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a-filters and «-order-ideals in distributive

quasicomplemented semilattices
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Abstract. We introduce some particular classes of filters and order-ideals in dis-
tributive semilattices, called a-filters and a-order-ideals, respectively. In par-
ticular, we study a-filters and a-order-ideals in distributive quasicomplemented
semilattices. We also characterize the filters-congruence-cokernels in distributive
quasicomplemented semilattices through a-order-ideals.
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1. Introduction

If A=(AV,A0,1) is a bounded distributive lattice and a,b € A, then the
annihilator of a relative to b is the set (a,b) = {x € A: aAz < b}. In [13] M. Man-
delker studied the properties of relative annihilators and prove that a lattice A is
distributive if and only if (a, b) is an ideal of A for all a,b € A. These results were
generalized by J. Varlet in [21] to the class of distributive semilattices. In partic-
ular, the annihilator of a relative to 0 is the set a® = (a,0) = {z € A: a Az =0},
called annihilator of a or annulet of a. This concept was studied by W. Cornish
in [8], [9], where introduces the notion of a-ideal in distributive lattices. A gener-
alization of the concept of a-ideal in O-distributive semilattices and 0-distributive
lattices were studied in [16], [17].

On the other hand, in [20], [19], [10] the class of distributive quasicomplemented
lattices was studied as a generalization of the variety of distributive pseudocomple-
mented lattices. A bounded distributive lattice A is quasicomplemented if for each
a € A, thereis b € A such that a®® = b°, where a®® = {x € A: Vy € a®°(zAy =0)}.
Clearly, this class of lattices is not a variety, and in general, the element b is non-
unique. This concept can be generalized to bounded semilattices in [12], [15], [18].

The main aim of this paper is to introduce and study the notions of a-filter and
a-order-ideal in bounded distributive semilattices, which generalizes the results
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given in [8], [9]. In particular, we investigate co-filters and a-order-ideals in the
class of distributive quasicomplemented semilattices and we give some results on
filters-congruence-cokernels through a-order-ideals.

The paper is organized as follows. In Section 2 we recall some necessary def-
initions and results to make the paper self-contained. We recall the notion of
annihilator and its properties in terms of irreducible and maximal filters given
in [4], [5]. In Section 3 we present the concepts of a-filter and a-order-ideal in
bounded distributive semilattices and give some properties. We prove a separation
theorem between filters and a-order-ideals by means of irreducible o-filters. In
Section 4 we study a-filters and a-order-ideals in distributive quasicomplemented
semilattices. We prove that the set of all a-filters is a Heyting algebra isomor-
phic to the Heyting algebra of a-order-ideals. Finally, in Section 5, we study the
filters-congruence-cokernels in distributive quasicomplemented semilattices. We
prove that a subset I is an a-filter-congruence-cokernel if and only if it is an
a-order-ideal.

2. Preliminaries

We give some necessary notations and definitions. Let (X, <) be a poset.
A subset U C X is said to be increasing (decreasing, respectively), if for all
xz,y € X such that x € U (y € U) and « < y, we have y € U (x € U). The set
of all subsets of X is denoted by P(X) and the set of all increasing subsets of X
is denoted by P;(X). For each Y C X, the increasing (decreasing) set generated
by Yis[V)={z e X:3ye Yy <)} (Y] ={zre X:3y € Y(z < y)},
respectively). If Y = {y}, then we will write [y) and (y] instead of [{y}) and
({y}], respectively.

A meet-semilattice with greatest element, or simply semilattice, is an algebra
A = (A N, 1) of type (2,0) such that the operation “A” is idempotent, commuta-
tive, associative and a A 1 = a for all a € A. So, the binary relation “<” defined
by a < b if and only if a Ab = a is an order. A bounded semilattice is an algebra
A = (A A,0,1) of type (2,0,0) such that (A, A, 1) is a semilattice and a A0 =0
for all a € A.

Let A be a semilattice. A filter is a subset F' of A such that 1 € F, F is
increasing, and if a,b € F, then aAb € F. The filter generated by a subset X C A
is the set F(X) ={a € A: Jzq,...,2p € X(t1 AN... N2y < a)}. If X = {a},
then F({a}) = [a). Denote by Fi(A) the set of all filters of A. Since 1 € A, it
follows that (Fi(A),C) is a lattice. A proper filter P is irreducible if for every
Fy,Fy € Fi(A) such that P = F; N Fy, then P = F; or P = F,. Note that
a filter F' is irreducible if and only if for every a,b ¢ F, there exists ¢ ¢ F and
f € Fsuch that a A f < cand bA f < c. The set of all irreducible filters of A
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is denoted by X(A). A proper filter U is mazimal if for any G € Fi(A) such that
U C G, we have G = U or G = A. Denote by X,,,(A) the set of all maximal filters
of A. A subset I of A is an order-ideal if I is decreasing, and for every a,b € I,
there exists ¢ € I such that a < ¢ and b < ¢. We denote by Id(A) the set of all
order-ideals of A. Finally, a proper order-ideal I is prime if a A b € I implies
a €I or b e I. The following result was proved in [2].

Theorem 1. Let A be a semilattice. Let F' € Fi(A) and I € Id(A) such that
FNI=10. Then there exists P € X(A) such that F C P and PNI = .

We are interested in a particular class of semilattices.

Definition 2. Let A be a semilattice. We say that A is distributive if for every
a,b,c € A such that a A b < ¢, there exist a1,b; € A such that a < ay, b < by and
c=ai; Nby.

