Remarks on WDC sets

DUŠAN POKORNÝ, LUDĚK ZAJÍČEK

Abstract. We study WDC sets, which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. Main results concern WDC sets $A \subset \mathbb{R}^2$. We prove that, for such A, the distance function $d_A = \operatorname{dist}(\cdot, A)$ is a "DC aura" for A, which implies that each closed locally WDC set in \mathbb{R}^2 is a WDC set. Another consequence is that compact WDC subsets of \mathbb{R}^2 form a Borel subset of the space of all compact sets.

Keywords: distance function; WDC set; DC function; DC aura; Borel complexity Classification: 26B25

1. Introduction

In [10] (cf. also [8], [7] and [11]), the authors introduced the class of WDC sets which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. The following question naturally arises, see [8, Question 2, page 829] and [7, 10.4.3].

Question. Is the distance function $d_A = \text{dist}(\cdot, A)$ of each WDC set $A \subset \mathbb{R}^d$ a DC aura for A (see Definition 2.3)?

We answer this question positively in the case d = 2 (Theorem 3.3 below); it remains open for $d \ge 3$. The proof is based on a characterization (proved in [11]) of closed locally WDC sets in \mathbb{R}^2 and the main result of [12] which asserts that

(1.1) d_A is a DC function if $A \subset \mathbb{R}^2$ is a graph of a DC function $g: \mathbb{R} \to \mathbb{R}$.

Recall that a function is called DC, if it is the difference of two convex functions. Let us note that each set A as in (1.1) is a WDC set (it is easy to show that the function $(x, y) \mapsto |g(x) - y|$ is a DC aura for graph g, cf. the proof of [11, Proposition 6.6]).

Theorem 3.3 easily implies that each closed locally WDC set in \mathbb{R}^2 is WDC. Further, we use Theorem 3.3 to prove that compact WDC subsets of \mathbb{R}^2 form a Borel subset of the space of all compact sets of \mathbb{R}^2 (Theorem 4.1 (i)). The importance of this result is the fact that it suggests that (at least in \mathbb{R}^2) a theory

DOI 10.14712/1213-7243.2021.006

The research was supported by GAČR 18-11058S.

of point processes on the space of compact WDC sets (analogous to the concept of point processes on the space of sets with positive reach introduced in [16]) can be build.

Concerning the compact WDC subsets of \mathbb{R}^d for d > 2, we are able to prove only a weaker fact that they form an analytic set (Theorem 4.1 (ii)) which is not probably sufficient for the above mentioned application.

2. Preliminaries

2.1 Basic definitions. The symbol \mathbb{Q} denotes the set of all rational numbers. In any vector space V, we use the symbol 0 for the zero element. We denote by B(x,r) (U(x,r)) the closed (open) ball with centre x and radius r. The boundary and the interior of a set M are denoted by ∂M and $\operatorname{int} M$, respectively. A mapping is called K-Lipschitz if it is Lipschitz with a (not necessarily minimal) constant $K \geq 0$.

The metric space of all real-valued continuous functions on a compact K (equipped with the usual supremum metric ρ_{sup}) will be denoted C(K).

In the Euclidean space \mathbb{R}^d , the norm is denoted by $|\cdot|$ and the scalar product by $\langle \cdot, \cdot \rangle$. By S^{d-1} we denote the unit sphere in \mathbb{R}^d .

The distance function from a set $A \subset \mathbb{R}^d$ is $d_A \coloneqq \text{dist}(\cdot, A)$ and the metric projection of $z \in \mathbb{R}^d$ to A is $\Pi_A(z) \coloneqq \{a \in A \colon \text{dist}(z, A) = |z - a|\}.$

2.2 DC functions. Let f be a real function defined on an open convex set $C \subset \mathbb{R}^d$. Then we say that f is a *DC function*, if it is the difference of two convex functions. Special DC functions are semiconvex and semiconcave functions. Namely, f is a *semiconvex* (*semiconcave*, respectively) function, if there exist a > 0 and a convex function g on C such that

$$f(x) = g(x) - a|x|^2$$
 $(f(x) = a|x|^2 - g(x)$, respectively), $x \in C$.

We will use the following well-known properties of DC functions.

Lemma 2.1. Let C be an open convex subset of \mathbb{R}^d . Then the following assertions hold:

- (i) If $f: C \to \mathbb{R}$ and $g: C \to \mathbb{R}$ are DC, then for each $a \in \mathbb{R}$, $b \in \mathbb{R}$ the functions |f|, af + bg, $\max(f, g)$ and $\min(f, g)$ are DC.
- (ii) Each locally DC function $f: C \to \mathbb{R}$ is DC.
- (iii) Each DC function $f: C \to \mathbb{R}$ is Lipschitz on each compact convex set $Z \subset C$.

(iv) Let $f_i: C \to \mathbb{R}$, i = 1, ..., m, be DC functions. Let $f: C \to \mathbb{R}$ be a continuous function such that $f(x) \in \{f_1(x), \ldots, f_m(x)\}$ for each $x \in C$. Then f is DC on C.

PROOF: Property (i) follows easily from definitions, see e.g. [14, page 84]. Property (ii) was proved in [9]. Property (iii) easily follows from the local Lipschitzness of convex functions. Assertion (iv) is a special case of [15, Lemma 4.8.] ("Mixing lemma").

