The Golomb space is topologically rigid

Taras Banakh, Dario Spirito, SŁawomir Turek

Abstract

The Golomb space \mathbb{N}_{τ} is the set \mathbb{N} of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions $\{a+b n$: $n \geq 0\}$ with coprime a, b. We prove that the Golomb space \mathbb{N}_{τ} is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.

Keywords: Golomb topology; topologically rigid space
Classification: 11A99, 54G15

1. Introduction

In the AMS Meeting announcement [3] M. Brown introduced an amusing topology τ on the set \mathbb{N} of positive integers turning it into a connected Hausdorff space. The topology τ is generated by the base consisting of arithmetic progressions $a+b \mathbb{N}_{0}:=\left\{a+b n: n \in \mathbb{N}_{0}\right\}$ with coprime parameters $a, b \in \mathbb{N}$. Here by $\mathbb{N}_{0}=\{0\} \cup \mathbb{N}$ we denote the set of nonnegative integer numbers.

In [15] the topology τ is called the relatively prime integer topology. This topology was popularized by S. Golomb in [7], [8], who observed that the classical Dirichlet theorem on primes in arithmetic progressions is equivalent to the density of the set Π of prime numbers in the topological space (\mathbb{N}, τ). As a by-product of such popularization efforts, the topological space $\mathbb{N}_{\tau}:=(\mathbb{N}, \tau)$ is known in general topology as the Golomb space, see [16], [17].

The topological structure of the Golomb space \mathbb{N}_{τ} was studied by T. Banakh, J. Mioduszewski and S. Turek in [2], who proved that the space \mathbb{N}_{τ} is not topologically homogeneous (by showing that 1 is a fixed point of any homeomorphism of \mathbb{N}). Motivated by this results, the authors of [2] posed a problem of the topological rigidity of the Golomb space. This problem was also repeated by the first author at Mathoverflow, see [1]. A topological space X is defined to be topologically rigid if its homeomorphism group is trivial.

The main result of this note is the following theorem answering the above problem.

Theorem 1. The Golomb space \mathbb{N}_{τ} is topologically rigid.
The proof of this theorem will be presented in Section 5 after some preparatory work made in Sections 3 and 4. The idea of the proof belongs to the second author who studied in [13] the rigidity properties of the Golomb topology on a Dedekind ring with removed zero, and established in [13, Theorem 6.7] that the homeomorphism group of the Golomb topology on $\mathbb{Z} \backslash\{0\}$ consists of two homeomorphisms. The proof of Theorem 1 is a modified (and simplified) version of the proof of Theorem 6.7 given in [13]. It should be mentioned that the Golomb topology on Dedekind rings with removed zero was studied by J. Knopfmacher, Š. Porubský in [11], P. L. Clark, N. Lebowitz-Lockard, P. Pollack in [4], and D. Spirito in [13], [14].

2. Preliminaries and notations

In this section we fix some notation and recall some known results on the Golomb topology. For a subset A of a topological space X, by \bar{A} we denote the closure of A in X.

A poset is a set X endowed with a partial order " \leq ". A subset L of a partially ordered set (X, \leq) is called

- linearly ordered (or else a chain) if any points $x, y \in L$ are comparable in the sense that $x \leq y$ or $y \leq x$;
- an antichain if any two distinct elements $x, y \in A$ are not comparable.

By Π we denote the set of prime numbers. For a number $x \in \mathbb{N}$ we denote by Π_{x} the set of all prime divisors of x. Two numbers $x, y \in \mathbb{N}$ are coprime if and only if $\Pi_{x} \cap \Pi_{y}=\emptyset$. For a number $x \in \mathbb{N}$ let $x^{\mathbb{N}}:=\left\{x^{n}: n \in \mathbb{N}\right\}$ be the set of all powers of x.

For a number $x \in \mathbb{N}$ and a prime number p let $l_{p}(x)$ be the largest integer number such that $p^{l_{p}(x)}$ divides x. The function $l_{p}(x)$ plays the role of logarithm with base p.

The following formula for the closures of basic open sets in the Golomb topology was established in [2, 2.2].

Lemma 2 (T. Banakh, J. Mioduszewski, S. Turek). For any $a, b \in \mathbb{N}$

$$
\overline{a+b \mathbb{N}_{0}}=\mathbb{N} \cap \bigcap_{p \in \Pi_{b}}\left(p \mathbb{N} \cup\left(a+p^{l_{p}(b)} \mathbb{Z}\right)\right)
$$

Also we shall heavily exploit the following lemma, proved in $[2,5.1]$.
Lemma 3 (T. Banakh, J. Mioduszewski, S. Turek). Each homeomorphism h : $\mathbb{N}_{\tau} \longrightarrow \mathbb{N}_{\tau}$ of the Golomb space has the following properties:
(1) $h(1)=1$;
(2) $h(\Pi)=\Pi$;
(3) $\Pi_{h(x)}=h\left(\Pi_{x}\right)$ for every $x \in \mathbb{N}$;
(4) $h\left(x^{\mathbb{N}}\right)=h(x)^{\mathbb{N}}$ for every $x \in \mathbb{N}$.

Let p be a prime number and $k \in \mathbb{N}$. Let \mathbb{Z} be the ring of integer numbers, $\mathbb{Z}_{p^{k}}$ be the residue ring $\mathbb{Z} / p^{k} \mathbb{Z}$, and $\mathbb{Z}_{p^{k}}^{\times}$be the multiplicative group of invertible elements of the ring $\mathbb{Z}_{p^{k}}$. It is well-known that $\left|\mathbb{Z}_{p^{k}}\right|=\varphi\left(p^{k}\right)=p^{k-1}(p-1)$. The structure of the group $\mathbb{Z}_{p^{k}}^{\times}$was described by Gauss in $[6$, art. $52-56]$ (see also Theorems 2 and 2' in Chapter 4 of [9]).