We denote by DS and DSy, the class of distributive semilattices and the class
of bounded distributive semilattices, respectively. Note that DS is not a variety.
A lattice is distributive if and only if it is distributive as a semilattice, see [7], [11].
The next theorem was proved by G. Grétzer in [11].

Theorem 3. Let A be a semilattice. The following conditions are equivalent:

(1) The semilattice A is distributive.
(2) (Fi(A), C), considered as a lattice, is distributive.

In [6] it was proved that if A is a distributive semilattice, then the structure
Fi(A) = (Fi(A),Y, A, —, {1}, A) is a Heyting algebra where the least element
is {1}, the greatest element is A, GYH = F(GUH), GAH =GN H and

G—oH={a€A: [a)NnGC H}
for all G, H € Fi(A).

Remark 4. If A € DS, then every maximal filter U is irreducible. Indeed, let
Fy, Fy € Fi(A) be such that U = Fy N Fy. Suppose that U C Fy and U C Fs.
Since U is maximal, we have F} = F» = A and U = A, which is a contradiction
because U is proper. Thus, X,,(A4) C X(A).

Let A be a bounded semilattice and a € A. The annihilator of a is the set
a®={x € A:aNz =0}

The annihilators were studied by several authors in [13], [4], [17], [5], [9], [10]. In
general, a° is a decreasing subset, but not an order-ideal. Later, A is distributive
if and only if a° is an order-ideal for all a € A. For more details see [21], [7]. We
note that if A is pseudocomplemented, i.e., if for every a € A there exists a* € A
such that a Ax = 0 if and only if z < a*, then a° = (a*].
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If X C A, then we define the annihilator of X as the set
Xo={recA:VyeX@@ny=0)}=(|{z": 2 € X}.

In particular, a®® = {z € A:Vy € a®(x Ay = 0)} = [{z°: z € a°} for all
a € A. In the following result we remember some properties of the annihilators
in bounded distributive semilattices.

Lemma 5. Let A € DSp1. Let a,b € A and P € X(A). We have the following
properties:
(1) If a € b°, then b°° C a®.
(2) (@AD)®° =a°°Nbee.
(3) a® N P = 0 if and only if there exists Q € X(A) such that P C @ and
a€ Q.
(4) a® N P =0 if and only if there exists U € X,,,(A) such that P C U and
acU.
(5) U € X, (A) ifand only if U € Fi(A) and Va € A(a ¢ U < a°NU #0).
(6) If U e X;n(A), thenVae A (a ¢ U < a*°NU =10).

PROOF: We only prove (1) and (2). The rest can be seen in [4], [5].

(1) Let € b°° = ({y°: y € b°}. In particular, a € b° and = € a°. Then
b°° Ca®.

(2) Let z € (aAb)°°. Let y € a®. Since a Ab < a, we have a® C (a Ab)°. Thus,
y € (aNb)° and as x € (a A b)°°, it follows that y Az =0, i.e., x € a°°. Similarly,
x € b°° and (a A b)°° C a®° Nb°°.

Conversely, let x € a®°Nb°°. If y € (aAD)°, then y A(aAb)=(yAa) ANb=0
and y Aa € b°. Since x € b°°, x A(yAa) = (xAy)Aa=0and z Ay € a°.
Again, as ¢ € a®°, we have z A (x Ay) =z Ay = 0 and = € (a AD)°°. So,
a®® Nb*>° C (a Ab)°°. O

Let A € DS¢1. Consider (X(A), C) and the map pa: A — P;(X(A)) given by
val(a) = {P € X(A): a € P}. It follows that A is isomorphic to the subalgebra
wAlA] = {pa(a): a € A} of P;(X(A)). Later, for each F' € Fi(A), we define

¢[F] = {P € X(A): F C P}.
So, ¢[F] = N{¢a(a): a € F}. Also, if Y C A, then
YY) ={PeX(A): YNP#0}=|J{rala): acY}.
Remark 6. Let A € DSp;. By Lemma 5, we have that:

(1) pala)® NXp(A) = P[a°] N Xy (A).
(2) pala) N X (A) = ¥[a] N X (A).
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3. «-filters and a-order-ideals in DSy

In this section we introduce the classes of a-filters and a-order-ideals in bounded
distributive semilattices. In particular, we give a separation theorem between fil-
ters and a-order-ideals by means of irreducible a-filters.

Definition 7. Let A € DSy, and F € Fi(A). We say that F is an a-filter if
a®® N F # () implies that a € F for all a € A.

Denote by Fi,(A) and X,(A) the set of all a-filters and irreducible o-filters
of A, respectively.

Example 8. Let A € DSy;. It follows that the set D(A) = {a € A: a®° = {0}},
called the set of dense elements, is a filter of A. Then, D(A) is an a-filter. Indeed,
if a®*ND(A) # 0, then there exists z € a®° such that z° = {0}. So, by Lemma 5,
a® C z° = {0} and a € D(A). Moreover, the a-filter D(A) is the smallest a-
filter of A. Let F € Fiy(A). If a € D(A), then a® = {0} and a°° = A. Then
a®® N F # ) and since F is an o-filter, we have a € F. Therefore, D(A) C F for
all F € Fig(A).

Lemma 9. Let A € DSo; and I € 1d(A). Then

Fr={a€ A:Jz € I(a® Cz°°)}
is an a-filter.

