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On finite commutative IP-loops with elementary

abelian inner mapping groups of order p
5

Markku Niemenmaa

Abstract. We show that finite commutative inverse property loops with elemen-
tary abelian inner mapping groups of order p

5 are centrally nilpotent of class at
most two.
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1. Introduction

If Q is a loop then the mappings La(x) = ax and Ra(x) = xa are called the left

and right translation. These two mappings are permutations on Q for every a ∈ Q

and the permutation group M(Q) = 〈La, Ra : a ∈ Q〉 is called the multiplication

group of Q. The stabilizer of the neutral element of Q is the inner mapping group

of Q and we denote it by I(Q). If Q is a group then I(Q) = Inn(Q), the group

of inner automorphisms of Q.

The centre Z(Q) of a loop Q contains all elements a with the property that

ax = xa, (ax)y = a(xy), (xa)y = x(ay) and (xy)a = x(ya) for every x, y ∈ Q. The

centre Z(Q) is an abelian group and if we write Z0 = 1, Z1 = Z(Q) and Zi/Zi−1 =

Z(Q/Zi−1), then we have a series of normal subloops of Q. If Zn−1 is a proper

subloop of Q and Zn = Q, then Q is said to be centrally nilpotent of class n. R.H.

Bruck in [1] showed that if Q is centrally nilpotent of class at most two, then I(Q)

is an abelian group. P. Csörgő in [3] showed that the converse of Bruck’s result

is not true by constructing a centrally nilpotent loop Q whose nilpotency class

is three and whose inner mapping group I(Q) is an elementary abelian group

of order 26. More examples and constructions of loops with nilpotency class

three and elementary abelian inner mapping groups of order 26 were given by

A. Drápal and P. Vojtěchovský in [4]. Earlier results by P. Csörgő, T. Kepka and

M. Niemenmaa, see [2] and [10], cover the cases where I(Q) is elementary abelian

of order p2 and p3 and it turned out that Q is then centrally nilpotent of class at

most two.
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A loop Q is an inverse property loop (in short, IP-loop) if Q has a unique left

and right inverse x−1 and x−1(xy) = y = (yx)x−1 for every x, y ∈ Q. M. Niemen-

maa in [7] proved that if Q is a finite commutative IP-loop and I(Q) is elementary

abelian of order p4, then Q is centrally nilpotent of class at most two. The purpose

of this paper is to show that in the case of finite commutative inverse property

loops, the nilpotency class is also at most two provided that the inner mapping

group is elementary abelian of order p5.

We consider only finite loops and groups in this paper. The proofs of our main

theorems rely on the use of connected transversals in finite groups and this notion

and some basic results about these transversals are explained in the following

section. For basic facts about loop theory and its connections to group theory the

reader is advised to consult [1] and [9].

2. Connected transversals

We shall start with a brief discussion about connected transversals in a group

and try to give some insight into the relationship between loops and groups given

by this notion.

Let G be a group and H ≤ G. If A and B are two left transversals to H

in G and a−1b−1ab ∈ H for every a ∈ A and for every b ∈ B, then we say that

the two transversals are H-connected in G. If A = B, then we say that A is

a selfconnected transversal to H in G. In the following lemmas and theorems we

consider some basic properties of H-connected transversals A and B. We denote

by HG the core of H in G (it is the largest normal subgroup of G contained

in H).

Lemma 2.1. If C ⊆ A ∪B and K = 〈H,C〉, then C ⊆ KG.

For the proof see [9, Lemma 2.5].

Lemma 2.2. If HG = 1, then NG(H) = H × Z(G).

For the proof see [9, Proposition 2.7].

Theorem 2.3. Let H be a nilpotent subgroup of G. If G = 〈A,B〉 and HG = 1,

then H is subnormal in G and Z(G) > 1.

For the proof see [6, Theorem 2.8].

Theorem 2.4. If H is cyclic and G = 〈A,B〉, then G′ ≤ H .

For the proof see [9, Theorem 3.5].

Theorem 2.5. Let p be a prime number. If H ∼= Cp ×Cp and G = 〈A,B〉, then

G′ ≤ NG(H).

For the proof see [10, Lemma 4.2].
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Theorem 2.6. Let p be a prime number. If H ∼= Cp ×Cp×Cp and G = 〈A,B〉,

then G′ ≤ NG(H).

For the proof see [2, Theorem 3.7].

Theorem 2.7. Let H be an elementary abelian subgroup of order p4 of G and

let A be selfconnected transversal to H in G. If G = 〈A〉 and A = A−1, then

G′ ≤ NG(H).

For the proof see [7, Theorem 3.1].

Lemma 2.8. Let G = 〈A,B〉. If H is nilpotent and HG = 1, then the core

of HZ(G) in G properly contains Z(G).

For the proof see [8, Lemma 2.6].

Lemma 2.9. Let H be a nontrivial subgroup of G, HG = 1 and G = 〈A,B〉.

Then H ∩Ha > 1 for every a ∈ A ∪B.

For the proof see [5, Lemma 2.8].

We shall conclude this section by establishing the relation between connected

transversals and loop theory. If A = {La : a ∈ Q} and B = {Ra : a ∈ Q} are the

sets of left and right translations, then A and B are I(Q)-connected transversals

in M(Q). Since M(Q) is transitive on Q, it follows that the core of I(Q) in M(Q)

is trivial. T. Kepka and M. Niemenmaa proved the following theorem in 1990 [9,

Theorem 4.1].

Theorem 2.10. A group G is isomorphic to the multiplication group of a loop

if and only if there exist a subgroup H of G satisfying HG = 1 and H-connected

transversals A and B such that G = 〈A,B〉.