Lemma 4 (C.F. Gauss). Let p be a prime number and $k \in \mathbb{N}$.
(1) If p is odd, then the group $\mathbb{Z}_{p^{k}}^{\times}$is cyclic.
(2) If $p=2$ and $k \geq 2$, then the element $-1+2^{k} \mathbb{Z}$ generates a two-element cyclic group C_{2} in $\mathbb{Z}_{2^{k}}^{\times}$and the element $5+2^{k} \mathbb{Z}$ generates a cyclic subgroup $C_{2^{k-2}}$ of order 2^{k-2} in $\mathbb{Z}_{2^{k}}^{\times}$such that $\mathbb{Z}_{2^{k}}^{\times}=C_{2} \oplus C_{2^{k-2}}$.

Lemma 5. If H is a non-cyclic subgroup of the multiplicative group $\mathbb{Z}_{2^{k}}^{\times}$for some $k \geq 3$, then H contains the Boolean subgroup

$$
V=\left\{1+2^{k} \mathbb{Z},-1+2^{k} \mathbb{Z}, 1+2^{k-1}+2^{k} \mathbb{Z},-1+2^{k-1}+2^{k} \mathbb{Z}\right\}
$$

Proof: Observe that the multiplicative group $\mathbb{Z}_{2^{k}}^{\times}$has order 2^{k-1}, which implies that the order of every element of $\mathbb{Z}_{2^{k}}^{\times}$is a power of 2 . The Gauss Lemma 4 implies that the multiplicative group $\mathbb{Z}_{2^{k}}^{\times}$has exactly 4 elements of order less than or equal to 2 and those elements form the 4 -element Boolean subgroup V.

Applying the Frobenius-Stickelberger theorem 4.2.6, see [12], we conclude that the finite subgroup $H \subseteq \mathbb{Z}_{2^{k}}^{\times}$is the direct sum of finite cyclic groups whose orders are powers of 2 . Since H is not cyclic, at least two cyclic groups in this direct sum are not trivial, which implies that H contains at least four element of order less than or equal to 2 . Taking into account that the elements of the subgroup V are the only elements of order less than or equal to 2 in the group $\mathbb{Z}_{2^{k}}^{\times}$, we conclude that $V \subseteq H$.

3. Golomb topology versus the p-adic topologies on \mathbb{N}

Let p be any prime number. Let us recall that the p-adic topology on \mathbb{Z} is generated by the base consisting of the sets $x+p^{n} \mathbb{Z}$, where $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. This topology induces the p-adic topology on the subset \mathbb{N} of \mathbb{Z}. It is generated by the base consisting of the sets $x+p^{n} \mathbb{N}_{0}$ where $x, n \in \mathbb{N}$. It is easy to see that \mathbb{N} endowed with the p-adic topology is a regular second-countable space
without isolated points. So, by Sierpiński theorem, see [5, 6.2.A (d)], this space is homeomorphic to the space of rationals and hence is topologically homogeneous. Consequently, any nonempty open subspace of \mathbb{N} with the p-adic topology (in particular, $\mathbb{N} \backslash p \mathbb{N}$) also is homeomorphic to \mathbb{Q} and hence is topologically homogeneous.

The following lemma is a special case of Proposition 3.1 in [13].
Lemma 6. For any clopen subset Ω of $\mathbb{N}_{\tau} \backslash p \mathbb{N}$, and any $x \in \Omega$, there exists $n \in \mathbb{N}$ such that $x+p^{n} \mathbb{N}_{0} \subseteq \Omega$.

Proof: Since the set $p \mathbb{N}$ is closed in \mathbb{N}_{τ}, the set Ω is open in \mathbb{N}_{τ} and hence $x+p^{n} b \mathbb{N}_{0} \subseteq \Omega$ for some $n \in \mathbb{N}$ and $b \in \mathbb{N}$ which is coprime with $p x$. We claim that $x+p^{n} \mathbb{N}_{0} \subseteq \Omega$. To derive a contradiction, assume that $x+p^{n} \mathbb{N}_{0} \backslash \Omega$ contains some number y. Since Ω is closed in $\mathbb{N}_{\tau} \backslash p \mathbb{N}$, there exist $m \geq n$ and $d \in \mathbb{N}$ such that d is coprime with p and y, and $\left(y+p^{m} d \mathbb{N}_{0}\right) \cap \Omega=\emptyset$. It follows that $y+p^{m} \mathbb{N}_{0} \subseteq$ $\left(x+p^{n} \mathbb{N}_{0}\right)+p^{m} \mathbb{N}_{0} \subseteq x+p^{n} \mathbb{N}_{0}$. Since $p \notin \Pi_{b} \cup \Pi_{d}$, we can apply the Chinese remainder theorem [10, 3.12] and conclude that $\emptyset \neq\left(y+p^{m} \mathbb{N}\right) \cap \bigcap_{q \in \Pi_{b} \cup \Pi_{d}} q \mathbb{N}$. Applying Lemma 2 and taking into account that the set Ω is clopen in $\mathbb{N}_{\tau} \backslash p \mathbb{N}$, we conclude that

$$
\begin{aligned}
\emptyset & \neq\left(y+p^{m} \mathbb{N}_{0}\right) \cap\left(\bigcap_{q \in \Pi_{b} \cup \Pi_{d}} q \mathbb{N}\right) \\
& =\left(x+p^{n} \mathbb{N}_{0}\right) \cap\left(\bigcap_{q \in \Pi_{b}} q \mathbb{N}\right) \cap\left(y+p^{m} \mathbb{N}_{0}\right) \cap\left(\bigcap_{q \in \Pi_{d}} q \mathbb{N}\right) \\
& \subseteq \overline{x+p^{n} b \mathbb{N}_{0}} \cap \overline{y+p^{m} d \mathbb{N}_{0}} \subseteq \bar{\Omega} \cap \overline{(\mathbb{N} \backslash p \mathbb{N}) \backslash \Omega} \subseteq p \mathbb{N},
\end{aligned}
$$

which is not possible as the sets $x+p^{n} \mathbb{N}_{0}$ and $p \mathbb{N}$ are disjoint. This contradiction shows that $x+p^{n} \mathbb{N}_{0} \subseteq \Omega$.