PROOF: It is clear that 1 € F; and F7 is an increasing subset of A. Let a,b € F7.
Then there exist x,y € I such that a¢®° C x°° and b° C y°°. So, z° C a°° and
y° C b°°. By Lemma 5, 2° Ny° C a®°° Nb°° = (a Ab)°°. As [ is an order-ideal,
there is z € I such that < z and y < z. Tt follows that z° C 2° Ny° C (a Ab)°°,
ie, (anb)®° C z°° and aAb € Fy. Thus, F; € Fi(A). We see that F7 is an a-filter.
Let a € A be such that a®® N F; # (). Then there is b € a°° such that b € F7.
Then a° C b° and there is x € I such that b° C x°°. So, a® C z°° and a € Fj.
Therefore, F is an a-filter. O

Lemma 10. Let A € DSy, and F € Fi(A). We have the following properties:

(1) If ¢[F] C X;n(A), then F is an a-filter.

(2) Xm(A4) € Xa(A).
PRrROOF: (1) Let a € A be such that a®° N F # 0. If a ¢ F, by Theorem 1 there
exists P € X(A) such that FF C P and a ¢ P. So, P € ¢[F] and P € X,,,(A).
Since a ¢ P, by Lemma 5, we have a®° N P = () and a°° N F = @, which is
a contradiction. Then a € F and F is an a-filter.

(2) It follows by Lemma 5. O

Remark 11. Let A € DSj; and P € X(A). If A is pseudocomplemented, then
a® = (a*] and a°® = (a**]. Thus, the condition a°° N P # @ is equivalent to
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a** € P and by the results developed in [3], P is maximal if and only if a** € P
implies that a € P for all a € A. Then, if A is pseudocomplemented, we have
that X, (A) = X (A). In particular, this result is also valid if A is a distributive
pseudocomplemented lattice, see [1].

Theorem 12. Let A € DSy, and X C A. Then
(%) Fo(X)={a€ A: a°° N F(X) # 0}
is the smallest a-filter containing X .

PROOF: Since 1°° = A, we have 1°° N F(X) # 0 and 1 € F,(X). Let a,b € A be
such that a < b and a € F,(X). It follows that a°° C b°° and a°° N F(X) # 0.
Thus, b°*°NF(X) #0 and b € F,(X). Let a,b € F,(X). So, a®° N F(X) # () and
b°° N F(X) # 0, i.e., there exist fi, fo € F(X) such that f; € a°° and f € b°°.
Then, by Lemma 5, we have f1 A fo € a®° Nb° N F(X) = (a Ab)°*° N F(X), ie.,
(anb)°°NF(X) # 0 and anb € F,(X). Then F,(X) € Fi(A). We see that F,(X)
is an a-filter. Let a € A be such that a®°° N F,(X) # 0. So, there exists x € a°°
such that 2°° N F(X) # 0. Then 2°° C a°° and a®°° N F(X) # 0. Therefore,
a € F,(X) and F,(X) is an a-filter. Since a € a°°, it follows that X C F,(X).
Finally, let H € Fi,(A) be such that X C H. If a € F,(X), then a®° NF(X) # 0
and a®° N H # (. As H is an o-filter, a € H and F,,(X) C H. O

It is easy to see that (%) is equivalent to
Fo(X)={ac A:3f e F(X)(a®° C f°)}.

Throughout this paper we will use the two characterizations. Moreover, by The-
orem 12, a filter F' is an o-filter if and ounly if F,,(F) = F. If X = {a}, we write
simply F,({a}) = [a)n. Note that

[)a={beA: b®°N[a) £} = {be A:a e b} ={be A: b° C a°}.

Lemma 13. Let A € DSy and a,b € A. We have the following properties:
(1) If a < b, then [b)s C [a)q-

(2) [a)o = A if and only if a = 0.

(3) [a)a = D(A) if and only if a € D(A).

(4) If aAb =0, then [a)s Y [b)a = A.

(5) [a)a = [b)o if and only if a® = b°.

(6) If [a)q = [b)a, then [a Ac)o = [bA )y for all ¢ € A.

PRrROOF: It is left to the reader. O

We have the following result that characterizes the a-filters.
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Proposition 14. Let A € DSy, and F' € Fi(A). The following conditions are
equivalent:

(1) F € Fia(A).

(2) If a € F, then [a), C F.

(3) If [a)o = [b)a and a € F, then b € F.

4) F=W{la)a: a € F}.
PROOF: (1) = (2) If b € [a)q, then b° C a° and a°° C b°°. Since a € a°°, we
have a®® N F # 0. So, b°° N F # () and as F is an a-filter, b € F. Then [a), C F.

(2) = (3) It is immediate.

(3) = (4) Since [a) C [a)q for all a € A, we have F C (J{[a)a: a € F}.
Conversely, if b € |J{[a)a: @ € F'}, then there exists a € F such that b € [a)a,
ie., b° C a® and a® C b°. So, a® = a®° Nb°° = (a A b)*° and [a)a = [a A b)a.
By hypothesis, a Ab € F and b € F. Therefore, F' = | J{[a)a: a € F}.

(4) = (1) Let b € A be such that b°° N F # (. Then there is f € F such that
f €b°. So, b° C f°. As F = |J{[a)a: a € F}, there exists a € F such that
f €la)a, ie., f© Ca® Thus, b° C a° and b € [a), C F. We conclude that F' is
an o-filter. O

Now, we define the notion of a-order-ideal.

Definition 15. Let A € DSp; and I € Id(A). We say that I is an a-order-ideal
if ¢ C I forallacel.

