α -filters and α -order-ideals in distributive quasicomplemented semilattices

ISMAEL CALOMINO, SERGIO CELANI

Abstract. We introduce some particular classes of filters and order-ideals in distributive semilattices, called α -filters and α -order-ideals, respectively. In particular, we study α -filters and α -order-ideals in distributive quasicomplemented semilattices. We also characterize the filters-congruence-cokernels in distributive quasicomplemented semilattices through α -order-ideals.

Keywords: bounded distributive semilattice; quasicomplement; relative annihilator; order-ideal; filter

Classification: 06A12, 03G10

1. Introduction

If $\mathbf{A} = \langle A, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice and $a, b \in A$, then the annihilator of a relative to b is the set $\langle a, b \rangle = \{x \in A : a \land x \leq b\}$. In [13] M. Mandelker studied the properties of relative annihilators and prove that a lattice \mathbf{A} is distributive if and only if $\langle a, b \rangle$ is an ideal of \mathbf{A} for all $a, b \in A$. These results were generalized by J. Varlet in [21] to the class of distributive semilattices. In particular, the annihilator of a relative to 0 is the set $a^{\circ} = \langle a, 0 \rangle = \{x \in A : a \land x = 0\}$, called annihilator of a or annulet of a. This concept was studied by W. Cornish in [8], [9], where introduces the notion of α -ideal in distributive lattices. A generalization of the concept of α -ideal in 0-distributive semilattices and 0-distributive lattices were studied in [16], [17].

On the other hand, in [20], [19], [10] the class of distributive quasicomplemented lattices was studied as a generalization of the variety of distributive pseudocomplemented lattices. A bounded distributive lattice **A** is quasicomplemented if for each $a \in A$, there is $b \in A$ such that $a^{\circ\circ} = b^{\circ}$, where $a^{\circ\circ} = \{x \in A : \forall y \in a^{\circ}(x \land y = 0)\}$. Clearly, this class of lattices is not a variety, and in general, the element b is nonunique. This concept can be generalized to bounded semilattices in [12], [15], [18].

The main aim of this paper is to introduce and study the notions of α -filter and α -order-ideal in bounded distributive semilattices, which generalizes the results

DOI 10.14712/1213-7243.2021.004

This research was supported by the CONICET under grant PIP 112-201501-00412.

given in [8], [9]. In particular, we investigate α -filters and α -order-ideals in the class of distributive quasicomplemented semilattices and we give some results on filters-congruence-cokernels through α -order-ideals.

The paper is organized as follows. In Section 2 we recall some necessary definitions and results to make the paper self-contained. We recall the notion of annihilator and its properties in terms of irreducible and maximal filters given in [4], [5]. In Section 3 we present the concepts of α -filter and α -order-ideal in bounded distributive semilattices and give some properties. We prove a separation theorem between filters and α -order-ideals by means of irreducible α -filters. In Section 4 we study α -filters and α -order-ideals in distributive quasicomplemented semilattices. We prove that the set of all α -filters is a Heyting algebra isomorphic to the Heyting algebra of α -order-ideals. Finally, in Section 5, we study the filters-congruence-cokernels in distributive quasicomplemented semilattices. We prove that a subset I is an α -filter-congruence-cokernel if and only if it is an α -order-ideal.

2. Preliminaries

We give some necessary notations and definitions. Let $\langle X, \leq \rangle$ be a poset. A subset $U \subseteq X$ is said to be *increasing* (*decreasing*, respectively), if for all $x, y \in X$ such that $x \in U$ ($y \in U$) and $x \leq y$, we have $y \in U$ ($x \in U$). The set of all subsets of X is denoted by $\mathcal{P}(X)$ and the set of all increasing subsets of X is denoted by $\mathcal{P}_i(X)$. For each $Y \subseteq X$, the increasing (decreasing) set generated by Y is $[Y) = \{x \in X : \exists y \in Y(y \leq x)\}$ ($(Y] = \{x \in X : \exists y \in Y(x \leq y)\}$, respectively). If $Y = \{y\}$, then we will write [y) and (y] instead of $[\{y\})$ and $(\{y\}]$, respectively.

A meet-semilattice with greatest element, or simply semilattice, is an algebra $\mathbf{A} = \langle A, \wedge, 1 \rangle$ of type (2,0) such that the operation " \wedge " is idempotent, commutative, associative and $a \wedge 1 = a$ for all $a \in A$. So, the binary relation " \leq " defined by $a \leq b$ if and only if $a \wedge b = a$ is an order. A bounded semilattice is an algebra $\mathbf{A} = \langle A, \wedge, 0, 1 \rangle$ of type (2,0,0) such that $\langle A, \wedge, 1 \rangle$ is a semilattice and $a \wedge 0 = 0$ for all $a \in A$.

Let **A** be a semilattice. A filter is a subset F of A such that $1 \in F$, F is increasing, and if $a, b \in F$, then $a \wedge b \in F$. The filter generated by a subset $X \subseteq A$ is the set $F(X) = \{a \in A : \exists x_1, \ldots, x_n \in X(x_1 \wedge \ldots \wedge x_n \leq a)\}$. If $X = \{a\}$, then $F(\{a\}) = [a]$. Denote by Fi(A) the set of all filters of A. Since $1 \in A$, it follows that $\langle \text{Fi}(A), \subseteq \rangle$ is a lattice. A proper filter P is *irreducible* if for every $F_1, F_2 \in \text{Fi}(A)$ such that $P = F_1 \cap F_2$, then $P = F_1$ or $P = F_2$. Note that a filter F is irreducible if and only if for every $a, b \notin F$, there exists $c \notin F$ and $f \in F$ such that $a \wedge f \leq c$ and $b \wedge f \leq c$. The set of all irreducible filters of A is denoted by X(A). A proper filter U is maximal if for any $G \in Fi(A)$ such that $U \subseteq G$, we have G = U or G = A. Denote by $X_m(A)$ the set of all maximal filters of A. A subset I of A is an order-ideal if I is decreasing, and for every $a, b \in I$, there exists $c \in I$ such that $a \leq c$ and $b \leq c$. We denote by Id(A) the set of all order-ideals of A. Finally, a proper order-ideal I is prime if $a \wedge b \in I$ implies $a \in I$ or $b \in I$. The following result was proved in [2].

Theorem 1. Let **A** be a semilattice. Let $F \in Fi(A)$ and $I \in Id(A)$ such that $F \cap I = \emptyset$. Then there exists $P \in X(A)$ such that $F \subseteq P$ and $P \cap I = \emptyset$.

We are interested in a particular class of semilattices.

Definition 2. Let **A** be a semilattice. We say that **A** is *distributive* if for every $a, b, c \in A$ such that $a \wedge b \leq c$, there exist $a_1, b_1 \in A$ such that $a \leq a_1, b \leq b_1$ and $c = a_1 \wedge b_1$.

We denote by \mathcal{DS} and \mathcal{DS}_{01} the class of distributive semilattices and the class of bounded distributive semilattices, respectively. Note that \mathcal{DS} is not a variety. A lattice is distributive if and only if it is distributive as a semilattice, see [7], [11]. The next theorem was proved by G. Grätzer in [11].

Theorem 3. Let A be a semilattice. The following conditions are equivalent:

- (1) The semilattice \mathbf{A} is distributive.
- (2) $\langle Fi(A), \subseteq \rangle$, considered as a lattice, is distributive.

In [6] it was proved that if **A** is a distributive semilattice, then the structure $Fi(\mathbf{A}) = \langle Fi(A), \forall, \overline{\wedge}, \rightarrow, \{1\}, A \rangle$ is a Heyting algebra where the least element is $\{1\}$, the greatest element is $A, G \lor H = F(G \cup H), G \overline{\wedge} H = G \cap H$ and

$$G \to H = \{a \in A \colon [a] \cap G \subseteq H\}$$

for all $G, H \in Fi(A)$.

Remark 4. If $\mathbf{A} \in \mathcal{DS}$, then every maximal filter U is irreducible. Indeed, let $F_1, F_2 \in \operatorname{Fi}(A)$ be such that $U = F_1 \cap F_2$. Suppose that $U \subset F_1$ and $U \subset F_2$. Since U is maximal, we have $F_1 = F_2 = A$ and U = A, which is a contradiction because U is proper. Thus, $X_m(A) \subseteq X(A)$.

Let **A** be a bounded semilattice and $a \in A$. The annihilator of a is the set

$$a^{\circ} = \{ x \in A \colon a \land x = 0 \}.$$

The annihilators were studied by several authors in [13], [4], [17], [5], [9], [10]. In general, a° is a decreasing subset, but not an order-ideal. Later, **A** is distributive if and only if a° is an order-ideal for all $a \in A$. For more details see [21], [7]. We note that if **A** is pseudocomplemented, i.e., if for every $a \in A$ there exists $a^* \in A$ such that $a \wedge x = 0$ if and only if $x \leq a^*$, then $a^{\circ} = (a^*]$.

I. Calomino, S. Celani

If $X \subseteq A$, then we define the annihilator of X as the set

$$X^{\circ} = \{ x \in A \colon \forall y \in X (x \land y = 0) \} = \bigcap \{ x^{\circ} \colon x \in X \}.$$

In particular, $a^{\circ\circ} = \{x \in A : \forall y \in a^{\circ}(x \land y = 0)\} = \bigcap \{x^{\circ} : x \in a^{\circ}\}$ for all $a \in A$. In the following result we remember some properties of the annihilators in bounded distributive semilattices.

