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Extreme points of the Besicovitch–Orlicz space of almost

periodic functions equipped with the Luxemburg norm
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Abstract. We investigate which points in the unit sphere of the Besicovitch–
Orlicz space of almost periodic functions, equipped with the Luxemburg norm,
are extreme points. Sufficient conditions for the strict convexity of this space are
also given.
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1. Introduction

It is well known that extreme points, which are connected with strict convexity

of the space, are the most basic concepts in the geometric theory of Banach spaces,

see [5]. The notion of extreme point plays an important role in functional analysis,

convex analysis and optimization. For example, the Krein–Milman theorem which

shows that any compact convex set is the convex hull of its extreme point set.

The criteria for extreme points and strict convexity in classical Orlicz spaces

(i.e. Banach spaces of which the Lp spaces are a special case) and Musielak–

Orlicz spaces (i.e. spaces which are generalization of Lebesgue spaces with variable

exponents Lp(x)) equipped with the Orlicz norm, the Luxemburg norm, and p-

Amemiya norm, have been obtained earlier, see for instance [4], [6], [13], [12].

In recent years, some geometrical properties of the Besicovitch–Orlicz space of

almost periodic functions have been considered in [1], [3], [8], [10], [11]. However

until now, criteria for extreme points in this class of generalized almost periodic

function spaces are not given. In this paper, we characterize extreme points of

the unit ball of the Besicovitch–Orlicz space of almost periodic functions equipped

with the Luxemburg norm.
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2. Preliminaries

In this section, we recall a sequence of definitions and results which will be

used in what follows.

Let Σ(R) be the σ−algebra of all Lebesgue-measurable subsets of R, µ the

Lebesgue measure on R and M(R,C) the set of all complex valued Lebesgue

measurable functions defined on R.

We denote by B(X) (S(X), respectively) the closed unit ball (the unit sphere,

respectively) of a Banach space (X, ‖·‖).

A point x ∈ S(X) is said to be an extreme point of B(X) if it cannot be written

as the arithmetic mean 1
2 (y+ z) of two distinct points y, z ∈ S(X). Namely, if the

following implication holds

y, z ∈ S(X), x =
y + z

2
⇒ y = z.

The set of all extreme points of B(X) will be denoted by extr[B(X)]. It is well

known that if extr[B(X)] = S(X) then X is strictly convex (rotund).

2.1 Young functions. To introduce the desired class of almost periodic func-

tions, recall that a function ϕ : R → R
+ is said to be a Young function if it is even,

convex, vanishing only at zero and lim|x|→∞ ϕ(x) = ∞.

A Young function ϕ is said to satisfy the ∆2-condition for large values (we

write ϕ ∈ ∆2), when there exist constants k > 0 and u0 > 0 such that,

ϕ(2u) ≤ kϕ(u), ∀ |u| ≥ u0.

A Young function ϕ is called strictly convex on R if

ϕ
(u+ v

2

)
<

1

2
(ϕ(u) + ϕ(v)), ∀u, v ∈ R, u 6= v.

Let us recall that if ϕ is strictly convex then it is uniformly convex on any bounded

interval, see [4, Proposition 1.4]. Namely, for any k > 0, and ε > 0, there exists

δ > 0 such

(2.1) ϕ
(u+ v

2

)
≤ (1− δ)

(ϕ(u) + ϕ(v)

2

)

for any u, v ∈ R satisfying |u| ≤ k, |v| ≤ k and |u− v| ≥ ε.

Following [4], an interval [a, b] is called a structural affine interval of a Young

function ϕ, provided that ϕ is affine on [a, b] and it is not affine on either [a− ε, b]

or [a, b+ ε] for any ε > 0.

Let {[ai, bi]}i be all the structural affine intervals of ϕ. We denote Sϕ =

R\
[⋃

i ]ai, bi[
]
the set of strictly convex points of ϕ. Clearly, if u, v ∈ R, α ∈ ]0, 1[
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and αu+ (1− α)v ∈ Sϕ, then

ϕ(αu + (1− α)v) < αϕ(u) + (1 − α)ϕ(v).

2.2 The Besicovitch–Orlicz space of almost periodic functions. We de-

note by Lϕ
loc(R,C) the subspace of M(R,C) such that for each bounded interval U

there exists α > 0 such that
∫

U

ϕ(α|f(s)|) ds < ∞.