Denote by Id,(A) the set of all a-order-ideals of A.
Example 16. If A € DSy, then a° is an a-order-ideal for all a € A.
Example 17. Let A € DS¢; and F € Fi(A). We consider the set

Ir={acA:3IfeF(a€f°)}

Then Iy is an a-order-ideal. It is easy to see that Ir is decreasing. Let a,b € Ip.
So, there exist fi, fo € F such that a € fY and b € f5. As F is a filter, f =
fiNfo € F. It follows that a,b € f°. Since A is distributive, f° is an order-ideal
and there exists ¢ € f° such that a < c and b < ¢. It is clear that ¢ € Ir and
Ir is an order-ideal. Now, we prove that Ir is an a-order-ideal. Let a € Ip.
Then there is f € F such that a € f°. If z € a°°, then x € ({y°: y € a°}. By
Lemma 5, f°° C a° and f € a°. Thus, x € f° and = € Ir. Therefore, a°° C Ip.
In addition, note that if F' is proper, then F N Ir = (. If a € F'N I, then there
is f € F such that a € f°. By Lemma 5, f°° Ca° and f € a°,ie., fAa=0€F,
which is a contradiction.

Lemma 18. Let A € DSo; and I € Id(A). If X(A) — ¢[I] C X,,(A), then I is
an a-order-ideal.
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PROOF: Let a € I and suppose that a®® ¢ I, i.e., there is x € a°° such that = ¢ I.
By Theorem 1, there exists P € X(A) such that x € P and PN I = (). Thus,
P e X(A) —¢[I] and P € X,,,(A). It follows that z € a®°° N P, i.e., a®* NP # (.
Then, by Lemma 5, we have a € P which is a contradiction. Therefore, a°° C I
and I is an c-order-ideal. O

Proposition 19. Let A € DS¢; and I € Id(A). The following conditions are
equivalent:

(1) I €Id(A).

(2) If a®>=0b° anda € I, thenb € I.

(3) I =U{a*°:a€eI}.

PROOF: (1) = (2) Let a,b € A be such that a® = b° and a € I. So, a°® = b°°
and since I is an a-order-ideal, we have a°® C I. Then 6°° C I and b € I.

(2) = (3) As a € a®° for all a € A, it is immediate that I C [J{a®°: a € T}.
Inversely, if x € |J{a®°: a € I}, then there is b € I such that z € b°°. Thus, by
Lemma 5, 2°° C b°° and x°° = (£ AD)°°, i.e., 2° = (x Ab)°. Sincebe I, xAbe
and by hypothesis, x € I. Therefore, I = J{a®°: a € I}.

(3)= (1) Let be I and z € b°°. Then z € |J{a*°:a €I} =1,ie., x €. So,
b°° C I and I is an a-order-ideal. O

In [14] the author develops a theorem of separation in 0-distributive posets.
Now, we prove a separation theorem between filters and a-order-ideals by means of
irreducible a-filters in the class of bounded distributive semilattices. The following
theorem will be used in Theorem 24.

Theorem 20. Let A € DS¢;. Let F' € Fi(A) and I € 1d,,(A) such that FN T = ().
Then there exists P € X, (A) such that F C P and PN I = (.

PROOF: Let us consider the set F = {H € Fi(A): F C H and HN I = (}. Since
F € F, we have F # (). The union of a chain of elements of F is also in F. Then,
by Zorn’s lemma, there exists a filter P maximal in F. We prove that P € X, (A).
Let Fy, F, € Fi(A) be such that P = Fy N Fy. So, F1,Fy ¢ F,ie, Fi NI # () and
F> NI # (. Then there exist x,y € I such that x € F; and y € Fy. As [ is an
order-ideal, there is z € I such that x < z and y < z. Thus, z € PN I, which is
a contradiction. Then P is irreducible. Now, we prove that P is an a-filter. Let
a € A be such that a°° N P # () and suppose that a ¢ P. Let F' = F(P U {a}).
Then F' ¢ F and FN1 # (, i.e., there exists p € P such that pAa € I. Since I is
an a-order-ideal, (p A a)°® C I. On the other hand, as a®° N P # (), there is b € A
such that b € a°° N P. It follows that

p/\bepOOmaOO:(p/\a)OOgI
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So, p Ab € PN I which is a contradiction. Therefore, P is an irreducible a-
filter. O

Corollary 21. Let A € DSy;. Then every proper a-order-ideal is the intersection
of prime a-order-ideals.

PROOF: Let I be a proper a-order-ideal of A. For each a ¢ I, we have [a)NI = (.
By Theorem 20, there exists P, € X, (A) such that a € P, and P, NI = . Since
A is distributive, PS is an order-ideal. As P, is an o-filter, we have that P¢ is
a prime a-order-ideal. Thus, I = ({P¢: P, € Xo(A) and a ¢ I}. O

4. Distributive quasicomplemented semilattices

The concept of quasicomplement in bounded distributive lattices was studied
by T. Speed in [19] and W. Cornish in [10] as a generalization of the class of dis-
tributive pseudocomplemented lattices. In this section we give a characterization
of distributive quasicomplemented semilattices and study the concepts of a-filter
and a-order-ideal in distributive quasicomplemented semilattices.

Definition 22. Let A € DSp;. We say that A is quasicomplemented if for each
a € A, there exists b € A such that a°° = b°.

We denote by QDS the class of distributive quasicomplemented semilattices.

Theorem 23. Let A € DSy;. The following conditions are equivalent:

(1) A e QDS.
(2) For every a € A, there exists b € A such that

w[aoo] N XTTL(A) = "l}[bo] N Xm(A)'

ProOOF: (1) = (2) If a € A, then there exists b € A such that a®°° = b°. It is
immediate to see that ¥[a°°] N X, (A) = ¥[b°] N X, (A).