It is well-known (cf. [12]) that if $\emptyset \neq A \subset \mathbb{R}^d$ is closed, then d_A need not be DC; however (see, e.g., [2, Proposition 2.2.2]),

(2.1) d_A is locally semiconcave (and so locally DC) on $\mathbb{R}^d \setminus A$.

2.3 Clarke generalized gradient. If $U \subset \mathbb{R}^d$ is an open set, $f: U \to \mathbb{R}$ is locally Lipschitz and $x \in U$, we denote by $\partial_C f(x)$ the generalized gradient of fat x, which can be defined as the closed convex hull of all limits $\lim_{i\to\infty} f'(x_i)$ such that $x_i \to x$ and $f'(x_i)$ exists for all $i \in \mathbb{N}$ (see [3, Theorem 2.5.1]; $\partial_C f(x)$ is also called *Clarke subdifferential of* f at x in the literature). Since we identify $(\mathbb{R}^d)^*$ with \mathbb{R}^d in the standard way, we sometimes consider $\partial_C f(x)$ as a subset of \mathbb{R}^d . We will repeatedly use the fact that the mapping $x \mapsto \partial_C f(x)$ is upper semicontinuous and, hence (see [3, Theorem 2.1.5]),

(2.2)
$$v \in \partial_C f(x)$$
 whenever $x_i \to x, v_i \in \partial_C f(x_i)$ and $v_i \to v$.

We also use that $|u| \leq K$ whenever $u \in \partial_C f(x)$ and f is K-Lipschitz on a neighbourhood of x. Obviously,

(2.3)
$$\partial_C(\alpha f)(x) = \alpha \partial_C f(x).$$

Recall that

(2.4)
$$f^0(x,v) \coloneqq \limsup_{y \to x, t \to 0+} \frac{f(y+tv) - f(y)}{t}$$

and (see [3])

(2.5)
$$f^0(x,v) = \sup\{\langle v,\nu \rangle \colon \nu \in \partial_C f(x)\}.$$

We will need the following simple lemma.

Lemma 2.2. Let f be a Lipschitz function on an open set $G \subset \mathbb{R}^d$, $x \in G$ and $\varepsilon > 0$.

D. Pokorný, L. Zajíček

(i) If dist $(0, \partial_C f(x)) \ge 2\varepsilon$, then

(2.6)
$$\exists v \in S^{d-1}, \ \varrho > 0 \ \forall y \in U(x, \varrho), \ 0 < \alpha < \varrho \colon \frac{f(y + \alpha v) - f(y)}{\alpha} \le -\varepsilon.$$

(ii) If (2.6) holds, then dist $(0, \partial_C f(x)) \ge \varepsilon$.

PROOF: (i) Let dist $(0, \partial_C f(x)) \ge 2\varepsilon$. Since $\partial_C f(x)$ is convex, there exists (see e.g. [4, Theorem 1.5.]) $v \in S^{d-1}$ such that

dist
$$(0, \partial_C f(x)) = -\sup\{\langle v, \nu \rangle \colon \nu \in \partial_C f(x)\}.$$

So, by (2.5), $f^0(x, v) \leq -2\varepsilon$ and thus (2.4) implies (2.6).

(ii) If (2.6) holds, choose corresponding $v \in S^{d-1}$ and $\varrho > 0$. Then $f^0(x, v) \leq -\varepsilon$ by (2.4). Consequently, by (2.5), $-|\nu| \leq \langle v, \nu \rangle \leq -\varepsilon$ for each $\nu \in \partial_C f(x)$ and so dist $(0, \partial_C f(x)) \geq \varepsilon$.

2.4 WDC sets. WDC sets (see the definition below) which provide a natural generalization of sets with positive reach were defined in [10] using Fu's notion of an "aura" of a set (see, e.g., [7] for more information). Note that the notion of a DC aura was defined in [10] and [8] by a formally different but equivalent way (cf. [11, Remark 2.12 (v)]).

Definition 2.3 (cf. [11], Definitions 2.8, 2.10). Let $U \subset \mathbb{R}^d$ be open and $f: U \to \mathbb{R}$ be locally Lipschitz. A number $c \in \mathbb{R}$ is called a *weakly regular value* of f if whenever $x_i \to x$, $f(x_i) > c = f(x)$ and $u_i \in \partial_C f(x_i)$ for all $i \in \mathbb{N}$ then $\liminf_i |u_i| > 0$.

A set $A \subset \mathbb{R}^d$ is called WDC if there exists a DC function $f \colon \mathbb{R}^d \to [0, \infty)$ such that $A = f^{-1}(0)$ and 0 is a weakly regular value of f. In such a case, we call $f \in DC$ aura (for A).

A set $A \subset \mathbb{R}^d$ is called locally WDC if for any point $a \in A$ there exists a WDC set $A^* \subset \mathbb{R}^d$ that agrees with A on an open neighbourhood of a.

(Note that a weakly regular value of f need not be in the range of f, and so \emptyset is clearly a WDC set by our definition. Also, unlike WDC sets which are always closed, locally WDC sets need not to be closed.)

Note that a set $A \subset \mathbb{R}^d$ has a positive reach at each point if and only if there exists a DC aura for A which is even semiconvex, see [1].

3. Distance function of a WDC set in \mathbb{R}^2 is a DC aura

First we present (slightly formally rewritten) [11, Definition 7.9].