When U = [0, 1], we get the Orlicz space Lϕ([0, 1],C), see [4].

The Besicovitch–Orlicz pseudo modular ̺Bϕ is defined in [7] as follows

̺Bϕ : Lϕ
loc(R,C) → R

+

f 7→ lim
T→∞

1

2T

T∫

−T

ϕ(|f(t)|) dµ.

Its associated modular space, called Besicovitch–Orlicz space, is

B
ϕ(R,C) = {f ∈ Lϕ

loc(R,C) : ̺Bϕ(λf) < ∞ for some λ > 0}.

This space is endowed with the Luxemburg pseudonorm

‖f‖Bϕ = inf
{
k > 0: ̺Bϕ

(f
k

)
≤ 1
}
.

Let us consider the equivalence relation

f ∼ϕ g ⇔ ‖f − g‖Bϕ = 0, ∀ f, g ∈ B
ϕ(R,C).

We denote by Bϕ(R,C) := B
ϕ(R,C)/∼ϕ the quotient space. Henceforth, we

will not distinguish between an element of B
ϕ(R,C) and its equivalence class in

Bϕ(R,C).

Endowed with the Luxemburg norm ‖·‖Bϕ , Bϕ(R,C) is a Banach space.

Denote by Trig(R,C) the linear set of all generalized trigonometric polynomi-

als, i.e.

Trig(R,C) =

{
P (t) =

n∑

j=1

αj exp(iλjt) : λj ∈ R, αj ∈ C, j ∈ N

}
.

In his celebrated paper [7], T.R. Hillmann has used a similar approach like Besi-

covitch in [2] to obtain an extension of Besicovitch almost periodic functions in

context of Orlicz spaces. Namely, the Besicovitch–Orlicz space of almost periodic
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functions, denoted by Bϕ
a.p.(R,C), is the closure of Trig(R,C) in Bϕ(R,C), with

respect to the norm ‖·‖Bϕ . More exactly we define

Bϕ
a.p.(R,C) =

{
f ∈ Bϕ(R,C) : ∃ (Pn)n≥1 ⊂ Trig(R,C),

s.t. lim
n→∞

‖f − Pn‖Bϕ = 0
}

=
{
f ∈ Bϕ(R,C) : ∃ (Pn)n≥1 ⊂ Trig(R,C),

s.t. ∀ k > 0, lim
n→∞

̺Bϕ(k(f − Pn)) = 0
}
.

Remark 1.

(1) If we denote by AP (R,C) the Banach space of almost periodic functions,

we have

AP (R,C) ⊂ Bϕ
a.p.(R,C).

(2) In the particular case where f ∈ Bϕ
a.p.(R,C) we have

̺Bϕ(k(f)) < ∞, ∀ k > 0.

Indeed, if f ∈ Bϕ
a.p.(R,C) then for any ε > 0 there exists a trigonometric

polynomial Pε such that for any k > 0

̺Bϕ(k(f − Pε)) ≤
ε

2
.

Then using the convexity of ϕ and the fact that the trigonometric poly-

nomial Pε is bounded we get

̺Bϕ(kf) ≤
1

2
̺Bϕ(2k(f − Pε)) +

1

2
̺Bϕ(2kPε) < ∞.

From [8], we know that when f ∈ Bϕ
a.p.(R,C) the limit in the expression of

̺Bϕ(f) exists and is finite, i.e.

(2.2) ̺Bϕ(f) = lim
T→∞

1

2T

T∫

−T

ϕ(|f(t)|) dµ.

This fact is very useful in our computations.

T.R. Hillmann in [7] has introduced the subadditive measure µB on Σ(R) as

the following

(2.3) µB(A) = lim
T→∞

1

2T

T∫

−T

χA(t) dµ = lim
T→∞

1

2T
µ(A ∩ [−T, T ]),

where χA denotes the characteristic function of A.
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It is clear that µB is increasing, null on sets with µ-finite measure and it is not

σ-additive.

Let us recall that a sequence (fn)n≥1 ⊂ Bϕ(R,C) is called:

(1) modular convergent to some f ∈ Bϕ(R,C) when there exists α > 0 such

that

lim
n→∞

̺Bϕ(α(fn − f)) = 0.