(2) = (1) Let @ € A. Then, by hypothesis, there exists b € A such that
P[a] N X (4) = ¥[b°] N X, (A). We prove that a®® = b°. Let & € a°° and
suppose that = ¢ b°. By Theorem 1, there exists P € X(A) such that 0° NP = ()
and z € P. So, by Lemma 5, there exists U € X,,,(A4) such that P C U and
beU. Then z € a*° NU, ie., U € ¢¥[a*°] NXn(4) = ¢¥[b°] N X, (A4). Tt follows
that 8° NU # () and b ¢ U, which is a contradiction. Thus, = € b° and a°° C b°.
Now, let x € b° and suppose that x ¢ a°° = ({y°: y € a®}. Then there is y € a°
such that = ¢ y°. By Theorem 1, there exists P € X(A) such that y° NP = ) and
x € P. So, by Lemma 5, there exists U € X,,,(A) such that P C U and y € U.
Then z € b° N U, ie., U € ¢¥[b°] N X, (A) = ¥[a®°] N X, (A) and a®° NTU # 0.
Thus, there exists z € a®® such that z € U. On the other hand, y € a° N U and
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zAy=0¢€U. Then U = A, which is a contradiction. It follows that x € a°° and
b° C a°°. Therefore, a®°® = b° and A is quasicomplemented. ([

Now, we will see some consequences of Theorem 20. We define operations
of infimum “r”, supremum “U”, and implication “=" in the set of all «-filters
Fiy(A) as follows:

GNH=GNH,
GUH = F,(GY H),
G = H =F,(G— H)

for each pair G, H € Fi,(A). By Theorem 12, GN H,GU H,G = H € Fi,(A)
for all G, H € Fi,(A). By Example 8, we consider the structure

Fin(A) = (Fin(A),U,MN,=, D(A), A).
Theorem 24. Let A € QDS. Then Fi,(A) is a Heyting algebra.

PRrROOF: Let G, H € Fi,(A). It is immediate that G M H is the infimum of G
and H. We prove that GU H = F,(G Y H) is the supremum of G and H. Note
that Fo (GYH) = Fo, (GUH). Tt is clear that GUH is an upper bound of G and H.
Let K € Fiy(A) be such that G C K and H C K. Ifa € GUH = F,(GY H),
then a®° N F(GU H) # 0, i.e., there are g € G and h € H such that g A h € a®°.
On the other hand, g,h € K and g Ah € K. So, a°® N K # () and since K is an
a-filter, we have a € K. Then G U H is the supremum of G and H.

We see that GMH C K if and only if G C H = K for all G, H, K € Fi,(A).
Suppose that GMH C K. If x € G, then [x)NH CGNH C K, ie., [x)NH C K.
So, z € H— K. Thus,z € F,(H - K) = H = Kand G C H = K.
Reciprocally, we assume that G C H = K. Let x € GM H. Then z € G and
by hypothesis, x € H = K = F,(H — K) and there exists f € H — K, i.e.,
[f/)NH C K, such that ° C f°. Suppose that z ¢ K. Since K is an a-filter,
we have 2°° N K = (). As A is quasicomplemented, there exists y € A such that
x°° = y°. So, y° € Ido(A) and by Theorem 20 there exists P € X,(A) such that
K CPand PNny® =0, ie., PNz = (. It follows that f°° C 2°° and z, f € z°°.
Then z, f € P¢ and since A is distributive, P° is an order-ideal. Then there is
p € P¢ such that z < p and f < p. On the other hand, x € H and p € H. Thus,
p€[f)NH C K C P and p € P, which is a contradiction. Then z € K and
G N H C K. Therefore, Fi,(A) is a Heyting algebra. (]

Remark 25. Let A € DS¢;. If A is pseudocomplemented, R(A) = {a*: a € A}
is the set of all regular elements of A. So, R(A) = {a € A: a = a**} and
a** € R(A) for all a € A. If we consider the binary operation a Y b = (a* A b*)*
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for each a,b € A, then we have that
R(A) = <R(A)a AEYAY *a 0, 1>

is a Boolean algebra, see [7]. On the other hand, recall that the set of all filters
of a Boolean algebra has a structure of Heyting algebra, see [1]. We denote
by Fi(R(A)) = (Fi(R(A)), Y, A, —,{1},R(A)) the Heyting algebra of filters of
the Boolean algebra R(A). Then, Fi,(A) is isomorphic to the Heyting algebra
Fi(R(A)). If we define X: Fi,(A4) — Fi(R(A)) given by A(F) = FNR(A), then A
is well-defined, A(FMG) = AM(F)AANG), A(FUG) = A(F)YA(G) and \M(F = G) =
AMF) = XG) for all F,G € Fi,(A). Let F,G € Fi,(A) such that A(F) = AG)
and a € F. Since a < a™*, we have a** € F. So, a** € FNR(A) = A(F) = \(G),
i.e., a* € G. As G is an o-filter, a € G and F' C G. The other inclusion is similar
and A is 1-1. Let H € Fi(R(A)). Then F,(H) € Fiy(A) and

a € N(Fo(H)) < a€ Fy(H)NR(A)
< a" € H and a € R(A)

<= acH
Thus, A is onto and therefore X is an isomorphism.

In every distributive pseudocomplemented lattice the filter of dense elements
is the intersection of maximal filters, see [1]. We see that the filter D(A) is the
intersection of irreducible a-filters in any distributive quasicomplemented semi-
lattice.

Lemma 26. Let A € QDS. Then D(A) = ({P: P € Xo(4)}.