Definition 3.1. (i) A set $S \subset \mathbb{R}^2$ will be called a *basic open DC sector* (of radius r) if $S = U(0,r) \cap \{(u,v) \in \mathbb{R}^2 : u \in (-\omega,\omega), v > f(u)\}$, where

 $0 < r < \omega$ and f is a DC function on $(-\omega, \omega)$ such that f(0) = 0, $R(u) := \sqrt{u^2 + f^2(u)}$ is strictly increasing on $[0, \omega)$ and strictly decreasing on $(-\omega, 0]$.

By an open DC sector (of radius r) we mean an image $\gamma(S)$ of a basic open DC sector S (of radius r) under a rotation around the origin γ .

(ii) A set of the form $\gamma(\{(u,v) \in \mathbb{R}^2 : u \in [0,\omega), g(u) \le v \le f(u)\}) \cap U(0,r)$, where γ is a rotation around the origin, $0 < r < \omega$ and $f, g : \mathbb{R} \to \mathbb{R}$ are DC functions such that $g \le f$ on $[0,\omega), f(0) = g(0) = f'_+(0) = g'_+(0) = 0$ and the functions $R_f(u) \coloneqq \sqrt{u^2 + f^2(u)}, R_g(u) \coloneqq \sqrt{u^2 + g^2(u)}$ are strictly increasing on $[0,\omega)$, will be called a *degenerated closed DC sector* (of radius r).

We will use the following complete characterization of closed locally WDC sets in \mathbb{R}^2 (see [11, Theorem 8.14]).

Theorem PRZ. Let M be a closed subset of \mathbb{R}^2 . Then M is a locally WDC set if and only if for each $x \in \partial M$ there is $\rho > 0$ such that one of the following conditions holds:

- (i) $M \cap U(x, \varrho) = \{x\},\$
- (ii) there is a degenerated closed DC sector C of radius ρ such that

$$M \cap U(x,\varrho) = x + C,$$

(iii) there are pairwise disjoint open DC sectors C_1, \ldots, C_k of radius ϱ such that

(3.1)
$$U(x,\varrho) \setminus M = \bigcup_{i=1}^{k} (x+C_i).$$

Lemma 3.2. Let f be an L-Lipschitz function on \mathbb{R} . Denote $d := \text{dist}(\cdot, \text{graph } f)$. Then $|\xi_2| \ge 1/\sqrt{L^2 + 1}$ whenever $\xi = (\xi_1, \xi_2) \in \partial_C d(x)$ and $x \in \mathbb{R}^2 \setminus \text{graph } f$.

PROOF: Pick $x \in \mathbb{R}^2 \setminus \operatorname{graph} f$. Without any loss of generality we can assume that x = 0. We will assume that f(0) < 0; the case f(0) > 0 is quite analogous. Denote $r \coloneqq d(0)$ and $P \coloneqq \prod_{\operatorname{graph} f}(0)$. Set $g(u) \coloneqq -\sqrt{r^2 - u^2}$, $u \in [-r, r]$. Clearly $f \leq g$ on [-r, r] and $(u, v) \in P$ if and only if f(u) = g(u) = v. We will show that

(3.2)
$$|u| \le \frac{Lr}{\sqrt{1+L^2}}$$
 whenever $(u,v) \in P$.

To this end, suppose $(u, v) \in P$. If u > 0, then

$$L \ge \frac{f(t) - f(u)}{t - u} \ge \frac{g(t) - g(u)}{t - u} \quad \text{for each } 0 < t < u,$$

and consequently $L \ge g'_{-}(u)$. Therefore u < r and $L \ge u(r^2 - u^2)^{-1/2}$. Analogously considering $g'_{+}(u)$, we obtain for u < 0 that u > -r and $u(r^2 - u^2)^{-1/2} \ge -L$. In both cases we have $L \ge |u|(r^2 - u^2)^{-1/2}$ and an elementary computation gives (3.2).

Using (3.2) we obtain that if $(u, v) \in P$ then

(3.3)
$$v = g(u) \le -\sqrt{r^2 - \left(\frac{Lr}{\sqrt{1+L^2}}\right)^2} = -\frac{r}{\sqrt{1+L^2}}$$

By [6, Lemma 4.2] and (3.3) we obtain

$$\partial_C d(0) = \operatorname{conv}\left\{\frac{1}{r}(-u, -v) \colon (u, v) \in P\right\} \subset \mathbb{R} \times \left[\frac{1}{\sqrt{L^2 + 1}}, \infty\right)$$

and the assertion of the lemma follows.

Theorem 3.3. Let $M \neq \emptyset$ be a closed locally WDC set in \mathbb{R}^2 . Then the distance function d_M is a DC aura for M. In particular, M is a WDC set.

PROOF: Denote $d \coloneqq d_M$. For each $x \in \partial M$ choose $\rho = \rho(x)$ by Theorem PRZ. We will prove that

- (a) distance d is DC on $U(x, \rho/3)$,
- (b) there is $\varepsilon = \varepsilon(x) > 0$ such that $|\xi| \ge \varepsilon$ whenever $y \in U(0, \varrho/3) \setminus M$ and $\xi \in \partial_C d(y)$.

Without any loss of generality we can assume that x = 0.