(2) µB-convergent to a function f when for all ε > 0,

lim
n→∞

µB{t ∈ R : |fn(t)− f(t)| ≥ ε} = 0.

In his work [9], M. Morsli showed that if (fn)n∈N is modular convergent to some

f ∈ Bϕ(R,C), it is also µB-convergent to f . He also gave in [9] a result similar

to the usual Lebesgue dominated convergence theorem in the space Bϕ(R,C), as

it can be seen in the following proposition.

Proposition 1 (see [9]). Let (fn)n∈N be a sequence of functions in Bϕ(R,C).

Then if (fn)n∈N is µB-convergent to some f ∈ Bϕ(R,C) and there exists g ∈

Bϕ
a.p.(R,C) such that max(|fn(x)|, |f(x)|) ≤ |g(x)| for all x ∈ R. Then,

lim
n→∞

̺Bϕ(fn) = ̺Bϕ(f).

The next lemmas will be very useful in the proof of the main result.

Lemma 1 (see [1]). Let f ∈ Bϕ
a.p.(R,C) then:

(1) ‖f‖Bϕ ≤ 1 if and only if ̺Bϕ(f) ≤ 1,

(2) ‖f‖Bϕ = 1 if and only if ̺Bϕ(f) = 1.

Lemma 2 (see [8]). Let f ∈ Bϕ
a.p.(R,C) such that ‖f‖Bϕ = a with a > 0. Then

there exists real numbers 0 < α < β and θ ∈ ]0, 1[ such that µB(G) ≥ θ, where

G = {t ∈ R : α ≤ |f(t)| ≤ β}.

3. Main result

Our first goal in this work is to show that if f ∈ Bϕ
a.p.(R,C) then we do not

necessarily have fχA ∈ Bϕ
a.p.(R,C) for any A ∈ Σ(R).

Lemma 3. There is a Lebesgue measurable subset A of R for which the limit

(3.1) lim
T→∞

1

2T
µ([−T, T ] ∩ A),

does not exist.
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Proof: Let us note first that if the limit (3.1) exists, it would be the same if T

is an integer. So to show this lemma, it is sufficient to find a subset A ∈ Σ(R)

such that

lim
N→∞

1

N
µ([0, N ] ∩ A),

does not exist.

Since, for n ≥ 1, there exists k ∈ N for which n ∈ [32k, 32k+1[ , we define the

sequences (un)n≥1 and (An)n≥1 as following

(3.2) un =

{
0 if n ∈ [32k, 32k+1[ ,

1 if n ∈ [32k+1, 32(k+1)[ ,

and

An =

{
[n, n+ 1[ if n ∈ [32k, 32k+1[ ,

∅ if n ∈ [32k+1, 32(k+1)[ .

We have µ(An) = un for all n ≥ 1.

Defining A =
⋃

n≥1An and SN = 1
N

∑N
n=1 un, we get

lim
N→∞

1

N
µ(A ∩ [0, N ]) = lim

N→∞
SN .

The limit limN→∞ SN does not exist. Indeed, for each N ≥ 1 we have

S32N =
1

32N

32N∑

n=1

un =
1

32N

N−1∑

k=0

( 32k+1−1∑

n=32k

un +

32(k+1)−1∑

n=32k+1

un

)
+ u32N

=
1

32N

N−1∑

k=0

(32(k+1) − 32k+1) =
6

32N

N−1∑

n=1

32k

=
6

32N

(32N − 1

8

)
.

It follows that limN→∞ S32N = 3
4 .

In the other hand,

lim
N→∞

S32N+1 = lim
N→∞

(1
3
S32N +

1

32N+1

)
=

1

4
.

This ends the proof. �

Remark 2. If we take f the constant function equal to 1, then using (2.2) and

Lemma 3, we deduce that there exists A ∈ Σ(R) such that fχA /∈ Bϕ
a.p.(R,C).

Let us give another property of µB.

Lemma 4. The function µB : Σ(R) → [0, 1] is surjective.
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Proof: (1) Let A ∈ Σ(R).

(a) It is clearly, by the definition of µB, that if µ(A) < ∞ we have µB(A) = 0.

(b) Since µB(R) = 1, we obtain µB(A) = 1 when µ(Ac) < ∞.

(2) Let β ∈ ]0, 1[ , there exists α > 0 such that β = α/(α+ 1). We define

An = [(α + 1)(n− 1), (α+ 1)(n− 1) + α], n ∈ Z
∗, and A =

⋃

n∈Z∗

An.