A subset of a topological space is clopen if it is closed and open. By the zero-dimensional reflection of a topological space X we understand the space X endowed with the topology generated by the base consisting of clopen subsets of the space X.

Lemma 7. The p-adic topology on $\mathbb{N} \backslash p \mathbb{N}$ coincides with the zero-dimensional reflection of the subspace $\mathbb{N}_{\tau} \backslash p \mathbb{N}$ of the Golomb space \mathbb{N}_{τ}.

Proof: Lemma 6 implies that the p-adic topology τ_{p} on $\mathbb{N} \backslash p \mathbb{N}$ is stronger than the topology ζ of zero-dimensional reflection on $\mathbb{N}_{\tau} \backslash p \mathbb{N}$. To see that the τ_{p} coincides with ζ, it suffices to show that for every $x \in \mathbb{N} \backslash p \mathbb{N}$ and $n \in \mathbb{N}$ the basic open set $\mathbb{N} \cap\left(x+p^{n} \mathbb{Z}\right)$ in the p-adic topology is clopen in the subspace topology of $\mathbb{N}_{\tau} \backslash p \mathbb{N} \subset \mathbb{N}_{\tau}$. By the definition, the set $\mathbb{N} \cap\left(x+p^{n} \mathbb{Z}\right)$ is open in the Golomb
topology. To see that it is closed in $\mathbb{N}_{\tau} \backslash p \mathbb{N}$, take any point $y \in(\mathbb{N} \backslash p \mathbb{N}) \backslash\left(x+p^{n} \mathbb{Z}\right)$ and observe that the Golomb-open neighborhood $y+p^{n} \mathbb{N}_{0}$ of y is disjoint with the set $\mathbb{N} \cap\left(x+p^{n} \mathbb{Z}\right)$.

For every prime number p, consider the countable family

$$
\mathcal{X}_{p}=\left\{\overline{a^{\mathbb{N}}}: a \in \mathbb{N} \backslash p \mathbb{N}, a \neq 1\right\}
$$

where the closure $\overline{a^{\mathbb{N}}}$ is taken in the p-adic topology on $\mathbb{N} \backslash p \mathbb{N}$, which coincides with the topology of zero-dimensional reflection of the Golomb topology on $\mathbb{N} \backslash p \mathbb{N}$ according to Lemma 7.

The family \mathcal{X}_{p} is endowed with the partial order " \leq " defined by $X \leq Y$ if and only if $Y \subseteq X$. So, \mathcal{X}_{p} is a poset carrying the partial order of reverse inclusion.

Lemma 8. For any prime number p, any homeomorphism h of the Golomb space \mathbb{N}_{τ} induces an order isomorphism

$$
h: \mathcal{X}_{p} \longrightarrow \mathcal{X}_{h(p)}, \quad h: \overline{a^{\mathbb{N}}} \mapsto h\left(\overline{a^{\mathbb{N}}}\right)=\overline{h(a)^{\mathbb{N}}}
$$

of the posets \mathcal{X}_{p} and $\mathcal{X}_{h(p)}$.
Proof: By Lemma 3, $h(1)=1$ and $h(p)$ is a prime number. First we show that $h(p \mathbb{N})=h(p) \mathbb{N}$. Indeed, for any $x \in p \mathbb{N}$ we have $p \in \Pi_{x}$ and by Lemma 3, $h(p) \in h\left(\Pi_{x}\right)=\Pi_{h(x)}$ and hence $h(x) \in h(p) \mathbb{N}$ and $h(p \mathbb{N}) \subseteq h(p) \mathbb{N}$. Applying the same argument to the homeomorphism h^{-1}, we obtain $h^{-1}(h(p) \mathbb{N}) \subseteq p \mathbb{N}$, which implies the desired equality $h(p \mathbb{N})=h(p) \mathbb{N}$. The bijectivity of h ensures that h maps homeomorphically the space $\mathbb{N}_{\tau} \backslash p \mathbb{N}$ onto the space $\mathbb{N}_{\tau} \backslash h(p) \mathbb{N}$.

Then h also is a homeomorphism of the spaces $\mathbb{N} \backslash p \mathbb{N}$ and $\mathbb{N} \backslash h(p) \mathbb{N}$ endowed with the zero-dimensional reflections of their subspace topologies inherited from the Golomb topology of \mathbb{N}_{τ}. By Lemma 7, these reflection topologies on $\mathbb{N} \backslash p \mathbb{N}$ and $\mathbb{N} \backslash h(p) \mathbb{N}$ coincide with the p-adic and $h(p)$-adic topologies on $\mathbb{N} \backslash p \mathbb{N}$ and $\mathbb{N} \backslash h(p) \mathbb{N}$, respectively.

