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Semisymmetrization and Mendelsohn quasigroups

Jonathan D. H. Smith

Abstract. The semisymmetrization of an arbitrary quasigroup builds a semisym-
metric quasigroup structure on the cube of the underlying set of the quasigroup.
It serves to reduce homotopies to homomorphisms. An alternative semisym-
metrization on the square of the underlying set was recently introduced by
A. Krapež and Z. Petrić. Their construction in fact yields a Mendelsohn quasi-
group, which is idempotent as well as semisymmetric. We describe it as the
Mendelsohnization of the original quasigroup. For quasigroups isotopic to an
abelian group, the relation between the semisymmetrization and the Mendel-
sohnization is studied. It is shown that the semisymmetrization is the total
space for an action of the Mendelsohnization on the abelian group. The Mendel-
sohnization of an abelian group isotope is then identified as the idempotent
replica of its semisymmetrization, with fibers isomorphic to the abelian group.
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1. Introduction

Semisymmetric quasigroups, defined as magmas (Q, ·) that satisfy the iden-

tity x(yx) = y, are one of the most important varieties of quasigroups. Firstly,

semisymmetric quasigroups form one of the basic quasigroup classes defined by

a triality symmetry property, namely equality of the right and left divisions with

the opposite of the multiplication, see [28, Example 9]. Secondly, a semisym-

metrization functor ∆ reduces homotopies of quasigroups to homomorphisms be-

tween their semisymmetrizations, which are semisymmetric quasigroups, see [29].

Thirdly, idempotent semisymmetric quasigroups, also known as Mendelsohn qua-

sigroups, are coexistent with certain well-known designs, the “3-cyclic” or Mendel-

sohn triple systems [2, Chapter 25]. Fourthly, semisymmetric quasigroups are very

common, for instance being modeled by the operation−x−y on any abelian group

or commutative Moufang loop. They also appear as subquasigroups of the recently

identified para-Paige and Okubo quasigroups, which are related by D4-triality to

the Paige loop PSL1+3(2) of order 120, the smallest finite non-associative simple

Moufang loop, see Section 3.3.2 and [31].
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The semisymmetrization Q∆ of a quasigroup Q is built on the direct cube Q3

of its underlying set. The semisymmetrization functor from the category Qtp of

quasigroup homotopies to the category P of homomorphisms of semisymmetric

quasigroups is a right adjoint to the forgetful functor from P to Qtp sending

homomorphisms f : P → P ′ between semisymmetric quasigroups to homotopies

(f, f, f) : P → P ′, see [25]. Incidentally, this is one of the rare natural cases

in category theory where the left adjoint is forgetful and the right adjoint is

constructive (compare the situations in [13, Section IV.2], for example).

Recently, A. Krapež and Z. Petrić defined an alternative semisymmetriza-

tion QΓ of a quasigroup Q, built on the direct square Q2 of the underlying set

of the quasigroup, see [12]. They showed their construction was functorial, but

were unable to place it in an adjoint situation. They used a language of “twisted

quasigroups” and “biquasigroups”, chosen for its convenient symmetry proper-

ties, to define QΓ. However, rewriting the definition in terms of the three basic

quasigroup operations (3.2), it becomes apparent that QΓ is actually idempotent,

and thus forms a Mendelsohn quasigroup, see [9, Remark 7.14]. For this reason,

we refer to QΓ as the Mendelsohnization of the quasigroup Q.

The goal of the paper is to initiate a study of the relationship between the

semisymmetrization Q∆ and Mendelsohnization QΓ of a quasigroup Q. In gen-

eral, this problem is quite difficult to handle (compare Problems 5.3 and 5.5), so in

the current paper we focus on the linear case, namely quasigroups that are isotopic

to abelian groups. Section 2 provides the relevant background on semisymmet-

ric quasigroups and their semisymmetrization. Section 3 deals with Mendelsohn

quasigroups, Mendelsohn triple systems, and the Mendelsohnization construction.

For a quasigroup Q that is an isotope of an abelian group A, Section 4 shows how

the semisymmetrization Q∆ may be recovered from the Mendelsohnization QΓ,

and an action of QΓ on the abelian group A, by the short exact sequence (4.4).