Lemma 5. Let $\mathbf{A} \in \mathcal{DS}_{01}$. Let $a, b \in A$ and $P \in X(A)$. We have the following properties:

- (1) If $a \in b^{\circ}$, then $b^{\circ \circ} \subseteq a^{\circ}$.
- (2) $(a \wedge b)^{\circ \circ} = a^{\circ \circ} \cap b^{\circ \circ}.$
- (3) $a^{\circ} \cap P = \emptyset$ if and only if there exists $Q \in X(A)$ such that $P \subseteq Q$ and $a \in Q$.
- (4) $a^{\circ} \cap P = \emptyset$ if and only if there exists $U \in X_m(A)$ such that $P \subseteq U$ and $a \in U$.
- (5) $U \in X_m(A)$ if and only if $U \in Fi(A)$ and $\forall a \in A \ (a \notin U \iff a^\circ \cap U \neq \emptyset)$.
- (6) If $U \in X_m(A)$, then $\forall a \in A \ (a \notin U \iff a^{\circ \circ} \cap U = \emptyset)$.

PROOF: We only prove (1) and (2). The rest can be seen in [4], [5].

(1) Let $x \in b^{\circ\circ} = \bigcap \{y^{\circ} \colon y \in b^{\circ}\}$. In particular, $a \in b^{\circ}$ and $x \in a^{\circ}$. Then $b^{\circ\circ} \subseteq a^{\circ}$.

(2) Let $x \in (a \wedge b)^{\circ \circ}$. Let $y \in a^{\circ}$. Since $a \wedge b \leq a$, we have $a^{\circ} \subseteq (a \wedge b)^{\circ}$. Thus, $y \in (a \wedge b)^{\circ}$ and as $x \in (a \wedge b)^{\circ \circ}$, it follows that $y \wedge x = 0$, i.e., $x \in a^{\circ \circ}$. Similarly, $x \in b^{\circ \circ}$ and $(a \wedge b)^{\circ \circ} \subseteq a^{\circ \circ} \cap b^{\circ \circ}$.

Conversely, let $x \in a^{\circ\circ} \cap b^{\circ\circ}$. If $y \in (a \wedge b)^{\circ}$, then $y \wedge (a \wedge b) = (y \wedge a) \wedge b = 0$ and $y \wedge a \in b^{\circ}$. Since $x \in b^{\circ\circ}$, $x \wedge (y \wedge a) = (x \wedge y) \wedge a = 0$ and $x \wedge y \in a^{\circ}$. Again, as $x \in a^{\circ\circ}$, we have $x \wedge (x \wedge y) = x \wedge y = 0$ and $x \in (a \wedge b)^{\circ\circ}$. So, $a^{\circ\circ} \cap b^{\circ\circ} \subseteq (a \wedge b)^{\circ\circ}$.

Let $\mathbf{A} \in \mathcal{DS}_{01}$. Consider $\langle \mathbf{X}(A), \subseteq \rangle$ and the map $\varphi_{\mathbf{A}} \colon A \to \mathcal{P}_i(\mathbf{X}(A))$ given by $\varphi_{\mathbf{A}}(a) = \{P \in \mathbf{X}(A) \colon a \in P\}$. It follows that \mathbf{A} is isomorphic to the subalgebra $\varphi_{\mathbf{A}}[\mathbf{A}] = \{\varphi_{\mathbf{A}}(a) \colon a \in A\}$ of $\mathcal{P}_i(\mathbf{X}(A))$. Later, for each $F \in \mathrm{Fi}(A)$, we define

$$\phi[F] = \{ P \in \mathcal{X}(A) \colon F \subseteq P \}.$$

So, $\phi[F] = \bigcap \{ \varphi_{\mathbf{A}}(a) \colon a \in F \}$. Also, if $Y \subseteq A$, then

$$\psi[Y] = \{ P \in \mathcal{X}(A) \colon Y \cap P \neq \emptyset \} = \bigcup \{ \varphi_{\mathbf{A}}(a) \colon a \in Y \}.$$

Remark 6. Let $\mathbf{A} \in \mathcal{DS}_{01}$. By Lemma 5, we have that:

(1) $\varphi_{\mathbf{A}}(a)^c \cap \mathcal{X}_m(A) = \psi[a^\circ] \cap \mathcal{X}_m(A).$ (2) $\varphi_{\mathbf{A}}(a) \cap \mathcal{X}_m(A) = \psi[a^{\circ\circ}] \cap \mathcal{X}_m(A).$

3. α -filters and α -order-ideals in \mathcal{DS}_{01}

In this section we introduce the classes of α -filters and α -order-ideals in bounded distributive semilattices. In particular, we give a separation theorem between filters and α -order-ideals by means of irreducible α -filters.

Definition 7. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $F \in \mathrm{Fi}(A)$. We say that F is an α -filter if $a^{\circ\circ} \cap F \neq \emptyset$ implies that $a \in F$ for all $a \in A$.

Denote by $\operatorname{Fi}_{\alpha}(A)$ and $\operatorname{X}_{\alpha}(A)$ the set of all α -filters and irreducible α -filters of A, respectively.

Example 8. Let $\mathbf{A} \in \mathcal{DS}_{01}$. It follows that the set $D(A) = \{a \in A : a^{\circ} = \{0\}\}$, called the set of *dense elements*, is a filter of A. Then, D(A) is an α -filter. Indeed, if $a^{\circ\circ} \cap D(A) \neq \emptyset$, then there exists $x \in a^{\circ\circ}$ such that $x^{\circ} = \{0\}$. So, by Lemma 5, $a^{\circ} \subseteq x^{\circ} = \{0\}$ and $a \in D(A)$. Moreover, the α -filter D(A) is the smallest α -filter of A. Let $F \in \operatorname{Fi}_{\alpha}(A)$. If $a \in D(A)$, then $a^{\circ} = \{0\}$ and $a^{\circ\circ} = A$. Then $a^{\circ\circ} \cap F \neq \emptyset$ and since F is an α -filter, we have $a \in F$. Therefore, $D(A) \subseteq F$ for all $F \in \operatorname{Fi}_{\alpha}(A)$.

Lemma 9. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $I \in \mathrm{Id}(A)$. Then

$$F_I = \{a \in A \colon \exists x \in I(a^\circ \subseteq x^{\circ \circ})\}$$

is an α -filter.

PROOF: It is clear that $1 \in F_I$ and F_I is an increasing subset of A. Let $a, b \in F_I$. Then there exist $x, y \in I$ such that $a^{\circ} \subseteq x^{\circ \circ}$ and $b^{\circ} \subseteq y^{\circ \circ}$. So, $x^{\circ} \subseteq a^{\circ \circ}$ and $y^{\circ} \subseteq b^{\circ \circ}$. By Lemma 5, $x^{\circ} \cap y^{\circ} \subseteq a^{\circ \circ} \cap b^{\circ \circ} = (a \wedge b)^{\circ \circ}$. As I is an order-ideal, there is $z \in I$ such that $x \leq z$ and $y \leq z$. It follows that $z^{\circ} \subseteq x^{\circ} \cap y^{\circ} \subseteq (a \wedge b)^{\circ \circ}$, i.e., $(a \wedge b)^{\circ} \subseteq z^{\circ \circ}$ and $a \wedge b \in F_I$. Thus, $F_I \in Fi(A)$. We see that F_I is an α -filter. Let $a \in A$ be such that $a^{\circ \circ} \cap F_I \neq \emptyset$. Then there is $b \in a^{\circ \circ}$ such that $b \in F_I$. Then $a^{\circ} \subseteq b^{\circ}$ and there is $x \in I$ such that $b^{\circ} \subseteq x^{\circ \circ}$. So, $a^{\circ} \subseteq x^{\circ \circ}$ and $a \in F_I$. Therefore, F_I is an α -filter.

Lemma 10. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $F \in Fi(A)$. We have the following properties:

- (1) If $\phi[F] \subseteq X_m(A)$, then F is an α -filter.
- (2) $X_m(A) \subseteq X_\alpha(A)$.

PROOF: (1) Let $a \in A$ be such that $a^{\circ\circ} \cap F \neq \emptyset$. If $a \notin F$, by Theorem 1 there exists $P \in X(A)$ such that $F \subseteq P$ and $a \notin P$. So, $P \in \phi[F]$ and $P \in X_m(A)$. Since $a \notin P$, by Lemma 5, we have $a^{\circ\circ} \cap P = \emptyset$ and $a^{\circ\circ} \cap F = \emptyset$, which is a contradiction. Then $a \in F$ and F is an α -filter.

(2) It follows by Lemma 5.

Remark 11. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $P \in \mathbf{X}(A)$. If \mathbf{A} is pseudocomplemented, then $a^{\circ} = (a^*]$ and $a^{\circ \circ} = (a^{**}]$. Thus, the condition $a^{\circ \circ} \cap P \neq \emptyset$ is equivalent to

 $a^{**} \in P$ and by the results developed in [3], P is maximal if and only if $a^{**} \in P$ implies that $a \in P$ for all $a \in A$. Then, if **A** is pseudocomplemented, we have that $X_m(A) = X_\alpha(A)$. In particular, this result is also valid if **A** is a distributive pseudocomplemented lattice, see [1].

Theorem 12. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $X \subseteq A$. Then

(*)
$$F_{\alpha}(X) = \{a \in A \colon a^{\circ \circ} \cap F(X) \neq \emptyset\}$$

is the smallest α -filter containing X.