If Case (i) from Theorem PRZ holds, then $d(y) = |y|, y \in U(0, \varrho/3)$, and so d is convex and therefore DC on $U(0, \varrho/3)$. Similarly, condition (b) holds as well, since if $y \in U(0, \varrho/3) \setminus M$ and $\xi \in \partial_C d(y)$ then $\xi = y/|y|$ and so $|\xi| = 1$.

If Case (ii) from Theorem PRZ holds, we know that $M \cap U(0, \varrho)$ is a degenerated closed DC sector C of radius ϱ . Let γ , f, g and ω be as in Definition 3.1. Without any loss of generality we may assume that γ is the identity map.

By Lemma 2.1 (iii) we can choose L > 0 such that both f and g are L-Lipschitz on $[0, \varrho]$ and define

$$\tilde{f}(u) \coloneqq \begin{cases} f(u) & \text{if } 0 \le u \le \varrho, \\ f(\varrho) & \text{if } \varrho < u, \\ 2Lu & \text{if } u < 0, \end{cases} \quad \text{and} \quad \tilde{g}(u) \coloneqq \begin{cases} g(u) & \text{if } 0 \le u \le \varrho, \\ g(\varrho) & \text{if } \varrho < u, \\ -2Lu & \text{if } u < 0. \end{cases}$$

It is easy to see that both \tilde{f} and \tilde{g} are 2*L*-Lipschitz and they are DC by Lemma 2.1 (iv).

Put

$$M_0 \coloneqq \{(u, v) \in \mathbb{R}^2 \colon u \ge 0, \ \tilde{g}(u) \le v \le \tilde{f}(u)\},\$$

$$M_{1} \coloneqq \{(u,v) \in \mathbb{R}^{2} \colon u \ge 0, \ \tilde{f}(u) < v\} \cup \left\{(u,v) \in \mathbb{R}^{2} \colon u < 0, \ -\frac{u}{2L} < v\right\},$$
$$M_{2} \coloneqq \{(u,v) \in \mathbb{R}^{2} \colon u \ge 0, \ \tilde{g}(u) > v\} \cup \left\{(u,v) \in \mathbb{R}^{2} \colon u < 0, \ \frac{u}{2L} > v\right\}$$

and

$$M_3 \coloneqq \left\{ (u, v) \in \mathbb{R}^2 \colon \frac{u}{L} < v < -\frac{u}{L} \right\}.$$

Clearly $\mathbb{R}^2 = M_0 \cup M_1 \cup M_2 \cup M_3$ and M_1, M_2, M_3 are open.

Set $\tilde{d} := \text{dist}(\cdot, M_0)$ and for each $y \in \mathbb{R}^2$ define

$$d_0(y) \coloneqq 0, \quad d_1(y) \coloneqq \operatorname{dist}(y, \operatorname{graph} \tilde{f}), \quad d_2(y) \coloneqq \operatorname{dist}(y, \operatorname{graph} \tilde{g}), \quad d_3(y) \coloneqq |y|.$$

Functions d_1 and d_2 are DC on \mathbb{R}^2 by (1.1), d_0 and d_3 are convex and therefore DC on \mathbb{R}^2 .

Using (for K = 1/L, -1/L, 1/(2L), -1/(2L)) the facts that the lines with the slopes K and -1/K are orthogonal and $M_0 \subset \{(u, v) : u \ge 0, -Lu \le v \le Lu\}$, easy geometrical observations show that

(3.4)
$$\tilde{d}(y) = d_i(y) \quad \text{if } y \in M_i, \ 0 \le i \le 3,$$

and so Lemma 2.1 (iv) implies that \tilde{d} is DC.

Now pick an arbitrary $y \in \mathbb{R}^2 \setminus M_0 = M_1 \cup M_2 \cup M_3$ and choose $\xi = (\xi_1, \xi_2) \in \partial_C \tilde{d}(y)$. Using (3.4), we obtain that if $y \in M_3$ then $\xi = y/|y|$ and so $|\xi| = 1$. Using Lemma 3.2, we obtain that if $y \in M_1 \cup M_2$, then $|\xi| \ge |\xi_2| \ge 1/\sqrt{4L^2 + 1}$. Now, since $d = \tilde{d}$ on $U(0, \varrho/3)$ both (a) and (b) follow.

It remains to prove (a) and (b) if Case (iii) from Theorem PRZ holds. Let C_i , $i = 1, \ldots, k$, be the open DC sectors as in (iii). Denote $A_i := \mathbb{R}^2 \setminus C_i$ and define $\delta_i := \text{dist}(\cdot, A_i), i = 1, \ldots, k$.

Note that, for $y \in U(0, \rho/3)$, one has

$$d(y) = \begin{cases} \delta_i(y) & \text{if } y \in C_i, \\ 0 & \text{if } y \in M. \end{cases}$$

Therefore (by Lemma 2.1 (iv)) it is enough to prove that (a) and (b) hold with d and M being replaced by δ_i and A_i , respectively, $i = 1, \ldots, k$. Fix some $i \in \{1, \ldots, k\}$. Without any loss of generality we can assume that C_i is a basic open DC sector of radius ρ with corresponding f_i and ω_i . Now define

$$\tilde{f}_i(u) \coloneqq \begin{cases} f_i(u) & \text{if } u \in [-\varrho, \varrho], \\ f_i(-\varrho) & \text{if } u < -\varrho, \\ f_i(\varrho) & \text{if } u > \varrho. \end{cases}$$

Then \tilde{f}_i is Lipschitz and DC on \mathbb{R} . Put $\tilde{d}_i(y) = \text{dist}(y, \text{graph } \tilde{f}_i)$. Then \tilde{d}_i is DC by (1.1) and 0 is a weakly regular value of \tilde{d}_i by Lemma 3.2. And since $d_i = \tilde{d}_i$ on $U(0, \varrho/3)$ we are done.