By Lemma 3 , for any $a \in \mathbb{N} \backslash(\{1\} \cup p \mathbb{N})$ we have

$$
h(a)^{\mathbb{N}}=h\left(a^{\mathbb{N}}\right) \subseteq h(\mathbb{N} \backslash p \mathbb{N})=\mathbb{N} \backslash h(p) \mathbb{N}
$$

and by the fact that $h: \mathbb{N} \backslash p \mathbb{N} \longrightarrow \mathbb{N} \backslash h(p) \mathbb{N}$ is a homeomorphism in the topologies of zero-dimensional reflections, we get $h\left(\overline{a^{\mathbb{N}}}\right)=\overline{h\left(a^{\mathbb{N}}\right)}=\overline{h(a)^{\mathbb{N}}}$. The same argument applies to the homeomorphism h^{-1}. This implies that

$$
h: \mathcal{X}_{p} \longrightarrow \mathcal{X}_{h(p)}, \quad h: \overline{a^{\mathbb{N}}} \mapsto h\left(\overline{a^{\mathbb{N}}}\right)=\overline{h(a)^{\mathbb{N}}},
$$

is a well-defined bijection. It is clear that this bijection preserves the inclusion order and hence it is an order isomorphism between the posets \mathcal{X}_{p} and $\mathcal{X}_{h(p)}$.

4. The order structure of the posets \mathcal{X}_{p}

In this section, given a prime number p, we investigate the order-theoretic structure of the poset \mathcal{X}_{p}.

For every $n \in \mathbb{N}$ denote by $\pi_{n}: \mathbb{N} \longrightarrow \mathbb{Z}_{p^{n}}$ the homomorphism assigning to each number $x \in \mathbb{N}$ the residue class $x+p^{n} \mathbb{Z}$. Also for $n \leq m$ let

$$
\pi_{m, n}: \mathbb{Z}_{p^{m}} \longrightarrow \mathbb{Z}_{p^{n}}
$$

be the ring homomorphism assigning to each residue class $x+p^{m} \mathbb{Z}$ the residue class $x+p^{n} \mathbb{Z}$. It is easy to see that $\pi_{n}=\pi_{m, n} \circ \pi_{m}$. Observe that the multiplicative group $\mathbb{Z}_{p^{n}}^{\times}$of invertible elements of the ring $\mathbb{Z}_{p^{n}}$ coincides with the set $\mathbb{Z}_{p^{n}} \backslash p \mathbb{Z}_{p^{n}}$ and hence has cardinality $p^{n}-p^{n-1}=p^{n-1}(p-1)$. Observe that for every $a \in \mathbb{N} \backslash p \mathbb{Z}$ the set $\pi_{n}\left(a^{\mathbb{N}}\right)=\pi_{n}(a)^{\mathbb{N}}$ is a multiplicative subgroup of the finite $\operatorname{group} \mathbb{Z}_{p^{n}}^{\times}$.

First we establish the structure of the elements $\overline{a^{\mathbb{N}}}$ of the family \mathcal{X}_{p}.
Lemma 9. If for some $a \in \mathbb{N} \backslash p \mathbb{Z}$ and $n \in \mathbb{N}$ the element $\pi_{n}(a)$ has order greater than or equal to $\max \{p, 3\}$ in the multiplicative group $\mathbb{Z}_{p^{n}}^{\times}$, then $\overline{a^{\mathbb{N}}}=$ $\pi_{n}^{-1}\left(\pi_{n}(a)^{\mathbb{N}}\right)$.
Proof: Let $B=b^{\mathbb{N}}$ be the cyclic group generated by the element $b=\pi_{n}(a)$ in the multiplicative group $\mathbb{Z}_{p^{n}}^{\times}$. Since $\left|\mathbb{Z}_{p^{n}}^{\times}\right|=p^{n-1}(p-1)$, and b has order greater than or equal to $\max \{p, 3\}$, the cardinality of the group B is equal to $p^{k} d$ for some $k \in\{1, \ldots, n-1\}$ and some divisor d of the number $p-1$. Moreover, if $p=2$, then $2^{k} \geq 3$ and hence $k \geq 2$ and $n \geq 3$.

For any number $m \geq n$, consider the quotient homomorphism

$$
\pi_{m, n}: \mathbb{Z}_{p^{m}} \longrightarrow \mathbb{Z}_{p^{n}}, \quad \pi_{m, n}: x+p^{m} \mathbb{Z} \mapsto x+p^{n} \mathbb{Z}
$$

We claim that the subgroup $H=\pi_{m, n}^{-1}(B)$ of the multiplicative group $\mathbb{Z}_{p^{m}}^{\times}$is cyclic. For odd p this follows from the cyclicity of the group $\mathbb{Z}_{p^{n}}^{\times}$, see Lemma 4.

For $p=2$, by Lemma 4 , the multiplicative group $\mathbb{Z}_{2^{m}}^{\times}$is isomorphic to the additive group $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{m-2}}$. Assuming that H is not cyclic and applying Lemma 5 , we conclude that H contains the 4 -element Boolean subgroup

$$
V=\left\{1+2^{m} \mathbb{Z},-1+2^{m} \mathbb{Z}, 1+2^{m-1}+2^{m} \mathbb{Z},-1+2^{m-1}+2^{m} \mathbb{Z}\right\}
$$

of $\mathbb{Z}_{2^{m}}^{\times}$. Then $B=\pi_{m, n}(H) \supseteq \pi_{m, n}(V) \ni-1+2^{n} \mathbb{Z}$. Taking into account that $-1+2^{n} \mathbb{Z}$ has order 2 in the cyclic group B, we conclude that $-1+2^{n} \mathbb{Z}=$ $a^{2^{k-1}}+2^{n} \mathbb{Z}$. Since $k \geq 2$, the odd number $c=a^{2^{k-2}}$ is well-defined and $c^{2}+4 \mathbb{Z}=$ $a^{2^{k-1}}+4 \mathbb{Z}=-1+4 \mathbb{Z}$, which is not possible (as squares of odd numbers are equal to 1 modulo 4). This contradiction shows that the group H is cyclic.