PROOF: Since $1^{\circ\circ} = A$, we have $1^{\circ\circ} \cap F(X) \neq \emptyset$ and $1 \in F_{\alpha}(X)$. Let $a, b \in A$ be such that $a \leq b$ and $a \in F_{\alpha}(X)$. It follows that $a^{\circ\circ} \subseteq b^{\circ\circ}$ and $a^{\circ\circ} \cap F(X) \neq \emptyset$. Thus, $b^{\circ\circ} \cap F(X) \neq \emptyset$ and $b \in F_{\alpha}(X)$. Let $a, b \in F_{\alpha}(X)$. So, $a^{\circ\circ} \cap F(X) \neq \emptyset$ and $b^{\circ\circ} \cap F(X) \neq \emptyset$, i.e., there exist $f_1, f_2 \in F(X)$ such that $f_1 \in a^{\circ\circ}$ and $f_2 \in b^{\circ\circ}$. Then, by Lemma 5, we have $f_1 \wedge f_2 \in a^{\circ\circ} \cap b^{\circ\circ} \cap F(X) = (a \wedge b)^{\circ\circ} \cap F(X)$, i.e., $(a \wedge b)^{\circ\circ} \cap F(X) \neq \emptyset$ and $a \wedge b \in F_{\alpha}(X)$. Then $F_{\alpha}(X) \in \text{Fi}(A)$. We see that $F_{\alpha}(X)$ is an α -filter. Let $a \in A$ be such that $a^{\circ\circ} \cap F_{\alpha}(X) \neq \emptyset$. So, there exists $x \in a^{\circ\circ}$ such that $x^{\circ\circ} \cap F(X) \neq \emptyset$. Then $x^{\circ\circ} \subseteq a^{\circ\circ}$ and $a^{\circ\circ} \cap F(X) \neq \emptyset$. Therefore, $a \in F_{\alpha}(X)$ and $F_{\alpha}(X)$ is an α -filter. Since $a \in a^{\circ\circ}$, it follows that $X \subseteq F_{\alpha}(X)$. Finally, let $H \in \text{Fi}_{\alpha}(A)$ be such that $X \subseteq H$. If $a \in F_{\alpha}(X)$, then $a^{\circ\circ} \cap F(X) \neq \emptyset$ and $a^{\circ\circ} \cap H \neq \emptyset$. As H is an α -filter, $a \in H$ and $F_{\alpha}(X) \subseteq H$.

It is easy to see that (\star) is equivalent to

$$F_{\alpha}(X) = \{ a \in A \colon \exists f \in F(X) (a^{\circ} \subseteq f^{\circ}) \}.$$

Throughout this paper we will use the two characterizations. Moreover, by Theorem 12, a filter F is an α -filter if and only if $F_{\alpha}(F) = F$. If $X = \{a\}$, we write simply $F_{\alpha}(\{a\}) = [a]_{\alpha}$. Note that

$$[a)_{\alpha} = \{b \in A \colon b^{\circ \circ} \cap [a) \neq \emptyset\} = \{b \in A \colon a \in b^{\circ \circ}\} = \{b \in A \colon b^{\circ} \subseteq a^{\circ}\}.$$

Lemma 13. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $a, b \in A$. We have the following properties:

(1) If $a \leq b$, then $[b)_{\alpha} \subseteq [a)_{\alpha}$.

- (2) $[a]_{\alpha} = A$ if and only if a = 0.
- (3) $[a)_{\alpha} = D(A)$ if and only if $a \in D(A)$.
- (4) If $a \wedge b = 0$, then $[a)_{\alpha} \leq [b)_{\alpha} = A$.
- (5) $[a)_{\alpha} = [b)_{\alpha}$ if and only if $a^{\circ} = b^{\circ}$.

(6) If
$$[a)_{\alpha} = [b)_{\alpha}$$
, then $[a \wedge c)_{\alpha} = [b \wedge c)_{\alpha}$ for all $c \in A$.

PROOF: It is left to the reader.

We have the following result that characterizes the α -filters.

Proposition 14. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $F \in Fi(A)$. The following conditions are equivalent:

- (1) $F \in \operatorname{Fi}_{\alpha}(A)$.
- (2) If $a \in F$, then $[a)_{\alpha} \subseteq F$.
- (3) If $[a)_{\alpha} = [b)_{\alpha}$ and $a \in F$, then $b \in F$.
- $(4) \ F = \bigcup \{ [a)_{\alpha} \colon a \in F \}.$

PROOF: (1) \Rightarrow (2) If $b \in [a)_{\alpha}$, then $b^{\circ} \subseteq a^{\circ}$ and $a^{\circ\circ} \subseteq b^{\circ\circ}$. Since $a \in a^{\circ\circ}$, we have $a^{\circ\circ} \cap F \neq \emptyset$. So, $b^{\circ\circ} \cap F \neq \emptyset$ and as F is an α -filter, $b \in F$. Then $[a)_{\alpha} \subseteq F$. (2) \Rightarrow (3) It is immediate.

(3) \Rightarrow (4) Since $[a) \subseteq [a]_{\alpha}$ for all $a \in A$, we have $F \subseteq \bigcup \{ [a]_{\alpha} : a \in F \}$. Conversely, if $b \in \bigcup \{ [a]_{\alpha} : a \in F \}$, then there exists $a \in F$ such that $b \in [a]_{\alpha}$, i.e., $b^{\circ} \subseteq a^{\circ}$ and $a^{\circ\circ} \subseteq b^{\circ\circ}$. So, $a^{\circ\circ} = a^{\circ\circ} \cap b^{\circ\circ} = (a \wedge b)^{\circ\circ}$ and $[a]_{\alpha} = [a \wedge b]_{\alpha}$. By hypothesis, $a \wedge b \in F$ and $b \in F$. Therefore, $F = \bigcup \{ [a]_{\alpha} : a \in F \}$.

 $(4) \Rightarrow (1)$ Let $b \in A$ be such that $b^{\circ\circ} \cap F \neq \emptyset$. Then there is $f \in F$ such that $f \in b^{\circ\circ}$. So, $b^{\circ} \subseteq f^{\circ}$. As $F = \bigcup\{[a)_{\alpha} : a \in F\}$, there exists $a \in F$ such that $f \in [a)_{\alpha}$, i.e., $f^{\circ} \subseteq a^{\circ}$. Thus, $b^{\circ} \subseteq a^{\circ}$ and $b \in [a)_{\alpha} \subseteq F$. We conclude that F is an α -filter.

Now, we define the notion of α -order-ideal.

Definition 15. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $I \in \mathrm{Id}(A)$. We say that I is an α -order-ideal if $a^{\circ\circ} \subseteq I$ for all $a \in I$.

Denote by $\mathrm{Id}_{\alpha}(A)$ the set of all α -order-ideals of A.

Example 16. If $\mathbf{A} \in \mathcal{DS}_{01}$, then a° is an α -order-ideal for all $a \in A$.

Example 17. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $F \in \mathrm{Fi}(A)$. We consider the set

$$I_F = \{ a \in A \colon \exists f \in F(a \in f^\circ) \}.$$

Then I_F is an α -order-ideal. It is easy to see that I_F is decreasing. Let $a, b \in I_F$. So, there exist $f_1, f_2 \in F$ such that $a \in f_1^{\circ}$ and $b \in f_2^{\circ}$. As F is a filter, $f = f_1 \wedge f_2 \in F$. It follows that $a, b \in f^{\circ}$. Since **A** is distributive, f° is an order-ideal and there exists $c \in f^{\circ}$ such that $a \leq c$ and $b \leq c$. It is clear that $c \in I_F$ and I_F is an order-ideal. Now, we prove that I_F is an α -order-ideal. Let $a \in I_F$. Then there is $f \in F$ such that $a \in f^{\circ}$. If $x \in a^{\circ \circ}$, then $x \in \bigcap\{y^{\circ} : y \in a^{\circ}\}$. By Lemma 5, $f^{\circ \circ} \subseteq a^{\circ}$ and $f \in a^{\circ}$. Thus, $x \in f^{\circ}$ and $x \in I_F$. Therefore, $a^{\circ \circ} \subseteq I_F$. In addition, note that if F is proper, then $F \cap I_F = \emptyset$. If $a \in F \cap I_F$, then there is $f \in F$ such that $a \in f^{\circ}$. By Lemma 5, $f^{\circ \circ} \subseteq a^{\circ}$ and $f \in a^{\circ}$, i.e., $f \wedge a = 0 \in F$, which is a contradiction.

Lemma 18. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $I \in \mathrm{Id}(A)$. If $X(A) - \psi[I] \subseteq X_m(A)$, then I is an α -order-ideal.

PROOF: Let $a \in I$ and suppose that $a^{\circ\circ} \nsubseteq I$, i.e., there is $x \in a^{\circ\circ}$ such that $x \notin I$. By Theorem 1, there exists $P \in X(A)$ such that $x \in P$ and $P \cap I = \emptyset$. Thus, $P \in X(A) - \psi[I]$ and $P \in X_m(A)$. It follows that $x \in a^{\circ\circ} \cap P$, i.e., $a^{\circ\circ} \cap P \neq \emptyset$. Then, by Lemma 5, we have $a \in P$ which is a contradiction. Therefore, $a^{\circ\circ} \subseteq I$ and I is an α -order-ideal.

Proposition 19. Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $I \in \mathrm{Id}(A)$. The following conditions are equivalent:

- (1) $I \in \mathrm{Id}_{\alpha}(A)$.
- (2) If $a^{\circ} = b^{\circ}$ and $a \in I$, then $b \in I$.
- (3) $I = \bigcup \{a^{\circ \circ} \colon a \in I\}.$

PROOF: (1) \Rightarrow (2) Let $a, b \in A$ be such that $a^{\circ} = b^{\circ}$ and $a \in I$. So, $a^{\circ \circ} = b^{\circ \circ}$ and since I is an α -order-ideal, we have $a^{\circ \circ} \subseteq I$. Then $b^{\circ \circ} \subseteq I$ and $b \in I$.