ProOF: By Example 8, D(A) C F for all F € Fi,(A). In particular, we have
D(A) C ({P: P € X4(A)}. We prove the other inclusion. Suppose there is
a € ({P: P € Xo(A)} such that a ¢ D(A). Since D(A) is an a-filter, a®° N
D(A) = 0. As A is quasicomplemented, there exists b € A such that a°® = b°. So,
b° € Id,(A) and by Theorem 20 there exists @) € X, (A) such that D(A) C @Q and
QNb° =0, i.e., QNa®° = . It follows that a ¢ Q, which is a contradiction because
a € ({P: P e€X,(A)}. Therefore, we have D(A) = ({P: P € X,(A)}. O

In Lemma 10 we proved that every maximal filter is an a-filter. Now, we see
that in the class QDS the reciprocal is also valid.

Lemma 27. Let A € QDS. Then X,,(A) = X, (4).

PRrROOF: By Lemma 10, X,,(A) C X,(A). We prove the other inclusion. Let
P € X,(A) and a € A be such that a ¢ P. Since A is quasicomplemented, there
is b € A such that a°° = b°. So, b € a°. Note that [a) N [b) C D(A). Indeed, if
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x € [a)N[b) and y € 2°, then aAy =0and bAy =0, i.e.,y € a® and y € b° = a°°.
Thus, y = 0 and z° = {0}. So, [a) N [b) € D(A) and by Lemma 26, [a) N [b) C P.
Since P is irreducible and a ¢ P, we have b € P. It follows that b € a®° N P, i.e.,
a® NP # (). Conversely, it is easy to see that if a® NP # (), then a ¢ P. Therefore,
by Lemma 5, P € X,,,(A). O

Let A € DS¢; and I € Id(A). We consider
I,(I)={acA:Jzcl(acz®)} ={ac A: Jz € I(z° Ca®)}.
It is clear that I,((a]) = a°° for all a € A.

Theorem 28. Let A € QDS and I € Id(A). Then I,(I) is the smallest a-order-
ideal containing I.

PROOF: It is easy to see that I C I,(I) and that I,(I) is decreasing. Let a,b €
I,(I). Then there exist x,y € I such that a € 2°° and b € y°°. As I is an order-
ideal, there is z € I such that x < z and y < z. So, £°° C 2°° and y°° C z°°. Then
a,b € z°°. On the other hand, since A is quasicomplemented, there is w, € A
such that z°° = w;. Thus, a,b € w and as w; is an order-ideal, there is ¢ € w}
such that @ < c and b < ¢. It follows that z € I and ¢ € 2°°, i.e., ¢ € I,(I). Then
I,(I) is an order-ideal. We prove that I, (I) is an a-order-ideal. Let a € I, (I).
Then there is € I such that ° C a®. So, a®° C 2°°. If y € a°°, then y € 2°° and
y € Io(I), i.e., a®® C Io(I) and I,(I) is an a-order-ideal. Finally, let H € Id,(A)
such that I C H. If a € I,(I), then there is « € I such that a € °°. Thus, z € H
and since H is an a-order-ideal, z°° C H. Therefore, a € H and I,(I) C H. We
proved that I,([) is the smallest a-order-ideal containing I. O

The following technical result will be useful.

Lemma 29. Let A € ODS. Let P € X,,,(A) and a,b € A. If (a®°Nb°)° NP # (),
then a € P orb e P.

PROOF: As A is quasicomplemented, there exist d,lN) € A such that a°® = (a)°°
and b° = (b)°°. So,

(a®Nb°)° NP =((a)°N (b)) NP=(anb)*®)°NP=(anb)°nNP#0.

Then, by Lemma 5, aAb¢ Panda ¢ Porb¢ P. If a ¢ P, then (a)° NP # 0
and a®® NP # (. Tt follows by Lemma 5 that a € P. Analogously, if b ¢ P, then
b € P. Therefore, we conclude that a € P or b € P. O

On Id,(A) we define the binary operations

Tvj={acA: I (x,y) €I xJ[ac (z°Ny°)°}
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and ImJ =1INJ forall I,J € Id,(A). We consider

Ido(A) = (Ida(A),u,m, {0}, A).
Theorem 30. Let A € QDS. Then 1d,(A) is a bounded distributive lattice.

PrROOF: Let I, J € Id,(A). It is clear that ImJ € Idy(A) and IMJ is the infimum
of I and J. We prove that TUJ € Id,(A). By definition, I U J is decreasing. Let
a,b € IUJ. Then there exist (z1,y1), (x2,y2) € I x J such that a € (z§ NyT)°
and b € (z§Ny3)°. Since I and J are order-ideals, there is (x,y) € I x J such that
z1, 72 < xand y1,y2 < y. So, (27Ny7)° C (2°Ny°)° and (25Ny3)° C (z°Ny°)°. Tt
follows that a,b € (z° Ny°)°. Since A is quasicomplemented, there exist &, € A
such that 2° = (£)°° and y° = (§)°°. Then

(= Ny°)" = ()" N (G)™)" = ((ZAg)™)" = (@ Ag)°

and a,b € (ZAF)°. As (£ Ag)° is an order-ideal, there is ¢ € (Z A §)° such that
a<candb<c ie, ITUJ is an order-ideal. Let a € T W .J. Then there exists
(x,y) € I x J such that a € (z° Ny°)°. So, a°® C (z° Ny°)°. Tt follows that
a®® C TVUJ and TUJ is an a-order-ideal. Now, we see that TU.J is the supremum
of I and J. Let H € Id,(A) such that I C H and J C H. If a € I U J, then
there exists (z,y) € I x J such that a € (x° Ny°)°. In particular, z,y € H.
Suppose that a ¢ H. Then, by Theorem 20, there exists P € X, (A) such that
a € Pand PNH ={. By Lemma 27, X,(A) = X,,(4) and P € X,,(A). Also,
a € (xz°Ny°)° NP, ie, (z°Ny°)° NP # ) and by Lemma 29 we have z € P or
y € P. In both cases, PN H # () which is a contradiction. Then I U J C H and
TV J is the supremum of I and J.