By [12, 1.5.5], the number of generators of the cyclic group H can be calculated using the Euler totient function as

$$
\begin{aligned}
\varphi(|H|) & =\varphi\left(p^{m-n}|B|\right)=\varphi\left(p^{m-n} p^{k} d\right)=\varphi\left(p^{m-n+k}\right) \varphi(d) \\
& =p^{m-n+k-1}(p-1) \varphi(d)=p^{m-n} \varphi\left(p^{k}\right) \varphi(d)=p^{m-n} \varphi\left(p^{k} d\right) \\
& =p^{m-n} \varphi(|B|)
\end{aligned}
$$

which implies that for every generator g of the group B, every element of the set $\pi_{m, n}^{-1}(g)$ is a generator of the group H. In particular, the element $\pi_{m}(a) \in$ $\pi_{m, n}^{-1}\left(\pi_{n}(a)\right)$ is a generator of the group H. By the definition of p-adic topology,

$$
\begin{aligned}
\overline{a^{\mathbb{N}}} & =\bigcap_{m \geq n} \pi_{m}^{-1}\left(\pi_{m}(a)^{\mathbb{N}}\right)=\bigcap_{m \geq n} \pi_{m}^{-1}\left(\pi_{m, n}^{-1}(B)\right) \\
& =\bigcap_{m \geq n} \pi_{n}^{-1}(B)=\pi_{n}^{-1}(B)=\pi_{n}^{-1}\left(\pi_{n}(a)^{\mathbb{N}}\right)
\end{aligned}
$$

Lemma 10. (1) For every $X \in \mathcal{X}_{p}$ there exists $n \in \mathbb{N}$ and a cyclic subgroup H of the multiplicative group $\mathbb{Z}_{p^{n}}^{\times}$such that $X=\pi_{n}^{-1}(H)$ and $|H| \geq \max \{p, 3\}$.
(2) For every $n \in \mathbb{N}$ and cyclic subgroup H of $\mathbb{Z}_{p^{n}}^{\times}$of order $|H| \geq \max \{p, 3\}$, there exists a number $a \in \mathbb{N} \backslash p \mathbb{N}$ such that $\pi_{n}^{-1}(H)=\overline{a^{\mathbb{N}}} \in \mathcal{X}_{p}$.
Proof: (1) Given any $X \in \mathcal{X}$, find a number $a \in \mathbb{N} \backslash(\{1\} \cup p \mathbb{N})$ such that $X=\overline{a^{\mathbb{N}}}$. Choose any $n \in \mathbb{N}$ with $p^{n}>a^{p}$ and observe that the cyclic subgroup $H \subseteq \mathbb{Z}_{p^{n}}^{\times}$, generated by the element $\pi_{n}(a)=a+p^{n} \mathbb{Z}$, has order $|H| \geq p+1 \geq$ $\max \{p, 3\}$.
(2) Fix $n \in \mathbb{N}$ and a cyclic subgroup H of $\mathbb{Z}_{p^{n}}^{\times}$of order $|H| \geq \max \{p, 3\}$. Find a number $a \in \mathbb{N}$ such that the residue class $\pi_{n}(a)=a+p^{n} \mathbb{Z}$ is a generator of the cyclic group H. Then $\pi_{n}(a)$ has order $|H| \geq \max \{p, 3\}$, Lemma 9 ensures that $\pi_{n}^{-1}(H)=\pi_{n}^{-1}\left(\pi_{n}(a)^{\mathbb{N}}\right)=\overline{a^{\mathbb{N}}} \in \mathcal{X}_{p}$.

For any $X \in \mathcal{X}_{p}$, let

$$
n(X)=\min \left\{n \in \mathbb{N}: X=\pi_{n}^{-1}\left(\pi_{n}(X)\right),\left|\pi_{n}(X)\right| \geq \max \{p, 3\}\right\}
$$

Lemmas 9 and 10 imply that the number $n(X)$ is well-defined and $\pi_{n(X)}(X)$ is a cyclic subgroup of order greater than or equal to $\max \{p, 3\}$ in the multiplicative $\operatorname{group} \mathbb{Z}_{p^{n(X)}}^{\times}$. Let $i(X)$ be the index of the cyclic subgroup $\pi_{n(X)}(X)$ in $\mathbb{Z}_{p^{n(X)}}^{\times}$.
Lemma 11. Let $p=2, a>1$ be an odd integer, and $X=\overline{a^{\mathbb{N}}}$ be the closure of the set $a^{\mathbb{N}}$ in the 2-adic topology of $\mathbb{N} \backslash 2 \mathbb{N}$. The cyclic subgroup $\pi_{n(X)}(X)$ of $\mathbb{Z}_{2^{n(X)}}^{\times}$has order 4 and index $i(X)=2^{n(X)-3} \geq 2$.

Proof: By definition of $n(X)$ and Lemma $9, n(X)$ is the smallest number such that the cyclic subgroup $\pi_{n(X)}(X)=\pi_{n(X)}\left(a^{\mathbb{N}}\right)$ of $\mathbb{Z}_{2^{n(X)}}^{\times}$has order greater than or equal to 3 . Then $\left|\pi_{n(X)}\left(a^{\mathbb{N}}\right)\right|=2^{k}$ for some $k \geq 2$. If $k \neq 2$, then we can consider the projection $\pi_{n(X)-1}(X)=\pi_{n(X), n(X)-1}\left(\pi_{n(X)}(X)\right)$ and conclude that $\left|\pi_{n(X)-1}(X)\right| \geq\left|\pi_{n(X)}(X)\right| / 2 \geq 2^{k-1} \geq 4 \geq 3$ (since the homomorphism $\pi_{n(X), n(X)-1}: \mathbb{Z}_{2^{n(X)}} \longrightarrow \mathbb{Z}_{2^{n(X)-1}}$ has kernel of cardinality 2), but this contradicts the minimality of $n(X)$. This contradiction shows that $\left|\pi_{n(X)}(X)\right|=4$.