Since d is locally DC on $\mathbb{R}^2 \setminus M$ by (2.1) and on the interior of M (trivially), (a) implies that d is locally DC and so DC by Lemma 2.1 (ii). Further, (b) immediately implies that 0 is a weakly regular value of d and thus $d = d_M$ is an aura for M.

Remark 3.4. By Theorem 3.3, in \mathbb{R}^2 closed locally WDC sets and WDC sets coincide. This gives a partial answer to the part of [10, Problem 10.2] which asks whether the same is true in each \mathbb{R}^d .

4. Complexity of the system of WDC sets

In the following, we will work in each moment in an \mathbb{R}^d with a fixed d, and so for simplicity we will use the notation, in which the dependence on d is usually omitted.

The space of all nonempty compact subsets of \mathbb{R}^d equipped with the usual Hausdorff metric ϱ_H is denoted by \mathcal{K} . It is well-known (see, e.g., [13, Proposition 2.4.15 and Corollary 2.4.16]) that \mathcal{K} is a separable complete metric space. For a closed set $M \subset \mathbb{R}^d$, we set $\mathcal{K}(M) := \{K \in \mathcal{K} : K \subset M\}$, which is clearly a closed subspace of \mathcal{K} . The set of all nonempty compact WDC subsets of $M \subset \mathbb{R}^d$ will be denoted by WDC(M).

In this section, we will prove the following theorem.

Theorem 4.1. (i) WDC(\mathbb{R}^2) is an $F_{\sigma\delta\sigma}$ subset of $\mathcal{K}(\mathbb{R}^2)$.

(ii) Set $WDC(\mathbb{R}^d)$ is an analytic subset of $\mathcal{K}(\mathbb{R}^d)$ for each $d \in \mathbb{N}$.

Before the proof of this theorem, we introduce some spaces, make a number of observations, and prove a technical lemma.

First observe that $WDC(\mathbb{R}^d) = \bigcup_{n=1}^{\infty} WDC(B(0, n))$ and so, to prove Theorem 4.1, it is sufficient to prove that for each r > 0,

(4.1) for d = 2 ($d \in \mathbb{N}$, respectively), WDC(B(0, r)) is an $F_{\sigma\delta\sigma}$ (analytic, respectively) subset of $\mathcal{K}(B(0, r))$.

Further observe that it is sufficient to prove (4.1) for r = 1. Indeed, denoting $H(x) \coloneqq x/r, x \in \mathbb{R}^d$, it is obvious that $H^* \colon K \mapsto H(K)$ gives a homeomorphism of $\mathcal{K}(B(0,r))$ onto $\mathcal{K}(B(0,1))$ and $H^*(\text{WDC}(B(0,r)) = \text{WDC}(B(0,1))$ (clearly f is an aura for K if and only if $f \circ H^{-1}$ is an aura for $H^*(K)$).

To prove (4.1) for r = 1, we will consider the space X of all 1-Lipschitz functions $f: B(0,4) \to [0,4]$ such that $f \ge 1$ on $B(0,4) \setminus U(0,3)$, equipped with the supremum metric ρ_{sup} . Obviously, X is a closed subspace of C(B(0,4)) and so it is a separable complete metric space.

The motivation for introducing X is the fact that

(4.2) if
$$K \in \mathcal{K}(B(0,1))$$
, then $f_K \coloneqq d_K \upharpoonright_{B(0,4)} \in X$.

Since we are interested in $K \in WDC(B(0,1))$, we define also two subspaces of X:

 $A := \{ f \in X : 0 \text{ is a weakly regular value of } f|_{U(0,4)} \},\$

 $D \coloneqq \{ f \in X \colon f = g - h \text{ for some convex Lipschitz functions } g, h \text{ on } B(0, 4) \}.$

Their complexity is closely related to the complexity of WDC(B(0, 1)), as the following lemma indicates.

Lemma 4.2. Let $\emptyset \neq K \subset B(0,1) \subset \mathbb{R}^d$ be compact. Then:

- (i) K is WDC if and only if there is a function $g \in D \cap A$ such that $K = g^{-1}(0)$.
- (ii) If d = 2, then K is WDC if and only if $f_K := d_K \upharpoonright_{B(0,4)} \in D \cap A$.

PROOF: (i) Suppose first that K is WDC and f is an aura for K. Using Lemma 2.1 (iii), we can choose $\alpha > 0$ so small that the function αf is 1-Lipschitz on B(0,4) and $0 \le \alpha f(x) \le 4$ for $x \in B(0,4)$. Set

$$h(x) \coloneqq \max(|x| - 2, \alpha f(x)), \quad x \in \mathbb{R}^d, \quad \text{and} \quad g \coloneqq h \upharpoonright_{B(0,4)}.$$

Then clearly $K = g^{-1}(0)$. Since h is DC on \mathbb{R}^d by Lemma 2.1 (i), we obtain $g \in D$ by Lemma 2.1 (ii). Finally, $g \in A$ since $g = \alpha f$ on U(0, 2).