In particular, the characteristic congruence on Q∆, originally introduced in [8], is

now recognized as the kernel of the surjection in the short exact sequence.

Staying in the context of abelian group isotopes, Section 5.1 gives a new in-

terpretation of the Mendelsohnization construction, as the idempotent replica

(largest idempotent quotient) of the semisymmetrization. In other words, the

Mendelsohnization functor Γ is factorized as the composite of the semisymmetriza-

tion functor ∆ with the idempotent replication functor V (Corollary 5.2). Prob-

lem 5.3 asks whether a similar factorization is still available in the general case.

Bearing in mind that ∆ is a right adjoint, while V is a left adjoint, it becomes ap-

parent why the Mendelsohnization functor Γ does not appear in any immediately

obvious adjoint situation.
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Section 5.2 investigates the fibers of the projection p : Q∆ → QΓ from the

semisymmetrization to the Mendelsohnization, still in the context of an isotope Q

of an abelian group A. Each fiber is identified as an isomorphic copy of A –

Proposition 5.4 (a). In terms of the model-theoretic notion of a Mal’cev product,

see [14], this means that the semisymmetrization of an abelian group isotope

lies in the Mal’cev product A ◦ M of the variety A of abelian groups with the

variety M of Mendelsohn quasigroups – Proposition 5.4 (b). Problem 5.3 asks for

the smallest class K such that the semisymmetrization of an arbitrary quasigroup

lies in the Mal’cev product K ◦M.

In general, the paper follows the notational conventions of [30]. Thus we de-

fault to algebraic notation with functions following their arguments, sometimes

as a superfix, and composed in natural reading order from left to right. This

convention avoids the proliferation of brackets in non-associative situations, or

complicating twists and back-tracking in category theory.

2. Background and notation

2.1 Quasigroups. For the purposes of this paper, it is most convenient to define

a quasigroup equationally as an algebra (Q, ·, /, \), with respective binary oper-

ations of multiplication, right division, and left division, such that the identities

y\(y · x) = x = (x · y)/y and y · (y\x) = x = (x/y) · y are satisfied. For an

element q of Q, there is a right multiplication

R(q) : Q → Q; x 7→ x · q

and a left multiplication

L(q) : Q → Q; x 7→ q · x,

both of which are permutations of Q. The quasigroup multiplication x · y may

also be written by juxtaposition as xy, which binds more strongly than x ·y. Thus

the associative law may be written as xy · z = x · yz, for example.

2.2 The homotopy category. A homotopy (f1, f2, f3) : Q → Q′ from a quasi-

group Q to a quasigroup Q′ is a triple of functions from Q to Q′ such that

xf1 · yf2 = (x · y)f3

for all x, y in Q. Write Q for the category of homomorphisms between quasi-

groups, and Qtp for the category of homotopies between quasigroups. Then there

is a forgetful functor

(2.1) Σ: Q → Qtp
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preserving objects, sending a quasigroup homomorphism f : Q → Q′ to the homo-

topy (f, f, f) : Q → Q′. A function f : Q → Q′ connecting the underlying sets of

equational quasigroups (Q, ·, /, \) and (Q′, ·, /, \) is a quasigroup homomorphism

if it is a homomorphism f : (Q, ·) → (Q′, ·) for the multiplications. Thus a homo-

topy (f1, f2, f3) having equal components f1 = f2 = f3 is an element of the image

of the morphism part of the forgetful functor (2.1).

2.3 Semisymmetric quasigroups. A quasigroup is semisymmetric if it satis-

fies the identity x · yx = y. (Compare [28, Example 9] for an interpretation of

this identity in terms of the semantic triality of quasigroups.) Using right and

left multiplications, semisymmetry amounts to the equality

(2.2) R(x) = L(x)−1,

and may thus be expressed in equivalent form as xy·x = y. The simplest models of

semisymmetric quasigroups are abelian groups with −x− y as the multiplication

operation.