 $(2) \Rightarrow (3)$ As $a \in a^{\circ\circ}$ for all $a \in A$, it is immediate that $I \subseteq \bigcup \{a^{\circ\circ} : a \in I\}$. Inversely, if $x \in \bigcup \{a^{\circ\circ} : a \in I\}$, then there is $b \in I$ such that $x \in b^{\circ\circ}$. Thus, by Lemma 5, $x^{\circ\circ} \subseteq b^{\circ\circ}$ and $x^{\circ\circ} = (x \wedge b)^{\circ\circ}$, i.e., $x^{\circ} = (x \wedge b)^{\circ}$. Since $b \in I$, $x \wedge b \in I$ and by hypothesis, $x \in I$. Therefore, $I = \bigcup \{a^{\circ\circ} : a \in I\}$.

 $(3) \Rightarrow (1)$ Let $b \in I$ and $x \in b^{\circ \circ}$. Then $x \in \bigcup \{a^{\circ \circ} : a \in I\} = I$, i.e., $x \in I$. So, $b^{\circ \circ} \subseteq I$ and I is an α -order-ideal.

In [14] the author develops a theorem of separation in 0-distributive posets. Now, we prove a separation theorem between filters and α -order-ideals by means of irreducible α -filters in the class of bounded distributive semilattices. The following theorem will be used in Theorem 24.

Theorem 20. Let $\mathbf{A} \in \mathcal{DS}_{01}$. Let $F \in \mathrm{Fi}(A)$ and $I \in \mathrm{Id}_{\alpha}(A)$ such that $F \cap I = \emptyset$. Then there exists $P \in X_{\alpha}(A)$ such that $F \subseteq P$ and $P \cap I = \emptyset$.

PROOF: Let us consider the set $\mathcal{F} = \{H \in \operatorname{Fi}(A) : F \subseteq H \text{ and } H \cap I = \emptyset\}$. Since $F \in \mathcal{F}$, we have $\mathcal{F} \neq \emptyset$. The union of a chain of elements of \mathcal{F} is also in \mathcal{F} . Then, by Zorn's lemma, there exists a filter P maximal in \mathcal{F} . We prove that $P \in X_{\alpha}(A)$. Let $F_1, F_2 \in \operatorname{Fi}(A)$ be such that $P = F_1 \cap F_2$. So, $F_1, F_2 \notin \mathcal{F}$, i.e., $F_1 \cap I \neq \emptyset$ and $F_2 \cap I \neq \emptyset$. Then there exist $x, y \in I$ such that $x \in F_1$ and $y \in F_2$. As I is an order-ideal, there is $z \in I$ such that $x \leq z$ and $y \leq z$. Thus, $z \in P \cap I$, which is a contradiction. Then P is irreducible. Now, we prove that P is an α -filter. Let $a \in A$ be such that $a^{\circ\circ} \cap P \neq \emptyset$ and suppose that $a \notin P$. Let $F = F(P \cup \{a\})$. Then $F \notin \mathcal{F}$ and $F \cap I \neq \emptyset$, i.e., there exists $p \in P$ such that $p \wedge a \in I$. Since I is an α -order-ideal, $(p \wedge a)^{\circ\circ} \subseteq I$. On the other hand, as $a^{\circ\circ} \cap P \neq \emptyset$, there is $b \in A$ such that $b \in a^{\circ\circ} \cap P$. It follows that

$$p \wedge b \in p^{\circ \circ} \cap a^{\circ \circ} = (p \wedge a)^{\circ \circ} \subseteq I.$$

So, $p \wedge b \in P \cap I$ which is a contradiction. Therefore, P is an irreducible α -filter.

Corollary 21. Let $\mathbf{A} \in \mathcal{DS}_{01}$. Then every proper α -order-ideal is the intersection of prime α -order-ideals.

PROOF: Let I be a proper α -order-ideal of A. For each $a \notin I$, we have $[a) \cap I = \emptyset$. By Theorem 20, there exists $P_a \in X_{\alpha}(A)$ such that $a \in P_a$ and $P_a \cap I = \emptyset$. Since **A** is distributive, P_a^c is an order-ideal. As P_a is an α -filter, we have that P_a^c is a prime α -order-ideal. Thus, $I = \bigcap \{P_a^c : P_a \in X_{\alpha}(A) \text{ and } a \notin I\}$.

4. Distributive quasicomplemented semilattices

The concept of quasicomplement in bounded distributive lattices was studied by T. Speed in [19] and W. Cornish in [10] as a generalization of the class of distributive pseudocomplemented lattices. In this section we give a characterization of distributive quasicomplemented semilattices and study the concepts of α -filter and α -order-ideal in distributive quasicomplemented semilattices.

Definition 22. Let $\mathbf{A} \in \mathcal{DS}_{01}$. We say that \mathbf{A} is quasicomplemented if for each $a \in A$, there exists $b \in A$ such that $a^{\circ \circ} = b^{\circ}$.

We denote by QDS the class of distributive quasicomplemented semilattices.

Theorem 23. Let $\mathbf{A} \in \mathcal{DS}_{01}$. The following conditions are equivalent:

- (1) $\mathbf{A} \in \mathcal{QDS}$.
- (2) For every $a \in A$, there exists $b \in A$ such that

$$\psi[a^{\circ\circ}] \cap \mathcal{X}_m(A) = \psi[b^\circ] \cap \mathcal{X}_m(A).$$

PROOF: (1) \Rightarrow (2) If $a \in A$, then there exists $b \in A$ such that $a^{\circ\circ} = b^{\circ}$. It is immediate to see that $\psi[a^{\circ\circ}] \cap X_m(A) = \psi[b^{\circ}] \cap X_m(A)$.

(2) \Rightarrow (1) Let $a \in A$. Then, by hypothesis, there exists $b \in A$ such that $\psi[a^{\circ\circ}] \cap X_m(A) = \psi[b^\circ] \cap X_m(A)$. We prove that $a^{\circ\circ} = b^\circ$. Let $x \in a^{\circ\circ}$ and suppose that $x \notin b^\circ$. By Theorem 1, there exists $P \in X(A)$ such that $b^\circ \cap P = \emptyset$ and $x \in P$. So, by Lemma 5, there exists $U \in X_m(A)$ such that $P \subseteq U$ and $b \in U$. Then $x \in a^{\circ\circ} \cap U$, i.e., $U \in \psi[a^{\circ\circ}] \cap X_m(A) = \psi[b^\circ] \cap X_m(A)$. It follows that $b^\circ \cap U \neq \emptyset$ and $b \notin U$, which is a contradiction. Thus, $x \in b^\circ$ and $a^{\circ\circ} \subseteq b^\circ$. Now, let $x \in b^\circ$ and suppose that $x \notin a^{\circ\circ} = \bigcap\{y^\circ \colon y \in a^\circ\}$. Then there is $y \in a^\circ$ such that $x \notin y^\circ$. By Theorem 1, there exists $P \in X(A)$ such that $y^\circ \cap P = \emptyset$ and $x \in P$. So, by Lemma 5, there exists $U \in X_m(A)$ such that $p \subseteq U$ and $y \in U$. Then $x \in b^\circ \cap U$, i.e., $U \in \psi[b^\circ] \cap X_m(A) = \psi[a^{\circ\circ}] \cap X_m(A)$ and $a^{\circ\circ} \cap U \neq \emptyset$. Thus, there exists $z \in a^{\circ\circ}$ such that $z \in U$. On the other hand, $y \in a^\circ \cap U$ and

 $z \wedge y = 0 \in U$. Then U = A, which is a contradiction. It follows that $x \in a^{\circ \circ}$ and $b^{\circ} \subseteq a^{\circ \circ}$. Therefore, $a^{\circ \circ} = b^{\circ}$ and **A** is quasicomplemented.

Now, we will see some consequences of Theorem 20. We define operations of infimum " \Box ", supremum " \sqcup ", and implication " \Rightarrow " in the set of all α -filters Fi_{α}(A) as follows:

$$G \sqcap H = G \cap H,$$

$$G \sqcup H = F_{\alpha}(G \lor H),$$

$$G \Rightarrow H = F_{\alpha}(G \to H)$$

for each pair $G, H \in Fi_{\alpha}(A)$. By Theorem 12, $G \sqcap H, G \sqcup H, G \Rightarrow H \in Fi_{\alpha}(A)$ for all $G, H \in Fi_{\alpha}(A)$. By Example 8, we consider the structure

$$\operatorname{Fi}_{\alpha}(\mathbf{A}) = \langle \operatorname{Fi}_{\alpha}(A), \sqcup, \sqcap, \Rightarrow, D(A), A \rangle.$$

Theorem 24. Let $\mathbf{A} \in \mathcal{QDS}$. Then $\operatorname{Fi}_{\alpha}(\mathbf{A})$ is a Heyting algebra.

PROOF: Let $G, H \in \operatorname{Fi}_{\alpha}(A)$. It is immediate that $G \sqcap H$ is the infimum of Gand H. We prove that $G \sqcup H = F_{\alpha}(G \lor H)$ is the supremum of G and H. Note that $F_{\alpha}(G \lor H) = F_{\alpha}(G \cup H)$. It is clear that $G \sqcup H$ is an upper bound of G and H. Let $K \in \operatorname{Fi}_{\alpha}(A)$ be such that $G \subseteq K$ and $H \subseteq K$. If $a \in G \sqcup H = F_{\alpha}(G \lor H)$, then $a^{\circ\circ} \cap F(G \cup H) \neq \emptyset$, i.e., there are $g \in G$ and $h \in H$ such that $g \land h \in a^{\circ\circ}$. On the other hand, $g, h \in K$ and $g \land h \in K$. So, $a^{\circ\circ} \cap K \neq \emptyset$ and since K is an α -filter, we have $a \in K$. Then $G \sqcup H$ is the supremum of G and H.