The group $\mathbb{Z}_{2^{n(X)}}^{\times}$has cardinality $\left|\mathbb{Z}_{2^{n(X)}}^{\times}\right| \geq\left|\pi_{n(X)}(X)\right|=4$ and therefore $n(X) \geq 3$. By Lemma 4 (2), the multiplicative group $\mathbb{Z}_{2^{n(X)}}^{\times}$is not cyclic, which implies $\pi_{n(X)}(X) \neq \mathbb{Z}_{2^{n(X)}}^{\times}$and hence $i(X) \geq\left|\mathbb{Z}_{2^{n(X)}}^{\times} / \pi_{n(X)}(X)\right|=2^{n(X)-3} \geq 2$.

Lemma 12. For any odd prime number p and two sets $X, Y \in \mathcal{X}$, the inclusion $X \subseteq Y$ holds if and only if $i(Y)$ divides $i(X)$.

Proof: Let $m=\max \{n(X), n(Y)\}$. Then $X=\pi_{m}^{-1}\left(\pi_{m}(X)\right), Y=\pi_{m}^{-1}\left(\pi_{m}(Y)\right)$ and $\pi_{m}(X), \pi_{m}(Y)$ are subgroups of the multiplicative group $\mathbb{Z}_{p^{m}}^{\times}$, which is cyclic by the Gauss Lemma 4 (1). It follows that the subgroups $\pi_{m}(X)$ and $\pi_{m}(Y)$ have indexes $i(X)$ and $i(Y)$ in $\mathbb{Z}_{p^{m}}^{\times}$, respectively. Let g be a generator of the cyclic group $\mathbb{Z}_{p^{m}}^{\times}$. It follows that the subgroups $\pi_{m}(X)$ and $\pi_{m}(Y)$ are generated by the elements $g^{i(X)}$ and $g^{i(Y)}$, respectively. Now we see that $X \subseteq Y$ if and only if $\pi_{m}(X) \subseteq \pi_{m}(Y)$ if and only if $g^{i(X)} \in\left(g^{i(Y)}\right)^{\mathbb{N}}$ if and only if $i(Y)$ divides $i(X)$.
Lemma 13. For any odd prime number p, any $n \in \mathbb{N}$, and the number $a=1+p^{n}$ we have $\overline{a^{\mathbb{N}}}=1+p^{n} \mathbb{N}_{0}$ and $i\left(\overline{a^{\mathbb{N}}}\right)=p^{n-1}(p-1)$.
Proof: Observe that for any $k<p$ we have $a^{k}=\left(1+p^{n}\right)^{k} \in 1+k p^{n}+p^{n+1} \mathbb{Z} \neq$ $1+p^{n+1} \mathbb{Z}$ and $a^{p}=\left(1+p^{n}\right)^{p} \in 1+p^{n+1} \mathbb{Z}$, which means that the element $\pi_{n+1}(a)$ has order p in the group $\mathbb{Z}_{p^{n+1}}^{\times}$. By Lemma 9 ,

$$
\overline{a^{\mathbb{N}}}=\pi_{n+1}^{-1}\left(\left\{a^{k}+p^{n+1} \mathbb{Z}: 0 \leq k<p\right\}\right)=\bigcup_{k=0}^{p-1}\left(a^{k}+p^{n+1} \mathbb{N}_{0}\right)=1+p^{n} \mathbb{N}_{0}
$$

Also $i\left(\overline{a^{\mathbb{N}}}\right)=\left|\mathbb{Z}_{p^{n+1}}^{\times}\right| / p=p^{n-1}(p-1)$.
Lemmas 10 and 12 imply that for an odd prime number p, the poset \mathcal{X}_{p} is order isomorphic to the set

$$
\mathcal{D}_{p}=\left\{d \in \mathbb{N}: d \text { divides } p^{n}(p-1) \text { for some } n \in \mathbb{N}_{0}\right\}
$$

endowed with the divisibility relation.
An element t of a partially ordered set (X, \leq) is called \uparrow-chain if its upper set $\uparrow t=\{x \in X: x \geq t\}$ is a chain. It is easy to see that the set of \uparrow-chain
elements of the poset \mathcal{D}_{p} coincides with the set $\left\{p^{n}(p-1): n \in \mathbb{N}_{0}\right\}$ and hence is a well-ordered chain with the smallest element $(p-1)$.

Below on the Hasse diagrams of the posets \mathcal{D}_{3} and \mathcal{D}_{5} (showing that these posets are not order isomorphic) the \uparrow-chain elements are drawn with the bold font.

Lemmas 12 and 13 and the isomorphness of the posets \mathcal{X}_{p} and \mathcal{D}_{p} imply the following lemma.

Lemma 14. For an odd prime number p, the family $\left\{1+p^{n} \mathbb{N}_{0}: n \in \mathbb{N}\right\}$ coincides with the well-ordered set of \uparrow-chain elements of the poset \mathcal{X}_{p}.

Now we reveal the order structure of the poset \mathcal{X}_{2}. This poset consists of the closures $\overline{a^{\mathbb{N}}}$ in the 2-adic topology of the sets $a^{\mathbb{N}}$ for odd numbers $a>1$.

Lemma 15. Let $a>1$ be an odd integer and $X=\overline{a^{\mathbb{N}}}$ be the closure of $a^{\mathbb{N}}$ in the 2-adic topology on $\mathbb{N} \backslash 2 \mathbb{N}$.
(1) If $a \in 1+4 \mathbb{N}$, then $\overline{a^{\mathbb{N}}}=1+2^{n(X)-2} \mathbb{N}_{0}$.
(2) If $a \in 3+4 \mathbb{N}_{0}$, then $\overline{a^{\mathbb{N}}}=\left(1+2^{n(X)-1} \mathbb{N}_{0}\right) \cup\left(-1+2^{n(X)-2}+2^{n(X)-1} \mathbb{N}_{0}\right)$.

