give

lower bounds on P (v) for v of the form 22k + 3 or 22k + 5.

The Pasch configuration is just one of 16 possible four-line configurations in

an STS(v). For 5 of these configurations, the number of occurrences depends only

on v. For the other 11 configurations and fixed v, the number of occurrences of any

one determines the number of occurrences of all the others, see [9]. Thus the re-

sults about the number of Pasch configurations given in this section could equally

well be rewritten in terms of any of the other variable four-line configurations.

Let Q be a quasigroup of order n. An ordered triple (a, b, c) of elements of Q

is said to be associative if a · bc = ab · c. Denote the set of associative triples

by A(Q). Thus Q is a group if and only if |A(Q)| = n3. The number of Pasch
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configurations in an STS is directly related to the number of associative triples in

its Steiner loop.

Proposition 3.1. Let L be a Steiner loop of order n and let (V,B) be the corre-

sponding STS. Then

|A(L)| = n3 − (n− 1)(n− 2)(n− 4) + 24P (B).

Proof: In a Steiner loop, if the triple (a, b, c) ∈ L3 generates a subloop of order

at most 4, then it is associative. This happens if e ∈ {a, b, c}, if two or more

elements of the ordered triple are identical or if {a, b, c} is a block in B.
Let (a, b, c) ∈ V 3 be an ordered triple of distinct elements such that

{a, b, c} 6∈ B. The number of such triples is (n − 1)(n − 2)(n − 4), because the

third element needs to be chosen so as to avoid forming a block of B. The set

of blocks {{a, b, ab}, {b, c, bc}, {ab, c, (ab)c}, {a, bc, a(bc)}} ⊂ B is a Pasch config-

uration if and only if (a, b, c) is an associative triple. Now observe that for each

Pasch configuration P there are 24 associative triples in L3 from which P can

arise in this way. There are six ways to select two blocks B1, B2 ∈ P . The point

of intersection of B1 and B2 is the middle element of an associative triple. Any

of the four other points in B1 ∪ B2 can be chosen as the first element of the

associative triple and its third element is then determined so that the resulting

triple gives rise to P . Thus the number of triples in L3 that are not associative is

(n− 1)(n− 2)(n− 4)− 24P (B). �

Lemma 3.2. Let K and L be loops. Then |A(K × L)| = |A(K)| · |A(L)|.
Proof: Since multiplication in the loop product K×L is defined componentwise,

we have ((a1, a2), (b1, b2), (c1, c2)) ∈ A(K × L) if and only if (a1, b1, c1) ∈ A(K)

and (a2, b2, c2) ∈ A(L). �

Theorem 3.3. Let (V1,B1) be an STS(v1) and (V2,B2) be an STS(v2). Then

there exists an STS(v1v2 + v1 + v2), (V,B), such that

P (B) = 7

12
v1v2(3v1v2 − v1 − v2 − 1)

+ P (B1)(7v
2
2 + 1) + P (B2)(7v

2
1 + 1) + 24P (B1)P (B2).

Proof: Let K and L be the Steiner loops of (V1,B1) and (V2,B2), respectively,

and let (V,B) be the STS corresponding to the Steiner loop K × L. Then |K| =
v1 + 1, |L| = v2 + 1 and |K × L| = v1v2 + v1 + v2 + 1. In the equation from the

previous lemma |A(K × L)| = |A(K)| · |A(L)| substitute each of the cardinalities

using Proposition 3.1 and express P (B) to obtain the result. �

Taking (V1,B1) to be a maxi-Pasch STS(u) and (V2,B2) to be an STS(1), i.e.

L = F2 and P (B2) = 0, gives the Gray–Ramsay bound.
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Corollary 3.4 ([12]). If v = 2u+ 1 ≡ 3 or 7 (mod 12), u ≥ 7, then

P (v) ≥ 7(v − 1)(v − 3)

24
+ 8P (u).

Proposition 3.1 shows that the problem of maximizing the number of Pasch

configurations in an STS is equivalent to maximizing the number of associative

triples in the corresponding Steiner loop, which has been studied for quasigroups

in general, see [8]. This indicates that a Steiner loop with large centre corre-

sponds to a Steiner triple system with a large number of Pasch configurations.

Theorem 2.4 allows us to determine a lower bound on the number of sub-STS(7)s

and thus the number of Pasch configurations when the order of the centre is given.

Proposition 3.5. Let L be a Steiner loop of order n with centre of order m.

Then the number of sub-STS(7)s in the Steiner triple system corresponding to L

is at least

(2)
m− 1

168

(

(m− 2)(m− 4) + 7(n−m)(n−m− 2)
)

.

Proof: Let (V,B) be the Steiner triple system which corresponds to L. By Fi

denote the set of all sub-STS(7)s in (V,B) such that exactly i points of the sub-

system lie in the centre of L. The only admissible values of i are 0, 1, 3 and 7.

Consider three pairwise distinct points x, y, z ∈ V , which do not lie in a common

block. These three points generate a system in F7 if and only if they all lie in

the centre. The number of ways of choosing three points from Z(L) \ {e}, so that

they do not lie in a common block, is (m − 1)(m− 2)(m − 4). This way each of

the systems in F7 is counted 168 times, thus

|F7| =
(m− 1)(m− 2)(m− 4)

168
.