We see that $G \sqcap H \subseteq K$ if and only if $G \subseteq H \Rightarrow K$ for all $G, H, K \in \operatorname{Fi}_{\alpha}(A)$. Suppose that $G \sqcap H \subseteq K$. If $x \in G$, then $[x) \cap H \subseteq G \cap H \subseteq K$, i.e., $[x) \cap H \subseteq K$. So, $x \in H \to K$. Thus, $x \in F_{\alpha}(H \to K) = H \Rightarrow K$ and $G \subseteq H \Rightarrow K$. Reciprocally, we assume that $G \subseteq H \Rightarrow K$. Let $x \in G \sqcap H$. Then $x \in G$ and by hypothesis, $x \in H \Rightarrow K = F_{\alpha}(H \to K)$ and there exists $f \in H \to K$, i.e., $[f) \cap H \subseteq K$, such that $x^{\circ} \subseteq f^{\circ}$. Suppose that $x \notin K$. Since K is an α -filter, we have $x^{\circ \circ} \cap K = \emptyset$. As \mathbf{A} is quasicomplemented, there exists $y \in A$ such that $K \subseteq P$ and $P \cap y^{\circ} = \emptyset$, i.e., $P \cap x^{\circ \circ} = \emptyset$. It follows that $f^{\circ \circ} \subseteq x^{\circ \circ}$ and $x, f \in x^{\circ \circ}$. Then $x, f \in P^c$ and since \mathbf{A} is distributive, P^c is an order-ideal. Then there is $p \in P^c$ such that $x \leq p$ and $f \leq p$. On the other hand, $x \in H$ and $p \in H$. Thus, $p \in [f) \cap H \subseteq K \subseteq P$ and $p \in P$, which is a contradiction. Then $x \in K$ and $G \sqcap H \subseteq K$. Therefore, $\operatorname{Fi}_{\alpha}(\mathbf{A})$ is a Heyting algebra. \Box

Remark 25. Let $\mathbf{A} \in \mathcal{DS}_{01}$. If \mathbf{A} is pseudocomplemented, $\mathbf{R}(A) = \{a^* : a \in A\}$ is the set of all *regular elements of* A. So, $\mathbf{R}(A) = \{a \in A : a = a^{**}\}$ and $a^{**} \in \mathbf{R}(A)$ for all $a \in A$. If we consider the binary operation $a \uparrow b = (a^* \land b^*)^*$

for each $a, b \in A$, then we have that

$$\mathbf{R}(\mathbf{A}) = \langle \mathbf{R}(A), \Upsilon, \wedge, *, 0, 1 \rangle$$

is a Boolean algebra, see [7]. On the other hand, recall that the set of all filters of a Boolean algebra has a structure of Heyting algebra, see [1]. We denote by $\operatorname{Fi}(\operatorname{R}(\mathbf{A})) = \langle \operatorname{Fi}(\operatorname{R}(A)), \forall, \overline{\wedge}, \rightarrow, \{1\}, \operatorname{R}(A) \rangle$ the Heyting algebra of filters of the Boolean algebra $\operatorname{R}(\mathbf{A})$. Then, $\operatorname{Fi}_{\alpha}(\mathbf{A})$ is isomorphic to the Heyting algebra $\operatorname{Fi}(\operatorname{R}(\mathbf{A}))$. If we define $\lambda \colon \operatorname{Fi}_{\alpha}(A) \rightarrow \operatorname{Fi}(\operatorname{R}(A))$ given by $\lambda(F) = F \cap \operatorname{R}(A)$, then λ is well-defined, $\lambda(F \cap G) = \lambda(F) \overline{\wedge} \lambda(G), \lambda(F \cup G) = \lambda(F) \forall \lambda(G)$ and $\lambda(F \Rightarrow G) =$ $\lambda(F) \rightarrow \lambda(G)$ for all $F, G \in \operatorname{Fi}_{\alpha}(A)$. Let $F, G \in \operatorname{Fi}_{\alpha}(A)$ such that $\lambda(F) = \lambda(G)$ and $a \in F$. Since $a \leq a^{**}$, we have $a^{**} \in F$. So, $a^{**} \in F \cap \operatorname{R}(A) = \lambda(F) = \lambda(G)$, i.e., $a^{**} \in G$. As G is an α -filter, $a \in G$ and $F \subseteq G$. The other inclusion is similar and λ is 1-1. Let $H \in \operatorname{Fi}(\operatorname{R}(A))$. Then $F_{\alpha}(H) \in \operatorname{Fi}_{\alpha}(A)$ and

$$a \in \lambda(F_{\alpha}(H)) \iff a \in F_{\alpha}(H) \cap \mathbb{R}(A)$$
$$\iff a^{**} \in H \text{ and } a \in \mathbb{R}(A)$$
$$\iff a \in H.$$

Thus, λ is onto and therefore λ is an isomorphism.

In every distributive pseudocomplemented lattice the filter of dense elements is the intersection of maximal filters, see [1]. We see that the filter D(A) is the intersection of irreducible α -filters in any distributive quasicomplemented semilattice.

Lemma 26. Let $\mathbf{A} \in \mathcal{QDS}$. Then $D(A) = \bigcap \{P \colon P \in X_{\alpha}(A)\}$.

PROOF: By Example 8, $D(A) \subseteq F$ for all $F \in \operatorname{Fi}_{\alpha}(A)$. In particular, we have $D(A) \subseteq \bigcap \{P \colon P \in X_{\alpha}(A)\}$. We prove the other inclusion. Suppose there is $a \in \bigcap \{P \colon P \in X_{\alpha}(A)\}$ such that $a \notin D(A)$. Since D(A) is an α -filter, $a^{\circ\circ} \cap D(A) = \emptyset$. As **A** is quasicomplemented, there exists $b \in A$ such that $a^{\circ\circ} = b^{\circ}$. So, $b^{\circ} \in \operatorname{Id}_{\alpha}(A)$ and by Theorem 20 there exists $Q \in X_{\alpha}(A)$ such that $D(A) \subseteq Q$ and $Q \cap b^{\circ} = \emptyset$, i.e., $Q \cap a^{\circ\circ} = \emptyset$. It follows that $a \notin Q$, which is a contradiction because $a \in \bigcap \{P \colon P \in X_{\alpha}(A)\}$. Therefore, we have $D(A) = \bigcap \{P \colon P \in X_{\alpha}(A)\}$.

In Lemma 10 we proved that every maximal filter is an α -filter. Now, we see that in the class QDS the reciprocal is also valid.

Lemma 27. Let $\mathbf{A} \in \mathcal{QDS}$. Then $X_m(A) = X_\alpha(A)$.

PROOF: By Lemma 10, $X_m(A) \subseteq X_\alpha(A)$. We prove the other inclusion. Let $P \in X_\alpha(A)$ and $a \in A$ be such that $a \notin P$. Since **A** is quasicomplemented, there is $b \in A$ such that $a^{\circ\circ} = b^{\circ}$. So, $b \in a^{\circ}$. Note that $[a) \cap [b] \subseteq D(A)$. Indeed, if

 $x \in [a) \cap [b)$ and $y \in x^{\circ}$, then $a \wedge y = 0$ and $b \wedge y = 0$, i.e., $y \in a^{\circ}$ and $y \in b^{\circ} = a^{\circ \circ}$. Thus, y = 0 and $x^{\circ} = \{0\}$. So, $[a) \cap [b] \subseteq D(A)$ and by Lemma 26, $[a) \cap [b] \subseteq P$. Since P is irreducible and $a \notin P$, we have $b \in P$. It follows that $b \in a^{\circ} \cap P$, i.e., $a^{\circ} \cap P \neq \emptyset$. Conversely, it is easy to see that if $a^{\circ} \cap P \neq \emptyset$, then $a \notin P$. Therefore, by Lemma 5, $P \in X_m(A)$.

Let $\mathbf{A} \in \mathcal{DS}_{01}$ and $I \in \mathrm{Id}(A)$. We consider

$$I_{\alpha}(I) = \{a \in A \colon \exists x \in I(a \in x^{\circ \circ})\} = \{a \in A \colon \exists x \in I(x^{\circ} \subseteq a^{\circ})\}.$$

It is clear that $I_{\alpha}((a]) = a^{\circ \circ}$ for all $a \in A$.

Theorem 28. Let $\mathbf{A} \in \mathcal{QDS}$ and $I \in Id(A)$. Then $I_{\alpha}(I)$ is the smallest α -orderideal containing I.