In both cases, $i(X)=2^{n(X)-3} \geq 2$.
Proof: By Lemma 11, the projection $C_{X}:=\pi_{n(X)}(X)=\pi_{n(X)}\left(a^{\mathbb{N}}\right)$ is a cyclic subgroup of order 4 and index $i(X)=2^{n(X)-3} \geq 2$ in the group $\mathbb{Z}_{2^{n(X)}}^{\times}$.

By Lemma 4 (2), the coset $5+2^{n(X)} \mathbb{Z}$ generates a maximal cyclic subgroup

$$
M_{X}=\left\{1+4 k+2^{n(X)} \mathbb{Z}: 0 \leq k<2^{n(X)-2}\right\}
$$

of cardinality $2^{n(X)-2}$ in $\mathbb{Z}_{2^{n(X)}}^{\times}$. If $a \in 1+4 \mathbb{N}$, the subgroup generated by $\pi_{n(X)}(a)$ is contained in M_{X}. Then $C_{X}=\left\{1+k \cdot 2^{n(X)-2}+2^{n(X)} \mathbb{Z}: 0 \leq k<4\right\}$ and $X=\pi_{n(X)}^{-1}\left(C_{X}\right)=1+2^{n(X)-2} \mathbb{N}_{0}$.

If $a \in 3+4 \mathbb{N}_{0}$, then C_{X} is not contained in M_{X}. By the Gauss Lemma 4 (2), there are two cyclic subgroups of $\mathbb{Z}_{2^{n(X)}}^{\times}$of order 4: one generated by $g=(5+$ $\left.2^{n(X)} \mathbb{Z}\right)^{n(X)-2}$ (which is contained in M_{X}) and the other is generated by $-g$, which is not contained in M_{X} but contains $-1+2^{n(X)}$. Therefore, C_{X} must be equal to $C_{X}=\left\{(-1)^{k}+k \cdot 2^{n(X)-2}+2^{n(X)} \mathbb{Z}: 0 \leq k<4\right\}$ and

$$
\begin{aligned}
X & =\pi_{n(X)}^{-1}\left(C_{X}\right)=\bigcup_{k=0}^{3} \pi_{n(X)}^{-1}\left((-1)^{k}+k \cdot 2^{n(X)-2}+2^{n(X)} \mathbb{Z}\right) \\
& =\left(1+2^{n(X)-1} \mathbb{N}_{0}\right) \cup\left(-1+2^{n(X)-2}+2^{n(X)-1} \mathbb{N}_{0}\right)
\end{aligned}
$$

Lemma 16. For every $n \geq 2$,
(1) the set $X=\overline{\left(1+2^{n}\right)^{\mathbb{N}}} \in \mathcal{X}_{2}$ coincides with $1+2^{n} \mathbb{N}_{0}$ and has $i(X)=2^{n-1}$;
(2) the set $Y=\overline{\left(-1+2^{n}\right)^{\mathbb{N}}} \in \mathcal{X}_{2}$ coincides with $\left(1+2^{n+1} \mathbb{N}_{0}\right) \cup\left(2^{n}-1+\right.$ $\left.2^{n+1} \mathbb{N}_{0}\right)$ and has $i(Y)=2^{n-1}$.
Proof: (1) Observe that for every positive $k<4$ we have $\left(1+2^{n}\right)^{k} \in 1+$ $k 2^{n}+2^{n+2} \mathbb{Z} \neq 1+2^{n+2} \mathbb{Z}$ and $\left(1+2^{n}\right)^{4} \in 1+2^{n+2} \mathbb{Z}$, which means that the element $\left(1+2^{n}\right)+2^{n+2} \mathbb{Z}$ has order 4 in the group $\mathbb{Z}_{2^{n+2}}^{\times}$. Then the element $X=\overline{\left(1+2^{n}\right)^{\mathbb{N}}} \in \mathcal{X}_{2}$ has $n(X)=n+2$ and hence $X=1+2^{n} \mathbb{N}_{0}$ and $i(X)=$ $2^{n(X)-3}=2^{n-1}$ by Lemma 15.
(2) Also for every positive $k<4$ we have $\left(-1+2^{n}\right)^{k} \in(-1)^{k}\left(1-k 2^{n}\right)+$ $2^{n+2} \mathbb{Z} \neq 1+2^{n+2} \mathbb{Z}$ and $\left(-1+2^{n}\right)^{4} \in 1+2^{n+2} \mathbb{Z}$, which means that the element $\left(-1+2^{n}\right)+2^{n+2} \mathbb{Z}$ has order 4 in the group $\mathbb{Z}_{2^{n+2}}^{\times}$. Then the element $Y=$ $\overline{\left(-1+2^{n}\right)^{\mathbb{N}}} \in \mathcal{X}_{2}$ has $n(Y)=n+2$ and hence $Y=\left(1+2^{n+1} \mathbb{N}_{0}\right) \cup\left(2^{n}-1+2^{n+1} \mathbb{N}_{0}\right)$ and $i(Y)=2^{n(Y)-3}=2^{n-1}$ by Lemma 15 .

Lemma 17. For distinct sets $X, Y \in \mathcal{X}_{2}$, the strict embedding $X \subset Y$ holds if and only if $X \subseteq 1+4 \mathbb{N}_{0}$ and $i(Y)<i(X)$.