Conversely, suppose that $K = g^{-1}(0)$ for some $g \in A \cap D$ and set

$$f(x) \coloneqq \begin{cases} \min(g(x), 1), & \text{if } x \in U(0, 4), \\ 1, & \text{otherwise.} \end{cases}$$

Since f is DC on U(0, 4) by Lemma 2.1 (i) and f = 1 on $\mathbb{R}^d \setminus B(0, 3)$, we see that f is locally DC and so DC by Lemma 2.1 (ii). Since 0 is clearly a weakly regular value of f, we obtain that f is an aura for K.

(ii) If K is WDC, first note that $f_K \in X$ (see (4.2)). Since d_K is an aura for K by Theorem 3.3, we obtain immediately that $f_K \in A$, and also $f_K \in D$ by Lemma 2.1 (iii).

If $f_K \in A \cap D$, then K is WDC by (i).

For the application of Lemma 4.2 (ii) we need the simple fact that

(4.3)
$$\Psi: K \mapsto f_K, \quad K \in \mathcal{K}(B(0,1)),$$
 is a continuous mapping into X.

Indeed, if $K_1, K_2 \in \mathcal{K}(B(0,1))$ with $\varrho_H(K_1, K_2) < \varepsilon$ and $x \in B(0,4)$, then clearly $d_{K_1}(x) < d_{K_2}(x) + \varepsilon$, $d_{K_2}(x) < d_{K_1}(x) + \varepsilon$, and consequently $\varrho_{\sup}(f_{K_1}, f_{K_2}) \leq \varepsilon$. Further observe that

(4.4) D is an F_{σ} subset of X.

To prove it for each $n \in \mathbb{N}$ set

 $C_n \coloneqq \{g \in C(B(0,4)): g \text{ is convex } n\text{-Lipschitz and } |g(x)| \le 4n+4, x \in B(0,4)\}.$

Now observe that if $f \in D$ then we can choose $n \in \mathbb{N}$ and convex *n*-Lipschitz functions g, h such that f = g - h, g(0) = 0 and consequently $||g|| \leq 4n$, $||h|| \leq 4n + 4$, and so g, $h \in C_n$. Consequently, $D = X \cap \bigcup_{n=1}^{\infty} (C_n - C_n)$. Each C_n is clearly closed in C(B(0, 4)) and so it is compact in C(B(0, 4)) by the Arzelà–Ascoli theorem. Consequently also $C_n - C_n = \sigma(C_n \times C_n)$, where σ is the continuous mapping $\sigma : (g, h) \mapsto g - h$, is compact, and (4.4) follows.

The most technical part of the proof of Theorem 4.1 is to show that A is an $F_{\sigma\delta\sigma}$ subset of X. To prove it, we need some lemmas.

Lemma 4.3. Let $f \in X$. Then $f \in A$ if and only if

(4.5)
$$\exists 0 < \varepsilon \ \forall x \in f^{-1}(0,\varepsilon), \ \nu \in \partial_C f(x) \colon |\nu| \ge \varepsilon.$$

PROOF: If (4.5) holds, then we easily obtain $f \in A$ directly from the definition of a weakly regular value.

To prove the opposite implication, suppose that $f \in A$ and (4.5) does not hold. Then there exist points $x_n \in f^{-1}(0, 1/n)$, $n \in \mathbb{N}$, and $\nu_n \in \partial_C f(x_n)$ such that $|\nu_n| < 1/n$. Choose a subsequence $x_{n_k} \to x \in B(0, 4)$. Since $0 \le f(x_{n_k}) < 1/n_k$, we have $f(x_{n_k}) \to f(x) = 0$, and consequently $x \in U(0, 4)$. Since $\nu_{n_k} \to 0$, we obtain that 0 is not a weakly regular value of $f|_{U(0,4)}$, which contradicts $f \in A$.

Denote $\mathbb{Q}^* := \mathbb{Q} \cap (0,1)$ and for every $\varepsilon \in \mathbb{Q}^*$ and $d \in \mathbb{N}$ pick a finite set $\mathfrak{S}^d_{\varepsilon} \subset S^{d-1}$ such that for every $v \in S^{d-1}$ there is some $\nu \in \mathfrak{S}^d_{\varepsilon}$ satisfying $|v-\nu| < \varepsilon$.

Lemma 4.4. Let f be a function from X. Then $f \in A$ if and only if

$$\begin{array}{l} \exists \, \varepsilon \in \mathbb{Q}^* \,\, \forall \, p, q \in \mathbb{Q}^*, \,\, 0$$

PROOF: First suppose that (4.6) holds and choose $\varepsilon \in \mathbb{Q}^*$ by (4.6). We will show that

(4.7)
$$\forall x \in f^{-1}(0,\varepsilon), \ \nu \in \partial_C f(x) \colon |\nu| \ge \varepsilon.$$

To this end, consider an arbitrary $x \in f^{-1}(0,\varepsilon)$ and choose $p,q \in \mathbb{Q}^*$ such that $0 and <math>f(x) \in (p,q)$. Choose $\rho \in \mathbb{Q}^*$ which exists for ε, p, q by (4.6). So there exists $\nu \in \mathfrak{S}^d_{\varepsilon}$ such that

$$\forall y \in U(x, \varrho), \ 0 < \alpha < \varrho: f(y + \alpha v) - f(y) \le -\varepsilon\alpha.$$

Therefore Lemma 2.2 (ii) gives that $|\nu| \ge \varepsilon$ for each $\nu \in \partial_C f(x)$. Thus (4.7) holds and so $f \in A$ by Lemma 4.3.