It follows from Theorem 2.4 that if one of the points x, y or z lies in the centre

and the other two do not, then they generate a system in F1 or F3. In fact

every system in F1 ∪F3 can be generated in this manner. The number of ways of

choosing three points such that the first is from Z(L)\{e} and the remaining two

are from V \Z(L), but do not all lie in a common block, is (m−1)(n−m)(n−m−2).

This way each of the systems in F1 and F3 is counted 24 times, thus

|F1|+ |F3| =
(m− 1)(n−m)(n−m− 2)

24
.

The sum |F1| + |F3| + |F7| gives a lower bound on the number of sub-STS(7)s

in (V,B). �
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It is not immediately obvious from the previous proposition that the num-

ber of sub-STS(7)s is maximized by maximizing the order m of the centre. By

Lemma 2.6 we only need to consider m in the interval [0, 14n]. Formula (2) is a cu-

bic function in m with a positive leading coefficient and with stationary points

at m = n(7 ±
√
7)/12. The lesser of the two stationary points is clearly greater

than 1
3n. So on the interval [0, 1

4n] the function is indeed increasing.

To obtain a lower bound on the maximum number of sub-STS(7)s in a Steiner

triple system of order v, we can set the order m of the centre in the previous

proposition to the maximum value as given by Theorem 2.7. Multiplying the

resulting bound by 7 gives a lower bound on the number of Pasch configurations,

because there are seven Pasch configurations in each sub-STS(7) and no two sub-

STS(7)s share a common Pasch configuration. This yields the following result.

Corollary 3.6. Let v ≡ 1 or 3 (mod 6) and let k be the largest integer such

that 2k divides v + 1. Then

P (v) ≥ 2k−1 − 1

24

(

2k−1(2k−1 − 6) + 7(v − 2k−1)2 + 1
)

.

The next proposition gives insight into how Pasch configurations behave under

loop factorization.

Theorem 3.7. Let L be a Steiner loop with nontrivial centre and let (V,B) be
the corresponding STS of order v. Then for any z ∈ Z(L) \ {e} the STS (V ′,B′)

corresponding to the factor loop L/〈z〉 satisfies

P (B) ≤ 7(v − 1)(v − 3)

24
+ 8P (B′).

Proof: For any Pasch configuration P = {{a, b, c}, {a, d, f}, {b, f, g}, {c, d, g}}
in B denote its point set VP = {a, b, c, d, f, g}. There are two types of Pasch

configuration in B:
1. If VP ∩ zVP 6= ∅, then without loss of generality az = b or az = g.

(a) If az = b then c = z, bd = (za)d = z(ad) = zf and ag = (zb)g =

z(bg) = zf . Thus K = VP ∪ {e, fz} is a subloop of order 8.

(b) If az = g then bz = (ca)z = c(az) = cg = d and cz = (ba)z =

b(az) = bg = f . Thus K = VP ∪ {e, z} is a subloop of order 8.

2. If VP ∩ zVP = ∅, then first let us show that in this case zVP ⊂ V . To

see this, assume to the contrary that e ∈ zVP . Then z ∈ VP and there

exists some x ∈ VP such that {x, z, xz} ∈ P . Thus x ∈ VP ∩ zVP , which

is a contradiction. For any {w, x, y} ∈ P we also have {w, xz, yz} ∈ B,
because w(xz) = (wx)z = yz, and similarly {wz, x, yz}, {wz, xz, y} ∈ B.
Thus there are eight distinct Pasch configurations in B, each of the form
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{{azi, bzj, czi+j}, {azi, dzi+k, fzk},
{bzj, fzk, gzj+k}, {czi+j, dzi+k, gzj+k}},

where i, j, k ∈ {0, 1}, arithmetic in the exponents modulo 2.

For each Pasch configuration P of type 1, VP ∪ {z} is contained in some

subloop K of order 8 in L. Since K/〈z〉 is a subloop of order 4 in L/〈z〉, the con-

figuration P projects onto a single block of B′. It follows from Theorem 2.4 that

the number of Pasch configurations of type 1 is exactly determined by the order

of (V,B) and can be counted as 7 times the number of sub-STS(7)s containing z.

These sub-STS(7)s are generated by z and any two points x, y ∈ V \{z}, such that

{x, y, z} 6∈ B. The number of ways to choose such x and y is (v − 1)(v − 3), but

this way each sub-STS(7) is counted 24 times. Thus there are 7(v − 1)(v − 3)/24

Pasch configurations of type 1 in B.
The Pasch configurations of type 2 can be partitioned into p classes, each

consisting of eight distinct Pasch configurations. All of the Pasch configurations in

a given class project onto one Pasch configuration in B′ and no two configurations

from different classes project onto the same one. Thus the number of Pasch

configurations in B′ is at least p. �

Note that in the preceding proof there may indeed be more than p Pasch

configurations in B′. The simplest example of this can be seen by taking (V,B) to
be the STS(15) with 73 Pasch configurations and centre of order 2, i.e. System # 2

in [3]. Then (V ′,B′) is an STS(7) with 7 Pasch configurations, yet p = 3. This

demonstrates that a Pasch configuration in B′ may also arise from the projection

of a Pasch-free subset of B of the form {{a, b, c}, {a, d, f}, {b, f, g}, {c, d, gz}}.