Finally, we see that Id,(A) is distributive. Let I,J, H € Id,(A). We prove
that Im(JUH)C (ImJ)U(ImH). Let a € Im (J U H). If we suppose that
a¢ (IMJ)U(IMmH), then by Theorem 20 and Lemma 27 there exists P € X,,(A)
such that a € P and PN[INJ)U (I NH) =0. So, PN(INJ) =0 and
PN (INH)=0. On the other hand, since a € JU H, there exists (z,y) € J x H
such that a € (z° Ny°)°. Then (z° Ny°)° N P # () and by Lemma 29, z € P or
y € P. Thus,x Aa€e PN(INJ)oryAa€ PN(INH) which is a contradiction.
Therefore, a € (IMJ)W (I M H) and Id,(A) is a bounded distributive lattice. O

Actually, Id, (A) is a Heyting algebra as we will see later. Following Lemma 9
and Example 17, we have the following result.

Lemma 31. Let A € QDS. We have the following properties:

(1) If F € Fia(A), then F = Fy,..
(2) If I €1d,(A), then I = Ip,.
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ProoOF: (1) If a € Fy,, then there is © € Ip such that a®° C x°°. So, there
exists f € F such that z € f°. By Lemma 5, f°° C 2° and z°° C f°. It follows
that f°° C a°°. Since f € f°°, we have f € a®°. Asa®° NF # () and F is an
o-filter, a € F. Thus, Fr, C F. Reciprocally, let a € F. We take a°°. Since
A is quasicomplemented, there is € A such that a®° = z°, i.e., a® = z°°. As
x € x°°, then x € a® and a € F. So, x € Ir. On the other hand, since a® C x°°
and z € Ir, we have a € Fy, and F' C Fy,. Thus, F' = Fy,.

(2) Let a € Ip,. Then there is f € F such that a € f°. So, there exists z € I
such that f°© C z°°. Since z € I and I is an a-order-ideal, we have x°° C I. It
follows that a € f© C 2°°, i.e.,, a € I and Ip, C I. Conversely, let a € I and we
take a®°°. As A is quasicomplemented, there exists x € A such that a°° = z°.
Then 2° C a®° and z € Fy. Later, a € 2° and x € FY, i.e., a € Ip,. Therefore,
I1=1Ip,. O

The following observation will be useful.

Remark 32. Let L = (L,V,AL,0,1) be a bounded distributive lattice. Let
H=(H Vy,Ay,—n,0,1) be a Heyting algebra and h: L — H an isomorphism
between bounded distributive lattices. If for each a,b € L we define the binary
operation a —7, b = h~1(h(a) =5 h(b)), then we have

a<b—=pc < a<h ' (hb) =g hc)
<= h(a) < h(b) =g h(c)

<~
<= h(a AL b) < h(e)
<— aNpb<c

for all a,b,c € L. Then L = (L,Vy,Ar,—1,0,1) is a Heyting algebra.

Theorem 33. Let A € QDS. Then the Heyting algebras Id,(A) and Fi,(A)
are isomorphic.

ProoF: Let f:1d,(A) — Fin(A) be the mapping given by f(I) = F;. For
Lemma 9, f is well defined. On the other hand, by Lemma 31, f is 1-1 and onto.
We prove that f is an isomorphism between bounded distributive lattices.

Let I1, Iy € 1d,(A). We see that Fi,ar, = Fr, N FL,. If a € Fr,a1,, then there
is x € I1 N Iz such that a® C z°°. Since z € I1, a € Fr,. Analogously, a € F,.
So, a € Fr, N Fy, and Fra, C Fr, N Fr,. Reciprocally, if a € Fr, M Fp,, then
there is x € I; such that a® C z°° and there is y € I such that a° C y°°. By
Lemma 5, we have a® C 2°°Ny°° = (z Ay)°° and z Ay € [1 NI, ie., a € Frar,.
Therefore, f(Iy M I3) = f(I1) N f(I2).
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Now, we prove that Frur, = Fr, U Fr,. If a € Frur,, then there exists
x € I; U I such that a® C x°°. So, there is y € I; and there is z € I such that
x € (y° N z°)°. We take y°° and 2°°. Since A is quasicomplemented, there exist
f1, fa € A such that y°° = f7 and 2°° = f3. It follows that f1 € Fj, and f € F7,.
If we consider f = f1 A fo, then f € Fy, Y Fr,. On the other hand, by Lemma 5,

(y°Nz°)° = (17N f3°)° =((finf)) = f°
and since z € (y° N 2°)°, we have € f° and 2°° C f°. Then a®° C f° and
a € Fr, U Fy,. Thus, Frur, € Fr, U Fr,. Conversely, if a € Fr, U F,, then
there is f € Fy, Y Fp, such that a® C f°. So, there exists f1 € Fr, and there
exists fo € Fy, such that fi A fo < f, ie., there exists (y,z) € I; x Iy such
that f; C y°° and f§ C 2°°. Then, by Lemma 5, y° N 2° C (f1 A f2)°°. Again,
as A is quasicomplemented, there is g € A such that (f1 A f2)°° = ¢°. Thus,
g €g°° C (y°Nz°)° and g € I; U Iy. However, since a® C f° C (f1 A fa2)°, it
follows that a° C ¢g°°. Then a € Fryr, and Fr, UFr, C Frur,. We conclude that