PROOF: It is easy to see that $I \subseteq I_{\alpha}(I)$ and that $I_{\alpha}(I)$ is decreasing. Let $a, b \in I_{\alpha}(I)$. Then there exist $x, y \in I$ such that $a \in x^{\circ\circ}$ and $b \in y^{\circ\circ}$. As I is an orderideal, there is $z \in I$ such that $x \leq z$ and $y \leq z$. So, $x^{\circ\circ} \subseteq z^{\circ\circ}$ and $y^{\circ\circ} \subseteq z^{\circ\circ}$. Then $a, b \in z^{\circ\circ}$. On the other hand, since \mathbf{A} is quasicomplemented, there is $w_z \in A$ such that $z^{\circ\circ} = w_z^{\circ}$. Thus, $a, b \in w_z^{\circ}$ and as w_z° is an order-ideal, there is $c \in w_z^{\circ}$ such that $a \leq c$ and $b \leq c$. It follows that $z \in I$ and $c \in z^{\circ\circ}$, i.e., $c \in I_{\alpha}(I)$. Then $I_{\alpha}(I)$ is an order-ideal. We prove that $I_{\alpha}(I)$ is an α -order-ideal. Let $a \in I_{\alpha}(I)$. Then there is $x \in I$ such that $x^{\circ} \subseteq a^{\circ}$. So, $a^{\circ\circ} \subseteq x^{\circ\circ}$. If $y \in a^{\circ\circ}$, then $y \in x^{\circ\circ}$ and $y \in I_{\alpha}(I)$, i.e., $a^{\circ\circ} \subseteq I_{\alpha}(I)$ and $I_{\alpha}(I)$ is an α -order-ideal. Finally, let $H \in Id_{\alpha}(A)$ such that $I \subseteq H$. If $a \in I_{\alpha}(I)$, then there is $x \in I$ such that $a \in x^{\circ\circ}$. Thus, $x \in H$ and since H is an α -order-ideal, $x^{\circ\circ} \subseteq H$. Therefore, $a \in H$ and $I_{\alpha}(I) \subseteq H$. We proved that $I_{\alpha}(I)$ is the smallest α -order-ideal containing I.

The following technical result will be useful.

Lemma 29. Let $\mathbf{A} \in \mathcal{QDS}$. Let $P \in X_m(A)$ and $a, b \in A$. If $(a^{\circ} \cap b^{\circ})^{\circ} \cap P \neq \emptyset$, then $a \in P$ or $b \in P$.

PROOF: As **A** is quasicomplemented, there exist $\tilde{a}, \tilde{b} \in A$ such that $a^{\circ} = (\tilde{a})^{\circ \circ}$ and $b^{\circ} = (\tilde{b})^{\circ \circ}$. So,

$$(a^{\circ} \cap b^{\circ})^{\circ} \cap P = ((\tilde{a})^{\circ \circ} \cap (\tilde{b})^{\circ \circ})^{\circ} \cap P = ((\tilde{a} \wedge \tilde{b})^{\circ \circ})^{\circ} \cap P = (\tilde{a} \wedge \tilde{b})^{\circ} \cap P \neq \emptyset.$$

Then, by Lemma 5, $\tilde{a} \wedge \tilde{b} \notin P$ and $\tilde{a} \notin P$ or $\tilde{b} \notin P$. If $\tilde{a} \notin P$, then $(\tilde{a})^{\circ} \cap P \neq \emptyset$ and $a^{\circ \circ} \cap P \neq \emptyset$. It follows by Lemma 5 that $a \in P$. Analogously, if $\tilde{b} \notin P$, then $b \in P$. Therefore, we conclude that $a \in P$ or $b \in P$.

On $Id_{\alpha}(A)$ we define the binary operations

$$I \cup J = \{a \in A \colon \exists (x, y) \in I \times J \ [a \in (x^{\circ} \cap y^{\circ})^{\circ}]\}$$

and $I \cap J = I \cap J$ for all $I, J \in Id_{\alpha}(A)$. We consider

$$\mathrm{Id}_{\alpha}(\mathbf{A}) = \langle \mathrm{Id}_{\alpha}(A), \bigcup, \bigcap, \{0\}, A \rangle.$$

Theorem 30. Let $\mathbf{A} \in \mathcal{QDS}$. Then $\mathrm{Id}_{\alpha}(\mathbf{A})$ is a bounded distributive lattice.

PROOF: Let $I, J \in \mathrm{Id}_{\alpha}(A)$. It is clear that $I \cap J \in \mathrm{Id}_{\alpha}(A)$ and $I \cap J$ is the infimum of I and J. We prove that $I \cup J \in \mathrm{Id}_{\alpha}(A)$. By definition, $I \cup J$ is decreasing. Let $a, b \in I \cup J$. Then there exist $(x_1, y_1), (x_2, y_2) \in I \times J$ such that $a \in (x_1^{\circ} \cap y_1^{\circ})^{\circ}$ and $b \in (x_2^{\circ} \cap y_2^{\circ})^{\circ}$. Since I and J are order-ideals, there is $(x, y) \in I \times J$ such that $x_1, x_2 \leq x$ and $y_1, y_2 \leq y$. So, $(x_1^{\circ} \cap y_1^{\circ})^{\circ} \subseteq (x^{\circ} \cap y^{\circ})^{\circ}$ and $(x_2^{\circ} \cap y_2^{\circ})^{\circ} \subseteq (x^{\circ} \cap y^{\circ})^{\circ}$. It follows that $a, b \in (x^{\circ} \cap y^{\circ})^{\circ}$. Since \mathbf{A} is quasicomplemented, there exist $\tilde{x}, \tilde{y} \in A$ such that $x^{\circ} = (\tilde{x})^{\circ \circ}$ and $y^{\circ} = (\tilde{y})^{\circ \circ}$. Then

$$(x^{\circ} \cap y^{\circ})^{\circ} = ((\tilde{x})^{\circ \circ} \cap (\tilde{y})^{\circ \circ})^{\circ} = ((\tilde{x} \wedge \tilde{y})^{\circ \circ})^{\circ} = (\tilde{x} \wedge \tilde{y})^{\circ}$$

and $a, b \in (\tilde{x} \wedge \tilde{y})^{\circ}$. As $(\tilde{x} \wedge \tilde{y})^{\circ}$ is an order-ideal, there is $c \in (\tilde{x} \wedge \tilde{y})^{\circ}$ such that $a \leq c$ and $b \leq c$, i.e., $I \sqcup J$ is an order-ideal. Let $a \in I \sqcup J$. Then there exists $(x, y) \in I \times J$ such that $a \in (x^{\circ} \cap y^{\circ})^{\circ}$. So, $a^{\circ\circ} \subseteq (x^{\circ} \cap y^{\circ})^{\circ}$. It follows that $a^{\circ\circ} \subseteq I \sqcup J$ and $I \sqcup J$ is an α -order-ideal. Now, we see that $I \sqcup J$ is the supremum of I and J. Let $H \in \mathrm{Id}_{\alpha}(A)$ such that $I \subseteq H$ and $J \subseteq H$. If $a \in I \sqcup J$, then there exists $(x, y) \in I \times J$ such that $a \in (x^{\circ} \cap y^{\circ})^{\circ}$. In particular, $x, y \in H$. Suppose that $a \notin H$. Then, by Theorem 20, there exists $P \in X_{\alpha}(A)$ such that $a \in P$ and $P \cap H = \emptyset$. By Lemma 27, $X_{\alpha}(A) = X_m(A)$ and $P \in X_m(A)$. Also, $a \in (x^{\circ} \cap y^{\circ})^{\circ} \cap P$, i.e., $(x^{\circ} \cap y^{\circ})^{\circ} \cap P \neq \emptyset$ and by Lemma 29 we have $x \in P$ or $y \in P$. In both cases, $P \cap H \neq \emptyset$ which is a contradiction. Then $I \sqcup J \subseteq H$ and $I \sqcup J$ is the supremum of I and J.

Finally, we see that $\operatorname{Id}_{\alpha}(\mathbf{A})$ is distributive. Let $I, J, H \in \operatorname{Id}_{\alpha}(A)$. We prove that $I \cap (J \cup H) \subseteq (I \cap J) \cup (I \cap H)$. Let $a \in I \cap (J \cup H)$. If we suppose that $a \notin (I \cap J) \cup (I \cap H)$, then by Theorem 20 and Lemma 27 there exists $P \in X_m(A)$ such that $a \in P$ and $P \cap [(I \cap J) \cup (I \cap H)] = \emptyset$. So, $P \cap (I \cap J) = \emptyset$ and $P \cap (I \cap H) = \emptyset$. On the other hand, since $a \in J \cup H$, there exists $(x, y) \in J \times H$ such that $a \in (x^{\circ} \cap y^{\circ})^{\circ}$. Then $(x^{\circ} \cap y^{\circ})^{\circ} \cap P \neq \emptyset$ and by Lemma 29, $x \in P$ or $y \in P$. Thus, $x \wedge a \in P \cap (I \cap J)$ or $y \wedge a \in P \cap (I \cap H)$ which is a contradiction. Therefore, $a \in (I \cap J) \cup (I \cap H)$ and $\operatorname{Id}_{\alpha}(\mathbf{A})$ is a bounded distributive lattice. \Box

Actually, $Id_{\alpha}(\mathbf{A})$ is a Heyting algebra as we will see later. Following Lemma 9 and Example 17, we have the following result.

Lemma 31. Let $\mathbf{A} \in \mathcal{QDS}$. We have the following properties:

- (1) If $F \in Fi_{\alpha}(A)$, then $F = F_{I_F}$.
- (2) If $I \in \mathrm{Id}_{\alpha}(A)$, then $I = I_{F_I}$.

PROOF: (1) If $a \in F_{I_F}$, then there is $x \in I_F$ such that $a^{\circ} \subseteq x^{\circ \circ}$. So, there exists $f \in F$ such that $x \in f^{\circ}$. By Lemma 5, $f^{\circ \circ} \subseteq x^{\circ}$ and $x^{\circ \circ} \subseteq f^{\circ}$. It follows that $f^{\circ \circ} \subseteq a^{\circ \circ}$. Since $f \in f^{\circ \circ}$, we have $f \in a^{\circ \circ}$. As $a^{\circ \circ} \cap F \neq \emptyset$ and F is an α -filter, $a \in F$. Thus, $F_{I_F} \subseteq F$. Reciprocally, let $a \in F$. We take $a^{\circ \circ}$. Since **A** is quasicomplemented, there is $x \in A$ such that $a^{\circ \circ} = x^{\circ}$, i.e., $a^{\circ} = x^{\circ \circ}$. As $x \in x^{\circ \circ}$, then $x \in a^{\circ}$ and $a \in F$. So, $x \in I_F$. On the other hand, since $a^{\circ} \subseteq x^{\circ \circ}$ and $x \in I_F$, we have $a \in F_{I_F}$ and $F \subseteq F_{I_F}$. Thus, $F = F_{I_F}$.