If Q is a commutative loop, then A = B. Furthermore, if Q is a commutative

inverse property loop, then (La)
−1 = La−1 and thus A = A−1.

3. Main theorems

In this section we consider the situation that A = B, A = A−1 and H is

an elementary abelian group of order p5. We first introduce the following two

lemmas.

Lemma 3.1. If HG = 1, then 1 ∈ A and Z(G) ⊆ A.

For the proof see [9, page 113] and [7, Lemma 2.3]

Lemma 3.2. If ab = ch, where a, b, c ∈ A and h ∈ H , then h ∈ H ∩Ha ∩Hb.
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Proof: Now h = c−1ab and ha−1

= (c−1ab)a
−1

= ac−1a−1cc−1abb−1aba−1 ∈ H .

We also get hb−1

= (c−1ab)b
−1

= bc−1b−1cc−1ba = bc−1b−1cc−1abh1 ∈ H (here

h1 ∈ H). Thus h ∈ H ∩Ha ∩Hb. �

Theorem 3.3. Let H be an elementary abelian subgroup of a finite group G

and let H be of order p5. If A is a selfconnected transversal to H in G, G = 〈A〉

and A = A−1, then G′ ≤ NG(H).

Proof: We shall prove the theorem by induction on the order of G. From The-

orems 2.4, 2.5, 2.6 and 2.7 it follows immediately that HG = 1. By Lemma 2.2,

NG(H) = H × Z(G) and Z(G) > 1 by Theorem 2.3. By Lemma 2.8 the core of

HZ(G) in G is equal to KZ(G), where 1 < K ≤ H .

If |K| ≥ p4, then we conclude by Theorem 2.4 that G′ ≤ HZ(G) = NG(H).

Thus we may assume that |K| = p or |K| = p2 or |K| = p3. By applying

Theorems 2.4–2.7 and Lemma 2.2 on G/KZ(G) and HZ(G)/KZ(G) it follows

that G′ ≤ NG(HZ(G)) = HM . Here M/KZ(G) = Z(G/KZ(G)), M is normal

in G and M ∩HZ(G) = KZ(G). We shall now divide the proof into three parts

depending on the order of K:

1) Let |K| = p. Now we can proceed exactly in the same way as in part 1) of

the proof of Theorem 3.1 in [7].

2) Now assume that K ∼= Cp ×Cp. Let a, b ∈ A and ab = ch, where c ∈ A and

h ∈ H . If d ∈ A, then hd = (c−1ab)d = h1c
−1ah2bh3 = h1hb

−1h2bh3 ∈ HHbH .

As HZ(G) is normal in HM and Hb ≤ HM , we have hd ∈ HZ(G)Hb ≤ G

for every d ∈ A. Thus h ∈
⋂
[HZ(G)Hb]g, where g ranges over the elements

of G. This intersection is a normal subgroup of G and we denote it by N(b)

(thus N(b) is the core of HZ(G)Hb in G). From Lemma 2.1 it follows that

HZ(G)Hb = HN(b).

If we write ab = kf , where k ∈ H and f ∈ A, then likewise k ∈ N(a), where

N(a) is naturally the core of HZ(G)Ha in G. Clearly, N(a) ≥ KZ(G) for every

a ∈ A, ab ∈ AN(b) and also ab ∈ N(a)A.

If |N(a) ∩ H | ≥ p4, then HN(a)/N(a) is cyclic and by Theorem 2.4, G′ ≤

HN(a) = HZ(G)Ha. We now consider the conjugates HZ(G)/KZ(G) and

HaZ(G)/KZ(G) and write HZ(G) ∩ HaZ(G) = LZ(G), where L ≤ H . From

Lemma 2.9 it follows that LZ(G) is larger than KZ(G). Now LZ(G) =

Z(HZ(G)Ha) and as HZ(G)Ha is normal in G, it follows that the core of HZ(G)

is larger than KZ(G), a contradiction. Thus we may assume that |N(a)∩H | ≤ p3

for every a ∈ A.

Then consider the case that ab = ch, N(a) ∩ H 6= N(b) ∩ H and

|N(a)∩H | = p3 = |N(b)∩H |. By Theorem 2.4, it follows that G′ ≤ HN(a)N(b) =

HZ(G)HaHb. By Lemma 3.2, h ∈ Z(HZ(G)HaHb) ≤ NG(H) = H × Z(G). As

Z(HZ(G)HaHb) is normal in G, we conclude that h ∈ K. Thus ab ∈ AK.
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If ab = ch and N(a) ∩H = K or N(b) ∩H = K, then ab ∈ KA or ab ∈ AK.

By Lemma 3.1, AZ(G) ⊆ A and as KZ(G) is normal in G, we conclude that

AK = KA is a subgroup of G. Thus we see that A2 ⊆ AK < G, contradicting

〈A〉 = G.

3) Now assume that K ∼= Cp×Cp×Cp. In part two of the proof we showed that

|N(a)∩H | ≤ p3 for every a ∈ A. As N(a)∩H ≥ K, we must have N(a)∩H = K

for every a ∈ A. But then A2 ⊆ AK < G, a contradiction. �

Let Q be a loop and M(Q)′ ≤ NM(Q)(I(Q)) = I(Q) × Z(M(Q)). This is

equivalent of Q being centrally nilpotent of class at most two, see [1], also Section 6

in [11]. By combining Theorem 2.10 with Theorem 3.3 we thus get

Theorem 3.4. Let Q be a finite commutative IP-loop and let I(Q) be an ele-

mentary abelian group of order p5. Then Q is centrally nilpotent of class at most

two.
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[3] Csörgő P., Abelian inner mappings and nilpotency class greater than two, European J.

Combin. 28 (2007), no. 3, 858–867.
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