(L) = f(Ii)U f(I2).
Finally, by Remark 32, we define for each I, Iy € 1d,(A) the operation I ~»
I, = f~Y(f(I1) = f(I2)). Then the structure

Ida(A) = (Ida(A), U, @, ~, {0}, A)

is a Heyting algebra and f(I1 ~ I2) = f(Ih) = f(l2) for all I,I, € Id,(A).
Therefore, f is an isomorphism between Heyting algebras. (]

Remark 34. If L is a bounded distributive lattice, then we know that the set of
all ideals Id(L) of L is a Heyting algebra, see [1], where

(o) I~~J={xecA:ViellxnieJ)},

forall I,J € Id(L). Let a € T ~ J. If z € a®° and i € I, then 2°° C a°° and
a At € J. By Lemma 5 and since J is an a-order-ideal, we have

( A9)°° = 2°°Ni% Ca®° Ni® = (aAi)*° C J,

ie, xANi € J. So,xz €I ~ Jand a°° C I ~ J. Therefore, I ~» J is an
a-order-ideal and we have a characterization of the implication given by (e).

5. Filters-congruence-cokernels in 9DS

In this section we study filters-congruence-cokernels of a distributive quasicom-
plemented semilattice A and we shall also describe the smallest filter-congruence 6
in A such that I = |0|g for some a-order-ideal I.
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Let A € DSp1. If F € Fi(A), it is easy to see that the relation
O(F)={(a,b) e AxA:IfecFlanf=bAf)}

is a congruence on A. We say that a congruence € on A is a filter-congruence
if there is F' € Fi(A) such that § = 6(F). In particular, if F' € Fiy(A), we
say that 6 is an a-filter-congruence. There are congruences that are not filter-
congruences, see [5]. If 6 is a congruence on A, then the equivalence class |0]p =
{a € A: (a,0) € 0} is called the cokernel of 6. A subset X C A is called congru-
ence-cokernel if there exists a congruence 6 on A such that X = |0]s.

Now, we prove that for each a-order-ideal I of A, there exists an a-filter Ff
such that I = [0]g(s,)-

Theorem 35. Let A € QDS and I € Ido(A). Then 0(F;) is the smallest a-
filter-congruence such that I = [0[g(g,)-

PROOF: We consider the a-filter F of Lemma 9. First, we see that a® N Fy # ()
for all a € I. Suppose there is a € I such that a® N F; = (). Since a® is an order-
ideal, by Theorem 1 there exists P € X(A) such that F;y C P and a®° N P = {.
By Lemma 5, there exists @ € X,,,(A4) such that P C Q and a € Q. It is easy to
prove that a® N @Q = . On the other hand, since A is quasicomplemented, there
is b € A such that a°° = b°. In particular, b°* C a°° and a € I, i.e., b € F; and
be Q. So,be b =a°. Thena,b e @ and aAb=0 € @Q, which is a contradiction
because @ is maximal. Therefore, a® N Fy # ) for all a € I.

Now, we see that I = [0|g(p,). If a € I, then a® N Fy # (). So, there is
f € Fy such that a A f = 0. It follows that (a,0) € 0(F7) and a € |0|g(p,). Then
I C |0[g(p,)- Reciprocally, if a € |0]g(p,), then there is f € Fy such that aA f = 0.
Thus, there exists x € I such that f° C z°° and a € f°. It follows that a € x°°
and as [ is an a-order-ideal, °° C I. Then a € I and |0|9(F1) clI.

Let F' € Fia(A) be such that I = |0[g(p). It is enough to show that F; C F'.
If a € Fr, then there is € I such that a® C x°°. Also, since I = [0]g(r) we
have = € |0[g(p) and there exists f € F such that z A f = 0, i.e., f € 2°. So,
2°° C f°. Then a® C f° and f € a®° NF. Thus, as a®° NF # () and F is an
a-filter, a € F and Fr C F. We conclude that 0(Fr) C 0(F) and 6(F7) is the
smallest a-filter-congruence such that I = [0g(r,). O

Theorem 36. Let A € QDS and I C A. The following conditions are equivalent:
(1) I is an a-order-ideal.

(2) I is an a-filter-congruence-cokernel.

PRrROOF: (1) = (2) By Lemma 9, Fs is an a-filter and by Theorem 35 we have
I = |0]g(r,)- So, I is an a-filter-congruence-cokernel.
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(2) = (1) If I is an a-filter-congruence-cokernel, then there is F' € Fi,(A)
such that I = [0[g(r). We prove that I is an a-order-ideal. It follows that I is
decreasing. Let a,b € I. Then (a,0), (b,0) € §(F), i.e., there exist f1, fo € F such
that aA fi =0and bA fo =0. Let f = fi A fo € F. So, a,b € f° and since f° is
an order-ideal, there is ¢ € f° such that a < ¢ and b < ¢. Thus, (¢,0) € §(F) and
c € |0]g¢py = I. Hence, I is an order-ideal. Let a € I. We see that a°® C I. Since
a € I = |0]g(py, there is f € F such that a A f =0, ie., f € a®. If x € a®°, then
a® Cx°and f € 2°. So, x A f =0 and x € |0]g(py = I. Therefore, a°® C I and [
is an a-order-ideal. O
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