Then,

µB(A) = lim
T→∞

1

T
µ

(
[0, T ] ∩

(⋃

n≥1

An

))
= lim

T→∞

1

T

∑

n≥1

µ(An ∩ [0, T ]).

It is easy to show that for any n ≥ 1,

An ∩ [0, T ] =





An if n ≤
⌊
T+1
1+α

⌋
,

ϕ if n >
⌊
1 + T

α+1

⌋
,

[
T+1
1+α

, T
]

if n ∈
[
T+1
1+α

, 1 + T
1+α

]
,

where ⌊·⌋ denotes the floor function.

Since there is at most one integer in the interval
[
T+1
1+α

, 1 + T
1+α

]
, it follows that

there exists 0 ≤ θ ≤ 1 such that

µB(A) = lim
T→∞

1

T

∑

n≥1

µ(An ∩ [0, T ]) = lim
T→∞

1

T

(⌊ T+1
1+α

⌋
∑

n=1

µ(An) + θα

)

= lim
T→∞

1

T

(⌊T + 1

1 + α

⌋
α+ θα

)
.

Using the inequality x−1 < ⌊x⌋ ≤ x for all x ∈ R, we get µB(A) = α/(α+ 1) = β.

�

In the following we characterize extreme points of the unit ball of Bϕ
a.p.(R,C).

We start with some auxiliary lemmas.

Definition 1. A function f ∈ Bϕ(R,C) is said to be absolutely ϕ-integrable

in µB sense, if for every ε > 0, there exists δ = δ(ε) > 0, such that for every

measurable subset A ∈ Σ(R) with µB(A) < δ we have

‖fχA‖Bϕ ≤ ε.

Lemma 5. Functions f ∈ Bϕ
a.p.(R,C) are absolutely ϕ-integrable in the µB

sense.
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Proof: First, let us show that bounded functions are absolutely ϕ-integrable

in µB sense.

Let ε > 0, A ∈ Σ(R) and f : R → C be a bounded function. Put C =

supt∈R |f(t)|. Here, we exclude for simplicity the trivial case, when µB(A) = 0.

Clearly, we have

‖χA‖Bϕ =
1

ϕ−1(1/µB(A))
and ‖fχA‖Bϕ ≤ C‖χA‖Bϕ .

Since the function t → (ϕ−1(1/t))−1 is continuous and increasing on ] 0,∞[ ,

we deduce that there exists δ := (ϕ(C/ε))−1 such that ‖fχA‖Bϕ ≤ ε, whenever

µB(A) < δ.

Now, let us assume that f ∈ Bϕ
a.p.(R,C). There exists a trigonometric polyno-

mial Pε such that

(3.3) ‖f − Pε‖Bϕ ≤
ε

2
.

Since Pε is absolutely ϕ-integrable in the µB sense, there exists δ > 0 such that

‖PεχA‖Bϕ ≤ ε/2 whenever µB(A) < δ. For such δ, we have

‖fχA‖Bϕ ≤ ‖(f − Pε)χA‖Bϕ + ‖PεχA‖Bϕ ≤ ‖f − Pε‖Bϕ + ‖PεχA‖Bϕ ≤ ε.

This completes the proof of the lemma. �

Lemma 6. Let f be a function in Bϕ
a.p.(R,C), then there exists δ > 0 such that

fχEc ∈ Bϕ
a.p.(R,C)

for any E ∈ Σ(R) with µB(E) < δ. Consequently, fχE ∈ Bϕ
a.p.(R,C).

Proof: Let ε > 0, there exists a trigonometric polynomial Pε such that

(3.4) ‖f − Pε‖Bϕ ≤
ε

2
.

Using Lemma 5, there exists δ > 0 such that ‖PεχE‖Bϕ ≤ ε/2 for every measur-

able subset E ∈ Σ(R) with µB(E) < δ.

For the above Pε, E and δ we have

‖fχEc − Pε‖Bϕ = ‖fχEc − PεχEc − PεχE‖Bϕ

≤ ‖(f − Pε)χEc‖Bϕ + ‖PεχE‖Bϕ

≤ ‖f − Pε‖Bϕ + ‖PεχE‖Bϕ ≤ ε.