2.4 Semisymmetrization. Let P denote the category of homomorphisms be-

tween semisymmetric quasigroups. Then each quasigroup Q or (Q, ·, /, \) defines

a semisymmetric quasigroup structure Q∆ on the direct cube Q3 with multipli-

cation as follows:

(2.3) (x1, x2, x3) · (y1, y2, y3) = (x2//y3, x3\\y1, x1 · y2)

– writing x//y = y/x and x\\y = y\x, see [25]. If (f1, f2, f3) : (Q, ·) → (Q′, ·) is

a quasigroup homotopy, define

(2.4) (f1, f2, f3)
∆ : Q∆ → Q′∆; (x1, x2, x3) 7→ (x1f1, x2f2, x3f3).

This map is a quasigroup homomorphism. Indeed, for (x1, x2, x3) and (y1, y2, y3)

in Q∆, one has

(x1f1, x2f2, x3f3) · (y1f1, y2f2, y3f3)

= (x2f2//y3f3, x3f3\\y1f1, x1f1 · y2f2)

=
(

(x2//y3)f1, (x3\\y1)f2, (x1 · y2)f3
)

=
(

(x1, x2, x3) · (y1, y2, y3)
)

(f1, f2, f3)
∆.

Consider the functor

(2.5) ∆: Qtp → P,

known as the semisymmetrization functor , which has object part (2.3) and mor-

phism part (2.4). This functor has a left adjoint, namely the restriction Σ :
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P → Qtp of the forgetful functor (2.1), see [25, Theorem 5.2]. The unit of

the adjunction at a semisymmetric quasigroup P is the homomorphism

(2.6) ηP : P → PΣ∆; x 7→ (x, x, x),

see [25, (5.3)]. The count εQ at a quasigroup Q is the homotopy

(2.7) (π1, π2, π3) : Q∆Σ → Q

with (x1, x2, x3)πi = xi for 1 ≤ i ≤ 3, see [25, (5.4)].

3. Mendelsohnization

3.1 Mendelsohn triple systems and quasigroups.

3.1.1 Mendelsohn quasigroups. A quasigroup which is both idempotent and

semisymmetric is described as a Mendelsohn quasigroup. The category of homo-

morphisms between Mendelsohn quasigroups is denoted by M.

3.1.2 Mendelsohn triple systems. Just as totally symmetric idempotent qua-

sigroups are coexistent with Steiner triple systems (compare [27, Section 1.3],

for example), so Mendelsohn quasigroups are coexistent with Mendelsohn triple

systems (as introduced in [15]). A Mendelsohn triple system (M, C) is a set M

with a set C of 3-cycles

(3.1) (x y z) = (z x y) = (y z x)

such that each ordered pair (x, y) of distinct elements from M lies in a unique 3-

cycle (3.1) (compare e.g. [2, Chapter 25], [4]). In the language of [6], Mendelsohn

triple systems are (v, 3)-Mendelsohn designs. In Mendelsohn’s original paper [15],

they were described as cyclic triple systems.

3.1.3 Quasigroups and triple systems. A Mendelsohn triple system (M, C)

corresponds to a Mendelsohn quasigroup (M, ·) with

x · y = z ⇔ (x y z) ∈ C or x = y = z

for x, y, z ∈ M . Note that commutative Mendelsohn quasigroups are totally

symmetric, so a Mendelsohn triple system (M, C) with

∀x 6= y ∈ M {(x y z), (y x z)} ⊆ C

is a Steiner triple system, with a Steiner block {x, y, z} corresponding to each pair

{(x y z), (y x z)} of mutually reversed 3-cycles.
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3.1.4 Eves’ equihoops and Eisenstein integers. For completeness, it is

worth recording Eves’ term equihoop for entropic Mendelsohn quasigroups, see

[3], [7], [21, Example 436], [22, Example 6.5B]. As idempotent entropic magmas,

these quasigroups are distributive. (In other words, being idempotent, and “me-

dial” in Stein’s sense [33], they are “medial” in Soublin’s sense, see [32]!)

P ✘✘✘✘✘✘✘ Q
❅

❅
❅

❅❅

P ·Q

✂
✂
✂
✂
✂
✂✂

Figure 1. A Mendelsohn quasigroup structure in R2 or C1.