Now suppose $f \in A$. Using (4.5), we can choose $\varepsilon \in \mathbb{Q}^*$ such that

(4.8)
$$\forall x \in f^{-1}(0,\varepsilon), \ \nu \in \partial_C f(x) \colon |\nu| \ge 4\varepsilon.$$

To prove (4.6), consider arbitrary $p, q \in \mathbb{Q}^*$, $0 . Using Lemma 2.2 (i), we easily obtain that for each <math>z \in K \coloneqq f^{-1}([p,q])$ there exist $\varrho(z) > 0$ and $v(z) \in S^{d-1}$ such that

(4.9)
$$\forall y \in U(z, \varrho(z)), \ 0 < \alpha < \varrho(z) \colon f(y + \alpha v(z)) - f(y) \le -2\varepsilon\alpha.$$

Choose $\rho \in \mathbb{Q}^*$ as a Lebesgue number, see [5], of the open covering $\{U(z, \rho(z))\}_{z \in K}$ of the compact K. For an arbitrary $x \in U(0, 4)$, either $f(x) \notin (p, q)$ or $x \in K$. In the second case, by the definition of Lebesgue number, there exists $z \in K$ such that $U(x, \rho) \subset U(z, \rho(z))$. Then clearly $\rho < \rho(z)$ and so (4.9) implies

(4.10)
$$\forall y \in U(x, \varrho), \ 0 < \alpha < \varrho: f(y + \alpha v(z)) - f(y) \le -2\varepsilon\alpha.$$

By the choice of $\mathfrak{S}^d_{\varepsilon}$ there is some $\nu \in \mathfrak{S}^d_{\varepsilon}$ such that $|v(z) - \nu| < \varepsilon$. By (4.10) for each $y \in U(x, \varrho)$ and $0 < \alpha < \varrho$,

$$f(y + \alpha v(z)) - f(y) \le -2\varepsilon\alpha.$$

Consequently, using 1-Lipschitzness of $f \in X$, we obtain

$$\begin{aligned} f(y + \alpha \nu) - f(y) &\leq f(y + \alpha v(z)) - f(y) + |f(y + \alpha \nu) - f(y + \alpha v(z))| \\ &\leq f(y + \alpha v(z)) - f(y) + |\nu - v(z)|\alpha \\ &\leq -2\varepsilon\alpha + \varepsilon\alpha = -\varepsilon\alpha, \end{aligned}$$

and so (4.6) holds.

Corollary 4.5. The set A is an $F_{\sigma\delta\sigma}$ subset of X.

PROOF: For each quadruple $y \in \mathbb{R}^d$, $\nu \in S^{d-1}$, $\alpha > 0$, $\varepsilon > 0$ we set

$$C(y,\nu,\alpha,\varepsilon) \coloneqq \{ f \in X \colon f(y+\alpha\nu) - f(y) \le -\varepsilon\alpha \}.$$

(Of course, we have $C(y, \nu, \alpha, \varepsilon) = \emptyset$ if $y \notin U(0, 4)$ or $y + \alpha \nu \notin U(0, 4)$.) Further, for each triple $x \in U(0, 4), 0 , we set$

$$D(x, p, q) \coloneqq \{ f \in X \colon f(x) \notin (p, q) \}.$$

It is easy to see that both $C(y, \nu, \alpha, \varepsilon)$ and D(x, p, q) are always closed subsets of X. It is easy to see that Lemma 4.4 is equivalent to

$$A = \bigcup_{\varepsilon \in \mathbb{Q}^*} \bigcap_{\substack{p,q \in \mathbb{Q}^*, \\ 0$$

Therefore, since \mathbb{Q}^* is countable and each $\mathfrak{S}^d_{\varepsilon}$ is finite, we obtain that A is an $F_{\sigma\delta\sigma}$ subset of X.

THE PROOF OF THEOREM 4.1: We know that it is sufficient to prove (4.1) for r = 1.

Suppose d = 2. Then Lemma 4.2 (ii) gives that $WDC(B(0,1)) = \psi^{-1}(A \cap D)$, where $\psi \colon \mathcal{K}(B(0,4)) \to X$ is the continuous mapping from (4.3). Since $A \cap D$ is an $F_{\sigma\delta\sigma}$ subset of X by Corollary 4.5 and (4.4), we obtain (4.1) for r = 1 and d = 2, and thus also assertion (i) of Theorem 4.1.