Proposition 3.8. Let L be the Steiner loop of a maxi-Pasch STS(v).

◦ For any z ∈ Z(L) the factor loop L/〈z〉 corresponds to a maxi-Pasch STS.

◦ If L has nontrivial centre, then

P (v) =
7(v − 1)(v − 3)

24
+ 8P

(1

2
(v − 1)

)

.

Proof: Let (V,B) be the maxi-Pasch STS of order v = 2u+ 1 corresponding to

the Steiner loop L and let (V ′,B′) be the STS(u) corresponding to L/〈z〉, where
z ∈ Z(L) \ {e}. Then by Corollary 3.4 and Theorem 3.7

7(v − 1)(v − 3)

24
+ 8P (u) ≤ P (v) = P (B) ≤ 7(v − 1)(v − 3)

24
+ 8P (B′).

Thus P (u) ≤ P (B′) and by maximality of P (u) we have P (u) = P (B′), which

proves the first part of the proposition. The second part can be seen by substi-

tuting P (B′) with P (u) in the inequality. �
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Applying the first part of the previous proposition iteratively until reaching

a loop with trivial centre yields the following result.

Corollary 3.9. Let L be a Steiner loop of a maxi-Pasch STS. Then L/Z(L)

corresponds to a maxi-Pasch STS.

4. Concluding remarks

Call a Steiner loop maxi-central if its centre is of maximum possible order as

given by Theorem 2.7. The property of a Steiner loop being maxi-central is not

sufficient for the corresponding STS to be maxi-Pasch. The smallest Steiner loops

for which this can be observed are those of order 22. These are all maxi-central,

because by Theorem 2.7 they all have trivial centre. However, the number of

Pasch configurations in STS(21)s varies. For example, there exists an anti-Pasch

STS(21) and there also exists an STS(21) with 117 Pasch configurations, see [12].

The present paper does not improve the known lower bounds on P (v), but

shows that all known maxi-Pasch STSs have a maxi-central Steiner loop. For some

values of v the maximum known lower bound on P (v) is attained by a maxi-central

Steiner triple system. These would most notably be the cases v = 27, 39, 43, 51

and 55 in [12]. For example, the STS(27) in [12] with 286 Pasch configurations

is obtained by taking an STS(13) with 13 Pasch configurations and applying the

standard v → 2v+1 construction, which is equivalent to the doubling construction

in Lemma 2.2. Thus the corresponding Steiner loop of order 28 has centre of

order 2, which is the maximum possible.

This brings us to the conjecture that if an STS is maxi-Pasch, then its Steiner

loop is maxi-central. Nevertheless, even proving a weaker statement that for every

v ≡ 1 or 3 (mod 6) there exists a maxi-Pasch STS(v) whose Steiner loop is maxi-

central, would be of tremendous value. It follows from Proposition 3.8 that if this

statement were true, then applying the doubling construction to a maxi-Pasch

STS would produce an STS which is also maxi-Pasch. Thus by Proposition 2.3

it would suffice to solve the maxi-Pasch problem for STS(v) such that v ≡ 1 or

9 (mod 12).

Determining the number of occurrences of various configurations in an STS(v)

has been a significant area of investigation. In particular [4] gives the formulas for

all five-line configurations in terms of v and in terms of the number of occurrences

of the Pasch configuration and the so called mitre configuration. The latter being

any configuration of the form {a, b, c}, {a, d, e}, {a, f, g}, {b, d, f}, {c, e, g}. This
problem has been further explored in [2] for l-line configurations in general, where

the minimum and maximum counts of each configuration are also examined. Just

like the Pasch configuration has its counterpart in the associative identity in
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Steiner loops, other configurations may have interesting algebraic counterparts

of their own. The present paper warrants further research into Steiner loops

satisfying such identities as these may provide new results about the maximality

of the corresponding configurations in Steiner triple systems.
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[13] Kaski P., Österg̊ard P. R. J., The Steiner triple systems of order 19, Math. Comp. 73 (2004),
no. 248, 2075–2092.

[14] Kirkman T. P., On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847),
191–204.

[15] Ling A.C.H., Colbourn C. J., Grannell M. J., Griggs T. S., Construction techniques for

anti-Pasch Steiner triple systems, J. London Math. Soc. (2) 61 (2000), no. 3, 641–657.
[16] McCune W., Mace4 Reference Manual and Guide, Tech. Memo ANL/MCS-TM-264, Math-

ematics and Computer Science Division, Argonne National Laboratory, Argonne, 2003.
[17] Stinson D.R., Wei Y. J., Some results on quadrilaterals in Steiner triple systems, Discrete

Math. 105 (1992), no. 1–3, 207–219.

A.R. Kozlik:

Department of Algebra, Charles University, Sokolovská 83,
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