A well-known model is provided by the set of points in the real plane (or

complex line), as in Figure 1. For points P and Q, the point P · Q is the third

vertex of the equilateral triangle with vertices P , Q, P ·Q in anti-clockwise order.

Of course, if P coincides with Q, then so does P ·Q.

Identifying the respective points P , Q, P · Q with their complex coordinates

u, v, u · v, and taking the primitive sixth root of unity ζ = exp(π i/3), one has

u · v−u = ζ(v−u), and thus u · v = u(1− ζ) + vζ, or u · v = uv ζ in the notation

of [21], [22]. Note that the Eisenstein integers Z[ζ] form a subquasigroup of (C, ·).

Thus if J is an ideal of the ring Z[ζ] of Eisenstein integers, the quotient Z[ζ]/J

carries an entropic Mendelsohn quasigroup structure (compare [16]).

3.2 The Mendelsohnization construction. For a quasigroupQ, define a qua-

sigroup QΓ = (Q2, ∗), with a product defined on the underlying set Q2 by

(3.2) (x1, x2) ∗ (y1, y2) =
(

(x1y2)/x2, y1\(x1y2)
)

(compare [12, page 9]). For a homotopy (f1, f2, f3) : Q → Q′, define a map

(3.3) (f1, f2, f3)
Γ : Q2 → Q′2; (x1, x2) 7→ (x1f1, x2f2)

which is a homomorphism from (Q2, ∗) to (Q′2, ∗) (compare [12, page 10]).

A. Krapež and Z. Petrić recognized the semisymmetry of the product (3.2). In

fact, it is also idempotent, see [9, Remark 7.14], so we obtain a functor

(3.4) Γ: Qtp → M,
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known as the Mendelsohnization functor, defined by object part (3.2) and mor-

phism part (3.3). (In [12, page 9], Γ was identified as a functor with codomain P.)

3.3 A minimal Mendelsohn, but not Steiner, quasigroup. Taking the

quasigroup Q to be the abelian group Z/2 = {0, 1} of residues modulo 2 under

addition, the Mendelsohnization QΓ = (Q2, ∗) is

(3.5)

∗ 00 01 10 11

00 000 110 011 102

01 100 010 112 001

10 112 001 100 013

11 011 102 003 110

writing ordered pairs as bit strings. When the bit strings are interpreted as binary

representations of the numbers 0, 1, 2, 3, we have the opposite of the minimal

Mendelsohn, but not Steiner, quasigroup presented in [23, Example 2.193].

3.3.1 The greedy construction. The suffices appearing on the bit strings in

the body of the multiplication table (3.5) refer to a greedy construction of an

idempotent, but not commutative, quasigroup on the ordered 4-element set {00 <

01 < 10 < 11}. The suffices give the time at which a body entry may be entered

into the Latin square, starting with time 0 for the initial population of the diagonal

according to the idempotence, and the respective greedy not-commutative choices

for 01 ∗ 00 and 00 ∗ 01. Thus at discrete (integer) time t for 1 ≤ t ≤ 3, the Latin

square property forces the entries with suffix t, and the square is completed at

time t = 3.

3.3.2 Para-Paige and Okubo quasigroups. The split octonion algebra over

a finite field of order q, realized by the algebra Zorn(q) of Zorn vector-matrices,

see [10], [26, Section 1.7], [34], carries three algebra structures under which the

norm or Zorn determinant, see [26, (1.24)], is multiplicative:

◦ the original Zorn vector-matrix multiplication, giving rise to the split

octonion algebra (Zorn(q), ·);

◦ the multiplication x◦y = x·y (with a denoting the conjugation [26, (1.23)]

of a Zorn vector-matrix a), which gives rise to the para-Zorn algebra

PZorn(q) = (Zorn(q), ◦) whose properties are closely related to those of

the split octonion algebra, see [1], [20];
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◦ considering a particular order-3 automorphism ̺ of Zorn(q) which is de-

rived from a D4-graph automorphism, the multiplication x ∗ y = x̺ · x̺2,

giving rise to the Okubo algebra Okubo(q) = (Zorn(q), ∗), see [1], [17], [18].