To prove assertion (ii) of Theorem 4.1, it is sufficient to prove that (in each \mathbb{R}^d) WDC(B(0,1)) is an analytic subset of $\mathcal{K}(B(0,1))$. To this end, consider the following subset S of $\mathcal{K}(B(0,1)) \times X$:

$$S := \{ (K, f) \in \mathcal{K}(B(0, 1)) \times X \colon f^{-1}(0) = K, \ f \in A \cap D \}.$$

By Lemma 4.2 (i), $WDC(B(0,1)) = \pi_1(S)$ (where $\pi_1(K, f) \coloneqq K$) and so it is sufficient to prove that S is Borel. Denoting

$$Z \coloneqq \{ (K, f) \in \mathcal{K}(B(0, 1)) \times X \colon K = f^{-1}(0), \ f \in X \},\$$

we have $S = Z \cap (\mathcal{K}(B(0,1)) \times (A \cap D))$. So, since $A \cap D$ is Borel by Corollary 4.5 and (4.4), to prove that S is Borel, it is sufficient to show that Z is Borel in $\mathcal{K}(B(0,1)) \times X$. To this end, denote for each $n \in \mathbb{N}$

$$P_n := \left\{ (K, f) \in \mathcal{K}(B(0, 1)) \times X \colon \exists x \in K \colon f(x) \ge \frac{1}{n} \right\},\$$
$$Q_n := \left\{ (K, f) \in \mathcal{K}(B(0, 1)) \times X \colon \exists x \in B(0, 4) \colon \text{dist} (x, K) \ge \frac{1}{n}, \ f(x) = 0 \right\}.$$

Since clearly

$$Z = (\mathcal{K}(B(0,1)) \times X) \setminus \left(\bigcup_{n=1}^{\infty} P_n \cup \bigcup_{n=1}^{\infty} Q_n\right),$$

it is sufficient to prove that all P_n and Q_n are closed.

So suppose that $(K_i, f_i) \in \mathcal{K}(B(0, 1)) \times X$, $i = 1, 2, ..., (K, f) \in \mathcal{K}(B(0, 1)) \times X$, $\varrho_H(K_i, K) \to 0$ and $\varrho_{\sup}(f_i, f) \to 0$.

First suppose that $n \in \mathbb{N}$ and all $(K_i, f_i) \in P_n$. Choose $x_i \in K_i$ with $f_i(x_i) \geq 1/n$. Choose a convergent subsequence $x_{i_j} \to x \in \mathbb{R}^d$. It is easy to see that $x \in K$. Since $|f_{i_j}(x_{i_j}) - f(x_{i_j})| \to 0$ and $f(x_{i_j}) \to f(x)$, we obtain $f_{i_j}(x_{i_j}) \to f(x)$, and consequently $f(x) \geq 1/n$. Thus $(K, f) \in P_n$ and therefore P_n is closed.

Second, suppose that $n \in \mathbb{N}$ and all $(K_i, f_i) \in Q_n$. Choose $x_i \in B(0, 4)$ such that dist $(x_i, K_i) \geq 1/n$ and $f_i(x_i) = 0$. Choose a convergent subsequence $x_{i_j} \to x \in B(0, 4)$. Since $|f_{i_j}(x_{i_j}) - f(x_{i_j})| \to 0$ and $f(x_{i_j}) \to f(x)$, we obtain f(x) = 0. Now consider an arbitrary $y \in K$ and choose a sequence $y_j \in K_{i_j}$ with $y_j \to y$. Since $|x_{i_j} - y_j| \geq 1/n$ and $x_{i_j} \to x$, we obtain that $|y - x| \geq 1/n$ and consequently dist $(x, K) \geq 1/n$. Thus $(K, f) \in Q_n$ and therefore Q_n is closed. \Box

References

- [1] Bangert V., Sets with positive reach, Arch. Math. (Basel) 38 (1982), no. 1, 54–57.
- [2] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004.
- [3] Clarke F. H., Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1990.
- [4] DeVore R. A., Lorentz G. G., Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, 303, Springer, Berlin, 1993.
- [5] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989.
- [6] Fu J. H. G., Tubular neighborhoods in Euclidean spaces, Duke Math. J. 52 (1985), no. 4, 1025–1046.
- [7] Fu J. H. G., Integral geometric regularity, in Tensor Valuations and Their Applications in Stochastic Geometry and Imaging, Lecture Notes in Math., 2177, Springer, Cham, 2017, pages 261–299.
- [8] Fu J. H. G., Pokorný D., Rataj J., Kinematic formulas for sets defined by differences of convex functions, Adv. Math. 311 (2017), 796–832.
- [9] Hartman P., On functions representable as a difference of convex functions, Pacific J. Math. 9 (1959), 707–713.
- [10] Pokorný D., Rataj J., Normal cycles and curvature measures of sets with d.c. boundary, Adv. Math. 248 (2013), 963–985.
- [11] Pokorný D., Rataj J., Zajíček L., On the structure of WDC sets, Math. Nachr. 292 (2019), no. 7, 1595–1626.
- [12] Pokorný D., Zajíček L., On sets in \mathbb{R}^d with DC distance function, J. Math. Anal. Appl. **482** (2020), no. 1, 123536, 14 pages.
- [13] Srivastava S. M., A Course on Borel Sets, Graduate Texts in Mathematics, 180, Springer, New York, 1998.
- [14] Tuy H., Convex Analysis and Global Optimization, Springer Optimization and Its Applications, 110, Springer, Cham, 2016.

D. Pokorný, L. Zajíček

- [15] Veselý L., Zajíček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pages.
- [16] Zähle M., Curvature measures and random sets. II, Probab. Theory Relat. Fields 71 (1986), no. 1, 37–58.

D. Pokorný, L. Zajíček:

CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS, SOKOLOVSKÁ 83, PRAHA 8, 186 75 PRAHA 8 - KARLÍN, CZECH REPUBLIC

E-mail: dpokorny@karlin.mff.cuni.cz

E-mail: zajicek@karlin.mff.cuni.cz

(Received May 7, 2019, revised October 24, 2019)