This shows that fχEc ∈ Bϕ
a.p.(R,C). Hence, the space Bϕ

a.p.(R,C) being linear,

we get fχE ∈ Bϕ
a.p.(R,C). �

We are now ready to give our principal result.
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Theorem 1. Let f ∈ S(Bϕ
a.p.(R,C)). We suppose that µB(f

−1([a, b])) = 0 for

any structural affine interval [a, b] of ϕ. Then f ∈ extr[B(Bϕ
a.p.(R,C))] if and

only if µ({t ∈ R : f(t) /∈ Sϕ}) = 0.

Proof: The proof is inspired by the proof of [8, Theorem 1]) and [4, Theorem 2.1].

Sufficiency: Suppose that there exists g, h ∈ S(Bϕ
a.p.(R,C)), g 6= h, such that

2f = g + h. By Lemma 1 we have

̺Bϕ((g + h)/2) = ̺Bϕ(f) = ̺Bϕ(g) = ̺Bϕ(h) = 1.

Since ‖g − h‖Bϕ 6= 0, Lemma 2 ensures the existence of constants 0 < α < β

and θ ∈ ] 0, 1[ for which µB(G1) > θ, where

G1 = {t ∈ R : α ≤ |g(t)− h(t)| ≤ β}.

Define M = ϕ−1(2/µB(G1)), then M ≤ ϕ−1(2/θ).

Denoting G2 = {t ∈ R : s.t. |g(t)| ≥ M} we have,

1 = ̺Bϕ (g) ≥ ̺Bϕ (gχG2) ≥ ϕ(M)µB(G2) = 2
µB(G2)

µB(G1)
.

Consequently, we have

(3.5) µB(G2) ≤
µB(G1)

2
.

Consider now the subset Q of R2 defined by

Q =
{
(u, v) ∈ R

2 : u, v ∈
[
−
(
ϕ−1

(2
θ

)
+ β

)
,
(
ϕ−1

(2
θ

)
+ β

)]
,

∣∣∣u− v
∣∣∣ ≥ α,

u+ v

2
∈ Sϕ

}
.

Let F : R2\(0, 0) → R be the function defined by

F (u, v) =
2ϕ((u+ v)/2)

ϕ(u) + ϕ(v)
.

Function F is continuous and F (u, v) < 1 for all u, v ∈ Q.

Since Q is compact, there exists 0 < δ < 1 such that sup(u,v)∈QF (u, v) = 1−δ.

So we have

(3.6) ϕ
(u+ v

2

)
≤ (1− δ)

ϕ(u) + ϕ(v)

2
, ∀ (u, v) ∈ Q.

Let us define G = (G1 ∩E)\G2, where E = {t ∈ R : s.t. f(t) ∈ Sϕ}. It is clear

that for all t ∈ G, (g(t), h(t)) ∈ Q. We have also µB(G) ≥ θ/2.
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Indeed, since µ(Ec) = 0 we have µB(G1 ∩ E) = µB(G1). Then sing (3.5) we

get

(3.7) µB(G) = µB((G1 ∩ E)\G2) ≥ µB(G1 ∩ E)− µB(G2) ≥ θ −
θ

2
=

θ

2
.

We denote G = G ∩ [−T, T ] and ̺T ((g + h)/2) = 1
2T

∫ T

−T
ϕ(|g(t) + h(t)|/2) dµ,

then by (3.6) we obtain

̺T

(g + h

2

)
=

1

2T

∫

G

ϕ
( |g(t) + h(t)|

2

)
dµ+

1

2T

∫

G
c

ϕ
( |g(t) + h(t)|

2

)
dµ

≤ (1− δ)
1

2T

∫

G

1

2
[ϕ(|g(t)|) + ϕ(|h(t)|)] dµ

+
1

2T

∫

G
c

1

2
[ϕ(|g(t)|) + ϕ(|h(t)|)] dµ

≤
1

2T

T∫

−T

1

2
[ϕ(|g(t)|) + ϕ(|h(t)|)] dµ

− δ
1

2T

∫

G

1

2
[ϕ(|g(t)|) + ϕ(|h(t)|)] dµ.

Since ϕ is an increasing convex function we have

1

2
(ϕ(|g(t)|) + ϕ(|h(t)|)) ≥ ϕ

( |g(t)|+ |h(t)|

2

)
≥ ϕ

( |g(t)− h(t)|

2

)
.