In each of these algebras, the set of elements of norm 1 forms a quasigroup under

the multiplication. Quotients of these quasigroups, under the quasigroup con-

gruence identifying elements with their negations, then form simple quasigroups,

see [31]. These respective simple quasigroups are the Paige loop PSL1+3(q) from

Zorn(q), see [19], the para-Paige quasigroup PP(q) from PZorn(q), and the Okubo

quasigroup OQ(q) from Okubo(q).

It then turns out that the Mendelsohnization (3.5) of the abelian group Z/2
appears both within the para-Paige quasigroup PP(2) and the Okubo quasigroup

OQ(2). Indeed, the 120-element para-Paige quasigroup PP(2) has 126 subquasi-

groups isomorphic to the Mendelsohnization of the abelian group Z/2 [31, Propo-

sition 12.2], while the 120-element Okubo quasigroup OQ(2) has 9 subquasigroups

isomorphic to the semisymmetrization of the abelian group Z/2, and 9 subquasi-

groups isomorphic to its Mendelsohnization, see [31, Proposition 12.3].

4. Abelian group isotopes

This section studies the relationship between semisymmetrizations andMendel-

sohnizations of abelian group isotopes, as a preparation for the more complicated

study of the relationship in the general case (cf. Problem 5.3, for example). The

class AGI of abelian group isotopes forms a variety, see [11]. Let xyzP1 = xy−1z

and xyzP2 = zy−1x be the shortest Mal’cev operations for groups (in the sense

of [24]).1 Then a defining identity for abelian group isotopes within the variety of

quasigroups may be written as

R(x)R(y)R(z)P1 = R(x)R(y)R(z)P2,

i.e., as (tx/y)z = (tz/y)x in the language of quasigroups (compare [5, Proposi-

tion 1.8 (iii)]).

In the next two sections, we will be considering the situation where there is an

isotopy (f1, f2, f3) : Q → A from a quasigroup Q to an abelian group (A,+, 0), or

just A. Since semisymmetrization ∆ and Mendelsohnization Γ are functors, there

are quasigroup isomorphisms

(4.1) (f1, f2, f3)
∆ : Q∆ → A∆ and (f1, f2, f3)

Γ : QΓ → AΓ.

1For longer Mal’cev operations, one may take xy−1z[[x, y], [y, z]], etc.
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Thus while the various constructions and theorems are formulated in their full

generality using Q∆ and QΓ, the explicit calculations and proofs will work with

the notationally more convenient isomorphic copies A∆ and AΓ, respectively.

4.1 The Mendelsohn extension. Let Q be an isotope of an abelian group A.

To relate the semisymmetrization Q∆ and Mendelsohnization QΓ of Q, we will

recognize Q∆ as the “total space” E for a module action of QΓ on A, along the

lines of [26, Section 10.3]. Thus in an adaptation of [26, (10.21)], we define actions

(4.2) R : QΓ → MltA; [y1 y2] 7→ R+(y2)

and

(4.3) L : QΓ → MltA; [x1 x2] 7→ L+(x1)

of QΓ on A. The quasigroup QΓ⋉A, known as the Mendelsohn extension, is then

built on the underlying set QΓ ×A with

(

[x1 x2], a
)

·
(

[y1 y2], b
)

=
(

[x1 x2] ∗ [y1 y2], aR
(

[y1 y2]
)

+ bL
(

[x1 x2]
))

as its multiplication.

Remark 4.1. The definitions (4.2) and (4.3) of the actions of QΓ on A are

respectively reminiscent of the operators Rŷ and Lx̂ introduced by A. Krapež and

Z. Petrić in [12, Section 4].

Remark 4.2. For the benefit of readers, say from a narrowly combinatorial back-

ground, who might be less familiar with the full use of the isomorphism concept,

it may be helpful to see the way that the isomorphism

D : QΓ
⋉A → AΓ

⋉A;
(

(q1, q2), a
)

7→
(

[q1f1 q2f2], a
)

arises. Thus the actions (4.2) and (4.3) will take the explicit forms

QΓ → MltA; (q′1, q
′

2) 7→ R+(q
′

2f2)

and

QΓ → MltA; (q1, q2) 7→ L+(q1f1),

respectively. The product

(

(q1, q2), a
)

·
(

(q′1, q
′

2), b
)

=
(

(q1, q2) ∗ (q
′

1, q
′

2), aR+(q
′

2f2) + bL+(q1f1)
)
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in QΓ ⋉A is then mapped under D to the product

(

[q1f1 q2f2] ∗ [q
′

1f1 q′2f2], aR
(

[q′1f1 q′2f2]
)

+ bL
(

[q1f1 q2f2]
))

=
(

(q1, q2), a
)D

·
(

(q′1, q
′

2), b
)D

in AΓ ⋉A.