(2) Let $a \in I_{F_I}$. Then there is $f \in F_I$ such that $a \in f^{\circ}$. So, there exists $x \in I$ such that $f^{\circ} \subseteq x^{\circ \circ}$. Since $x \in I$ and I is an α -order-ideal, we have $x^{\circ \circ} \subseteq I$. It follows that $a \in f^{\circ} \subseteq x^{\circ \circ}$, i.e., $a \in I$ and $I_{F_I} \subseteq I$. Conversely, let $a \in I$ and we take $a^{\circ \circ}$. As **A** is quasicomplemented, there exists $x \in A$ such that $a^{\circ \circ} = x^{\circ}$. Then $x^{\circ} \subseteq a^{\circ \circ}$ and $x \in F_I$. Later, $a \in x^{\circ}$ and $x \in F_I$, i.e., $a \in I_{F_I}$. Therefore, $I = I_{F_I}$.

The following observation will be useful.

Remark 32. Let $\mathbf{L} = \langle L, \vee_L, \wedge_L, 0, 1 \rangle$ be a bounded distributive lattice. Let $\mathbf{H} = \langle H, \vee_H, \wedge_H, \rightarrow_H, 0, 1 \rangle$ be a Heyting algebra and $h: L \to H$ an isomorphism between bounded distributive lattices. If for each $a, b \in L$ we define the binary operation $a \to_L b = h^{-1}(h(a) \to_H h(b))$, then we have

$$a \leq b \to_L c \iff a \leq h^{-1}(h(b) \to_H h(c))$$
$$\iff h(a) \leq h(b) \to_H h(c)$$
$$\iff h(a) \wedge_H h(b) \leq h(c)$$
$$\iff h(a \wedge_L b) \leq h(c)$$
$$\iff a \wedge_L b \leq c$$

for all $a, b, c \in L$. Then $\mathbf{L} = \langle L, \vee_L, \wedge_L, \rightarrow_L, 0, 1 \rangle$ is a Heyting algebra.

Theorem 33. Let $\mathbf{A} \in \mathcal{QDS}$. Then the Heyting algebras $\mathrm{Id}_{\alpha}(\mathbf{A})$ and $\mathrm{Fi}_{\alpha}(\mathbf{A})$ are isomorphic.

PROOF: Let $f: \mathrm{Id}_{\alpha}(A) \to \mathrm{Fi}_{\alpha}(A)$ be the mapping given by $f(I) = F_I$. For Lemma 9, f is well defined. On the other hand, by Lemma 31, f is 1-1 and onto. We prove that f is an isomorphism between bounded distributive lattices.

Let $I_1, I_2 \in \mathrm{Id}_{\alpha}(A)$. We see that $F_{I_1 \cap I_2} = F_{I_1} \cap F_{I_2}$. If $a \in F_{I_1 \cap I_2}$, then there is $x \in I_1 \cap I_2$ such that $a^\circ \subseteq x^{\circ\circ}$. Since $x \in I_1$, $a \in F_{I_1}$. Analogously, $a \in F_{I_2}$. So, $a \in F_{I_1} \cap F_{I_2}$ and $F_{I_1 \cap I_2} \subseteq F_{I_1} \cap F_{I_2}$. Reciprocally, if $a \in F_{I_1} \cap F_{I_2}$, then there is $x \in I_1$ such that $a^\circ \subseteq x^{\circ\circ}$ and there is $y \in I_2$ such that $a^\circ \subseteq y^{\circ\circ}$. By Lemma 5, we have $a^\circ \subseteq x^{\circ\circ} \cap y^{\circ\circ} = (x \wedge y)^{\circ\circ}$ and $x \wedge y \in I_1 \cap I_2$, i.e., $a \in F_{I_1 \cap I_2}$. Therefore, $f(I_1 \cap I_2) = f(I_1) \cap f(I_2)$. Now, we prove that $F_{I_1 \sqcup I_2} = F_{I_1} \sqcup F_{I_2}$. If $a \in F_{I_1 \sqcup I_2}$, then there exists $x \in I_1 \sqcup I_2$ such that $a^{\circ} \subseteq x^{\circ \circ}$. So, there is $y \in I_1$ and there is $z \in I_2$ such that $x \in (y^{\circ} \cap z^{\circ})^{\circ}$. We take $y^{\circ \circ}$ and $z^{\circ \circ}$. Since **A** is quasicomplemented, there exist $f_1, f_2 \in A$ such that $y^{\circ \circ} = f_1^{\circ}$ and $z^{\circ \circ} = f_2^{\circ}$. It follows that $f_1 \in F_{I_1}$ and $f_2 \in F_{I_2}$. If we consider $f = f_1 \wedge f_2$, then $f \in F_{I_1} \vee F_{I_2}$. On the other hand, by Lemma 5,

$$(y^{\circ} \cap z^{\circ})^{\circ} = (f_1^{\circ \circ} \cap f_2^{\circ \circ})^{\circ} = ((f_1 \wedge f_2)^{\circ \circ})^{\circ} = f^{\circ}$$

and since $x \in (y^{\circ} \cap z^{\circ})^{\circ}$, we have $x \in f^{\circ}$ and $x^{\circ\circ} \subseteq f^{\circ}$. Then $a^{\circ} \subseteq f^{\circ}$ and $a \in F_{I_1} \sqcup F_{I_2}$. Thus, $F_{I_1 \sqcup I_2} \subseteq F_{I_1} \sqcup F_{I_2}$. Conversely, if $a \in F_{I_1} \sqcup F_{I_2}$, then there is $f \in F_{I_1} \lor F_{I_2}$ such that $a^{\circ} \subseteq f^{\circ}$. So, there exists $f_1 \in F_{I_1}$ and there exists $f_2 \in F_{I_2}$ such that $f_1 \land f_2 \leq f$, i.e., there exists $(y, z) \in I_1 \times I_2$ such that $f_1^{\circ} \subseteq y^{\circ\circ}$ and $f_2^{\circ} \subseteq z^{\circ\circ}$. Then, by Lemma 5, $y^{\circ} \cap z^{\circ} \subseteq (f_1 \land f_2)^{\circ\circ}$. Again, as **A** is quasicomplemented, there is $g \in A$ such that $(f_1 \land f_2)^{\circ\circ} = g^{\circ}$. Thus, $g \in g^{\circ\circ} \subseteq (y^{\circ} \cap z^{\circ})^{\circ}$ and $g \in I_1 \sqcup I_2$. However, since $a^{\circ} \subseteq f^{\circ} \subseteq (f_1 \land f_2)^{\circ}$, it follows that $a^{\circ} \subseteq g^{\circ\circ}$. Then $a \in F_{I_1 \sqcup I_2}$ and $F_{I_1} \sqcup F_{I_2} \subseteq F_{I_1 \sqcup I_2}$. We conclude that $f(I_1 \sqcup I_2) = f(I_1) \sqcup f(I_2)$.

Finally, by Remark 32, we define for each $I_1, I_2 \in \mathrm{Id}_{\alpha}(A)$ the operation $I_1 \rightsquigarrow I_2 = f^{-1}(f(I_1) \Rightarrow f(I_2))$. Then the structure

$$\mathrm{Id}_{\alpha}(\mathbf{A}) = \langle \mathrm{Id}_{\alpha}(A), \bigcup, \bigcap, \rightsquigarrow, \{0\}, A \rangle$$

is a Heyting algebra and $f(I_1 \rightsquigarrow I_2) = f(I_1) \Rightarrow f(I_2)$ for all $I_1, I_2 \in Id_{\alpha}(A)$. Therefore, f is an isomorphism between Heyting algebras.

Remark 34. If **L** is a bounded distributive lattice, then we know that the set of all ideals Id(L) of L is a Heyting algebra, see [1], where

$$(\bullet) I \rightsquigarrow J = \{x \in A \colon \forall i \in I (x \land i \in J)\},$$

for all $I, J \in Id(L)$. Let $a \in I \rightsquigarrow J$. If $x \in a^{\circ\circ}$ and $i \in I$, then $x^{\circ\circ} \subseteq a^{\circ\circ}$ and $a \wedge i \in J$. By Lemma 5 and since J is an α -order-ideal, we have

$$(x \wedge i)^{\circ \circ} = x^{\circ \circ} \cap i^{\circ \circ} \subseteq a^{\circ \circ} \cap i^{\circ \circ} = (a \wedge i)^{\circ \circ} \subseteq J,$$

i.e., $x \wedge i \in J$. So, $x \in I \rightsquigarrow J$ and $a^{\circ \circ} \subseteq I \rightsquigarrow J$. Therefore, $I \rightsquigarrow J$ is an α -order-ideal and we have a characterization of the implication given by (\bullet) .