Using the fact that G ⊂ G1 we obtain

1

2
(̺T (g) + ̺T (h))− ̺T

(g + h

2

)
≥ δϕ

(α
2

)µ(G)

2T
.

Letting T → ∞, then by (2.2) and (2.3) we get

1

2
[̺Bϕ(g) + ̺Bϕ(h)]− ̺Bϕ

(g + h

2

)
≥ δϕ

(α
2

)
µB(G).

Consequently, by the inequality (3.7), we deduce that

1 = ̺Bϕ

(g + h

2

)
≤

1

2
[̺Bϕ(g) + ̺Bϕ(h)]− δϕ

(α
2

)
µB(G)

≤ 1− δϕ
(α
2

)θ
2
.

Which is absurd. Thus we showed that f is an extreme point.
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Necessity: Suppose that µ({t ∈ R : f(t) /∈ Sϕ}) > 0.

Let ε > 0. Since R\Sϕ is the union of at most countably many open intervals,

there exists an interval ]a, b[ such that for ε > 0

µ({t ∈ R : f(t) ∈ ]a+ ε, b− ε[ }) > 0,

and ϕ is affine on [a, b]. That is,

ϕ(u) = ku+ β for u ∈ [a, b] with k ∈ R
+ and β ∈ R.

We divide the set H = {t ∈ R : f(t) ∈ ]a+ ε, b− ε[ } into two sets A and B. Then

we define

(3.8) (g(t), h(t)) =





(f(t), f(t)) if t ∈ R\(A ∪B),

(f(t)− ε, f(t) + ε) if t ∈ A,

(f(t) + ε, f(t)− ε) if t ∈ B.

Then g 6= h, g + h = 2f and g, h ∈ Bϕ
a.p.(R,C). Indeed, we have µB(H) = 0

because H ⊂ f−1([a, b]), then by Lemma 6 we get

fχHc , (f − ε)χA, (f + ε)χB ∈ Bϕ
a.p.(R,C).

Now, we should show that ‖g‖Bϕ ≤ 1. We have

̺T (g) = ̺T (fχ(A∪B)c) + ̺T (fχA) + ̺T (fχB)

= ̺T (fχ(A∪B)c) +
1

2T

∫

[−T,T ]∩A

(k|f(t)− ε|+ β) dµ

+
1

2T

∫

[−T,T ]∩B

(k|f(t) + ε|+ β) dµ

≤ ̺T (fχ(A∪B)c) +
1

2T

∫

[−T,T ]∩A

(k|f(t)|+ β + kε) dµ

+
1

2T

∫

[−T,T ]∩B

(k|f(t)|+ β + kε) dµ

≤ ̺T (fχ(A∪B)c) + ̺T (fχ(A∪B)) + k ε
1

2T
µ ([−T, T ] ∩ (A ∪B)) dµ.

Letting T → ∞, we get

̺Bϕ(g) ≤ ̺Bϕ(f) + kεµB(H).
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By applying the hypothesis µB(f
−1([a, b])) = 0 for any structural affine interval

[a, b] of ϕ, we deduce that µB(H) = 0. Then we get

̺Bϕ(g) ≤ ̺Bϕ(f) = 1.

Using same arguments, so by Lemma 1 we get ‖h‖Bϕ ≤ 1, which completes the

proof. �

The following corollary gives sufficient conditions for the strict convexity of the

Besicovitch–Orlicz space of almost periodic functions equipped with the Luxem-

burg norm. Note that the conditions are the same as those given in [8, Theorem 1]

when we consider Bϕ
a.p.(R,C) instead of B̃ϕ

a.p.(R,C). Recall that

B̃ϕ
a.p.(R,C) = {f ∈ Bϕ(R,C) : ∃ (Pn)n≥1 ⊂ Trig(R,C),

∃ k > 0 s.t. lim
n→∞

̺Bϕ(k(f − Pn)) = 0}.

Corollary 1. If ϕ is strictly convex on R then Bϕ
a.p.(R,C) is strictly convex.

Proof: The hypothesis of strict convexity of ϕ on R means that Sϕ = R and

then by Theorem 1 we get extr[B(Bϕ
a.p.(R,C))] = S(Bϕ

a.p.(R,C)) and the claim

is proved. �
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