4.2 Semisymmetrization and Mendelsohnization.

Theorem 4.3. For an isotope Q of an abelian group A, the Mendelsohn exten-

sion QΓ ⋉A is isomorphic to the semisymmetrization Q∆ of Q.

Proof: Define a map

Θ: QΓ
⋉A → Q∆;

(

[x1 x2], a
)

7→ [x1 + a x2 + a − a].

Here, and throughout the proof, the isomorphisms (4.1) are used to rewrite Q∆,

QΓ, and QΓ⋉A explicitly in their notationally simpler forms A∆, AΓ, and AΓ⋉A,

respectively. It will be shown that Θ is a quasigroup isomorphism. Certainly, it

is a bijection, with

[z1 z2 z3] 7→
(

[z1 + z3 z2 + z3],−z3
)

as a two-sided inverse. Then for xi, yi, a, b ∈ A, one has

(

[x1 x2], a
)Θ

·
(

[y1 y2], b
)Θ

=
[

x1 + a x2 + a −a
]





0 0 1

−1 0 0

0 1 0



+
[

y1 + b y2 + b −b
]





0 −1 0

0 0 1

1 0 0





=
[

−x2 − a −a x1 + a
]

+
[

−b −y1 − b y2 + b
]

=
[

x1 + y2 − x2 x1 + y2 − y1 0
]

+
[

−a− b− x1 − y2 −a− b− x1 − y2 a+ b+ x1 + y2
]

=
( [

x1 + y2 − x2 x1 + y2 − y1
]

, a+ b+ x1 + y2
)Θ

=

(

[x1 x2]

[

1 1

−1 0

]

+ [y1 y2]

[

0 −1

1 1

]

, a+ b+ x1 + y2

)Θ

=
(

[x1 x2] ∗ [y1 y2], aR
(

[y1 y2]
)

+ bL
(

[x1 x2]
))Θ

=
((

[x1 x2], a
)

·
(

[y1 y2],
))Θ

as required. �
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Corollary 4.4. The semisymmetrization Q∆ is given by the short exact sequence

(4.4) {0} −→ A
j
−→ Q∆ p

−→ QΓ −→ {0}

with j : a 7→
(

[0 0], a
)

and p : [x1 x2 x3] 7→
[

x1 + x3 x2 + x3

]

.

4.3 The characteristic congruence. The characteristic congruence on the

semisymmetrization Q∆ of an isotope Q of an abelian group A is the relation ν

on A3 defined by

[x1 x2 x3] ν [y1 y2 y3] ⇔ x1 − y1 = x2 − y2 = y3 − x3,

see [8, Section 3]. In other words, the congruence classes of ν are the cosets of

the subgroup

N = [0 0 0]ν =
{

[a a − a] : a ∈ A
}

of A3. The subspace N of A3 is invariant under P, since it is the eigenspace of P

for the eigenvalue −1. Thus ν is indeed a congruence of Q∆.

Proposition 4.5. For an isotope Q of an abelian group A, the quotient Q∆ν of

the semisymmetrization Q∆ by the characteristic congruence ν is isomorphic to

the Mendelsohnization QΓ of Q.

Proof: The characteristic congruence ν is the kernel of the homomorphism p in

the exact sequence (4.4). �

5. Mendelsohnization as the idempotent replica

5.1 The idempotent replica. Recall that the idempotent replica of a magma

is its largest idempotent quotient.

Theorem 5.1. Suppose that Q is an isotope of an abelian group A. The Mendel-

sohnization QΓ is the idempotent replica of the semisymmetrization Q∆.