5. Filters-congruence-cokernels in QDS

In this section we study filters-congruence-cokernels of a distributive quasicomplemented semilattice **A** and we shall also describe the smallest filter-congruence θ in **A** such that $I = |0|_{\theta}$ for some α -order-ideal I. Let $\mathbf{A} \in \mathcal{DS}_{01}$. If $F \in Fi(A)$, it is easy to see that the relation

$$\theta(F) = \{(a, b) \in A \times A \colon \exists f \in F(a \land f = b \land f)\}$$

is a congruence on **A**. We say that a congruence θ on **A** is a *filter-congruence* if there is $F \in \text{Fi}(A)$ such that $\theta = \theta(F)$. In particular, if $F \in \text{Fi}_{\alpha}(A)$, we say that θ is an α -*filter-congruence*. There are congruences that are not filtercongruences, see [5]. If θ is a congruence on **A**, then the equivalence class $|0|_{\theta} =$ $\{a \in A : (a, 0) \in \theta\}$ is called the *cokernel of* θ . A subset $X \subseteq A$ is called *congruence-cokernel* if there exists a congruence θ on **A** such that $X = |0|_{\theta}$.

Now, we prove that for each α -order-ideal I of A, there exists an α -filter F_I such that $I = |0|_{\theta(F_I)}$.

Theorem 35. Let $\mathbf{A} \in \mathcal{QDS}$ and $I \in \mathrm{Id}_{\alpha}(A)$. Then $\theta(F_I)$ is the smallest α -filter-congruence such that $I = |0|_{\theta(F_I)}$.

PROOF: We consider the α -filter F_I of Lemma 9. First, we see that $a^{\circ} \cap F_I \neq \emptyset$ for all $a \in I$. Suppose there is $a \in I$ such that $a^{\circ} \cap F_I = \emptyset$. Since a° is an orderideal, by Theorem 1 there exists $P \in X(A)$ such that $F_I \subseteq P$ and $a^{\circ} \cap P = \emptyset$. By Lemma 5, there exists $Q \in X_m(A)$ such that $P \subseteq Q$ and $a \in Q$. It is easy to prove that $a^{\circ} \cap Q = \emptyset$. On the other hand, since **A** is quasicomplemented, there is $b \in A$ such that $a^{\circ\circ} = b^{\circ}$. In particular, $b^{\circ} \subseteq a^{\circ\circ}$ and $a \in I$, i.e., $b \in F_I$ and $b \in Q$. So, $b \in b^{\circ\circ} = a^{\circ}$. Then $a, b \in Q$ and $a \wedge b = 0 \in Q$, which is a contradiction because Q is maximal. Therefore, $a^{\circ} \cap F_I \neq \emptyset$ for all $a \in I$.

Now, we see that $I = |0|_{\theta(F_I)}$. If $a \in I$, then $a^{\circ} \cap F_I \neq \emptyset$. So, there is $f \in F_I$ such that $a \wedge f = 0$. It follows that $(a, 0) \in \theta(F_I)$ and $a \in |0|_{\theta(F_I)}$. Then $I \subseteq |0|_{\theta(F_I)}$. Reciprocally, if $a \in |0|_{\theta(F_I)}$, then there is $f \in F_I$ such that $a \wedge f = 0$. Thus, there exists $x \in I$ such that $f^{\circ} \subseteq x^{\circ \circ}$ and $a \in f^{\circ}$. It follows that $a \in x^{\circ \circ}$ and as I is an α -order-ideal, $x^{\circ \circ} \subseteq I$. Then $a \in I$ and $|0|_{\theta(F_I)} \subseteq I$.

Let $F \in \text{Fi}_{\alpha}(A)$ be such that $I = |0|_{\theta(F)}$. It is enough to show that $F_I \subseteq F$. If $a \in F_I$, then there is $x \in I$ such that $a^{\circ} \subseteq x^{\circ \circ}$. Also, since $I = |0|_{\theta(F)}$ we have $x \in |0|_{\theta(F)}$ and there exists $f \in F$ such that $x \wedge f = 0$, i.e., $f \in x^{\circ}$. So, $x^{\circ \circ} \subseteq f^{\circ}$. Then $a^{\circ} \subseteq f^{\circ}$ and $f \in a^{\circ \circ} \cap F$. Thus, as $a^{\circ \circ} \cap F \neq \emptyset$ and F is an α -filter, $a \in F$ and $F_I \subseteq F$. We conclude that $\theta(F_I) \subseteq \theta(F)$ and $\theta(F_I)$ is the smallest α -filter-congruence such that $I = |0|_{\theta(F_I)}$.

Theorem 36. Let $\mathbf{A} \in \mathcal{QDS}$ and $I \subseteq A$. The following conditions are equivalent:

- (1) I is an α -order-ideal.
- (2) I is an α -filter-congruence-cokernel.

PROOF: (1) \Rightarrow (2) By Lemma 9, F_I is an α -filter and by Theorem 35 we have $I = |0|_{\theta(F_I)}$. So, I is an α -filter-congruence-cokernel.

(2) \Rightarrow (1) If I is an α -filter-congruence-cokernel, then there is $F \in \operatorname{Fi}_{\alpha}(A)$ such that $I = |0|_{\theta(F)}$. We prove that I is an α -order-ideal. It follows that I is decreasing. Let $a, b \in I$. Then $(a, 0), (b, 0) \in \theta(F)$, i.e., there exist $f_1, f_2 \in F$ such that $a \wedge f_1 = 0$ and $b \wedge f_2 = 0$. Let $f = f_1 \wedge f_2 \in F$. So, $a, b \in f^{\circ}$ and since f° is an order-ideal, there is $c \in f^{\circ}$ such that $a \leq c$ and $b \leq c$. Thus, $(c, 0) \in \theta(F)$ and $c \in |0|_{\theta(F)} = I$. Hence, I is an order-ideal. Let $a \in I$. We see that $a^{\circ\circ} \subseteq I$. Since $a \in I = |0|_{\theta(F)}$, there is $f \in F$ such that $a \wedge f = 0$, i.e., $f \in a^{\circ}$. If $x \in a^{\circ\circ}$, then $a^{\circ} \subseteq x^{\circ}$ and $f \in x^{\circ}$. So, $x \wedge f = 0$ and $x \in |0|_{\theta(F)} = I$. Therefore, $a^{\circ\circ} \subseteq I$ and Iis an α -order-ideal.

Acknowledgement. We would like to thank the referee for the comments and suggestions on the paper.

References

- [1] Balbes R., Dwinger P., Distributive Lattices, University of Missouri Press, Columbia, 1974.
- [2] Celani S. A., Topological representation of distributive semilattices, Sci. Math. Jpn. 58 (2003), no. 1, 55–65.
- [3] Celani S. A., Distributive pseudocomplemented semilattices, Asian-Eur. J. Math. 3 (2010), no. 1, 21–30.
- [4] Celani S. A., Remarks on annihilators preserving congruence relations, Math. Slovaca 62 (2012), no. 3, 389–398.
- [5] Celani S. A., Relative annihilator-preserving congruence relations and relative annihilatorpreserving homomorphisms in bounded distributive semilattices, Open Math. 13 (2015), no. 1, 165–177.
- [6] Celani S., Calomino I., Some remarks on distributive semilattices, Comment. Math. Univ. Carolin. 54 (2013), no. 3, 407–428.
- [7] Chajda I., Halaš R., Kühr J., Semilattice Structures, Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007.
- [8] Cornish W. H., Normal lattices, J. Austral. Math. Soc. 14 (1972), 200-215.
- [9] Cornish W. H., Annulets and α-ideals in a distributive lattice, J. Austral. Math. Soc. 15 (1973), 70–77.
- [10] Cornish W., Quasicomplemented lattices, Comment. Math. Univ. Carolinae 15 (1974), 501–511.
- [11] Grätzer G., General Lattice Theory, Birkhäuser Verlag, Basel, 1998.
- [12] Jayaram C., Quasicomplemented semilattices, Acta Math. Acad. Sci. Hungar. 39 (1982), no. 1–3, 39–47.
- [13] Mandelker M., Relative annihilators in lattices, Duke Math. J. 37 (1970), 377–386.
- [14] Mokbel K. A., α -ideals in 0-distributive posets, Math. Bohem. **140** (2015), no. 3, 319–328.
- [15] Murty P.V.R., Murty M.K., Some remarks on certain classes of semilattices, Internat. J. Math. Math. Sci. 5 (1982), no. 1, 21–30.
- [16] Pawar Y., Mane D., α-ideals in 0-distributive semilattices and 0-distributive lattices, Indian J. Pure Appl. Math. 24 (1993), 435–443.
- [17] Pawar Y. S., Khopade S. S., α-ideals and annihilator ideals in 0-distributive lattices, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 63–74.
- [18] Ramana Murty P. V., Ramam V., On filters and filter congruences in semilattices, Algebra Universalis 12 (1981), no. 3, 343–351.

I. Calomino, S. Celani

- [19] Speed T. P., Some remarks on a class of distributive lattices, J. Austral. Math. Soc. 9 (1969), 289–296.
- [20] Varlet J. C., A generalization of the notion of pseudo-complementedness, Bull. Soc. Roy. Sci. Liège 37 (1968), 149–158.
- [21] Varlet J.C., Relative annihilators in semilattices, Bull. Austral. Math. Soc. 9 (1973), 169–185.

I. Calomino:

CIC AND DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS EXACTAS, UNIVERSIDAD NACIONAL DEL CENTRO, PINTO 399, CP 7000 TANDIL, ARGENTINA

E-mail: calomino@exa.unicen.edu.ar

S. Celani:

CONICET AND DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS EXACTAS, UNIVERSIDAD NACIONAL DEL CENTRO, PINTO 399, CP 7000 TANDIL, ARGENTINA

E-mail: scelani@exa.unicen.edu.ar

(Received April 11, 2019, revised March 13, 2020)