Proof: Suppose that ̺ is the idempotent replica congruence of Q∆, the smallest

congruence on Q∆ whose quotient is idempotent. Now by the idempotence of QΓ

and Proposition 4.5, ̺ ⊆ ν. Conversely, consider an element x = [x1 x2 x3]

of Q∆. Then x̺ · x̺ = x̺, so

[x1 x2 x3] · [x1 x2 x3]

= [x1 x2 x3]





0 0 1

−1 0 0

0 1 0



+ [x1 x2 x3]





0 −1 0

0 0 1

1 0 0




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=
[

x3 − x2 x3 − x1 x1 + x2

]

= [x1 x2 x3] + (−x1 − x2 + x3)
[

1 1 −1
]

and (−x1 −x2+x3)
[

1 1 −1
]

∈ [0 0 0]̺. Thus N ⊆ [0 0 0]̺, and then ν ⊆ ̺

by the regularity of quasigroup congruences (compare [26, Exercise 2.10 (7)]). �

Theorem 5.1 gives an abstract characterization of the Mendelsohnization func-

tor for abelian group isotopes.

Corollary 5.2. Let U : M → P be the forgetful functor from the category of

(homomorphisms between) Mendelsohn quasigroups to the category of (homo-

morphisms between) semisymmetric quasigroups. Let V : P → M be the left

adjoint to U (compare [30, Theorem IV.3.4.4]). Let ∆′ and Γ′ be the respective

restrictions of ∆ and Γ to the category of homotopies between abelian group

isotopes. Then Γ′ = ∆′V .

It is natural to ask whether Corollary 5.2 holds without the restriction:

Problem 5.3. Is Γ = ∆V ? In other words, is the Mendelsohnization of any

quasigroup just the idempotent replica of its semisymmetrization?

5.2 Fibers of the replication. For an isotope Q of an abelian group A, The-

orem 5.1 shows that QΓ is the idempotent replica of Q∆, the quotient of Q∆

by its idempotent replica congruence ̺. It is natural to ask for the structure of

the fibers of the replication, the ̺-classes within Q∆. Using Theorem 4.3, this

question is best answered in the Mendelsohn extension QΓ
⋉ A, asking for the

structure of a fiber p−1{[x1 x2]} for an element [x1 x2] of QΓ, from the exact

sequence (4.4).

The fiber p−1{[x1 x2]} consists of elements
(

[x1 x2], a
)

,
(

[x1 x2], b
)

with

a, b ∈ A. We regard these abelian group elements as parameters for the fiber

elements. The product of the fiber elements in the Mendelsohn extension is
(

[x1 x2], aR
(

[x1 x2]
)

+ bL
(

[x1 x2]
))

,

parametrized by

(5.1) a · b := aR
(

[x1 x2]
)

+ bL
(

[x1 x2]
)

= a+ (x1 + x2) + b.

The first expression of the product exhibits the fiber
(

p−1{[x1 x2]}, ·
)

as an ex-

plicit principal isotope of the abelian group A, while the second expression denotes

a central shift of A (in the sense of [26, Definition 3.3]). Now (5.1) gives a loop
(

p−1{[x1 x2]}, ·,−x1 − x2

)

which is isotopic to the abelian group A, and thus

forms a group which is isomorphic to the abelian groupA [26, Proposition 1.4]. We

may summarize as follows. For the concept of a Mal’cev product, compare [14].
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Proposition 5.4. Let Q be an isotope of an abelian group A.

(a) Each fiber of the idempotent replication p : Q∆ → QΓ of (4.4) is isomor-

phic to A.

(b) The semisymmetrization Q∆ lies in the Mal’cev product A◦M of the va-

riety A of abelian groups with the variety M of Mendelsohn quasigroups.

(c) The variety A of abelian groups is the smallest class K such that the

semisymmetrizations of abelian group isotopes lie in the Mal’cev product

K ◦M.

Proof: For (c), it suffices to note that, by (a), each fiber of the idempotent

replication p : A∆ → AΓ of (4.4) is isomorphic to A. �

Problem 5.5. Find the smallest class K such that the semisymmetrizations of

arbitrary quasigroups lie in the Mal’cev product K ◦M.
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