Proof: If $X \subseteq 1+4 \mathbb{N}_{0}$, then by Lemma $15, X=1+2^{n(X)-2} \mathbb{N}_{0}$. If $i(Y)<i(X)$, then $n(Y)<n(X)$ (see Lemma 15). If $Y \subseteq 1+4 \mathbb{N}_{0}$, then Lemma 15 implies

$$
X=1+2^{n(X)-2} \mathbb{N}_{0} \subset 1+2^{n(Y)-2} \mathbb{N}_{0}=Y
$$

If $Y \nsubseteq 1+4 \mathbb{N}_{0}$, then Lemma 15 ensures that

$$
X=1+2^{n(X)-2} \mathbb{N}_{0} \subset 1+\left(2^{n(Y)-1} \mathbb{N}_{0}\right) \cup\left(-1+2^{n(Y)-2}+2^{n(Y)-1} \mathbb{N}_{0}\right)=Y
$$

In both cases we have the strict embedding $X \subset Y$.

Conversely, assume that $X \subset Y$. We should prove that $X \subseteq 1+4 \mathbb{N}_{0}$ and $i(Y)<$ $i(X)$. To derive a contradiction, assume that $X \nsubseteq 1+4 \mathbb{N}_{0}$. Applying Lemma 15 and taking into account that $X \subset Y$, we conclude that $X=\left(1+2^{n(X)-1} \mathbb{N}_{0}\right) \cup$ $\left(-1+2^{n(X)-2}+2^{n(X)-1} \mathbb{N}_{0}\right), Y=\left(1+2^{n(Y)-1} \mathbb{N}_{0}\right) \cup\left(-1+2^{n(Y)-2}+2^{n(Y)-1} \mathbb{N}_{0}\right)$ and $n(X)>n(Y)$. Then $-1+2^{n(X)-2} \in X \subseteq Y$ implies that $-1+2^{n(X)-2}$ belongs either to $1+2^{n(Y)-1} \mathbb{N}_{0}$ or to $-1+2^{n(Y)-2}+2^{n(Y)-1} \mathbb{N}_{0}$. In the first case we conclude that $2 \in 2^{n(Y)-1} \mathbb{Z}$ and hence $n(Y) \leq 2$, which contradicts Lemma 11. In the second case, we obtain that $2^{n(X)-2} \in 2^{n(Y)-2}+2^{n(Y)-1} \mathbb{N}_{0}$. Since $n(X)>n(Y)$, this implies $2^{n(Y)-2} \in 2^{n(Y)-1} \mathbb{Z}$, which is the final contradiction showing that $X \subseteq 1+4 \mathbb{N}_{0}$. Then $X=1+2^{n(X)-2} \mathbb{N}_{0}$ according to Lemma 15 .

Next, we prove that $i(Y)<i(X)$. By Lemma 15 , two cases are possible: $Y=1+2^{n(Y)-2} \mathbb{N}_{0}$ or $Y=\left(1+2^{n(Y)-1} \mathbb{N}_{0}\right) \cup\left(-1+2^{n(Y)-2}+2^{n(Y)-1} \mathbb{N}_{0}\right)$. In both cases the strict inclusion $1+2^{n(X)-2} \mathbb{N}_{0}=X \subset Y$ implies that $n(X)>n(Y)$ and hence $i(X)=2^{n(X)-3}>2^{n(Y)-3}=i(Y)$.

Lemmas 16 and 17 imply:
Lemma 18. The family $\min \mathcal{X}_{2}=\left\{X \in \mathcal{X}_{2}: X \nsubseteq 1+8 \mathbb{N}_{0}\right\}$ coincides with the set of minimal elements of the poset \mathcal{X}_{2} and the set $\mathcal{X}_{2} \backslash \min \mathcal{X}_{2}=\left\{X \in \mathcal{X}_{2}: X \subseteq\right.$ $\left.1+8 \mathbb{N}_{0}\right\}$ is well-ordered and coincides with the set $\left\{1+2^{n} \mathbb{N}_{0}: n \geq 3\right\}$.

The Hasse diagram of the poset \mathcal{X}_{2}.
Lemma 19. For any homeomorphism h of the Golomb space \mathbb{N}_{τ} and any $n \in$ $\{1,2,3\}$ we have $h(n)=n$.

Proof: 1. The equality $h(1)=1$ follows from Lemma 3 (1).
2. By Lemma 8, h induces an order isomorphism of the posets \mathcal{X}_{2} and $\mathcal{X}_{h(2)}$. By Lemmas 16 and 18, the set $\left\{\overline{\left(-1+2^{n}\right)^{\mathbb{N}}}: n \geq 2\right\}$ is an infinite antichain in the poset \mathcal{X}_{2}. Consequently, the poset $\mathcal{X}_{h(2)}$ also contains an infinite antichain. On the other hand, for any odd prime number p the poset \mathcal{X}_{p} is order-isomorphic to the poset \mathcal{D}_{p}, which contain no infinite antichains. Consequently, $\mathcal{X}_{h(2)}$ cannot be order isomorphic to \mathcal{X}_{p}, and hence $h(2)=2$.
3. By Lemma $3(2), h(3)$ is a prime number, not equal to $h(2)=2$. By Lemma $8, h$ induces an order isomorphism of the posets \mathcal{X}_{3} and $\mathcal{X}_{h(3)}$. Then the posets \mathcal{D}_{3} and $\mathcal{D}_{h(3)}$ also are order isomorphic. The smallest \uparrow-chain element of the poset \mathcal{D}_{3} is 2 and the set $\downarrow 2=\left\{d \in \mathcal{D}_{3}: d\right.$ divides 2$\}$ has cardinality 2 . On the other hand, the smallest \uparrow-chain element of the poset $\mathcal{D}_{h(3)}$ is $h(3)-1$. Since the sets \mathcal{D}_{3} and $\mathcal{D}_{h(3)}$ are order-isomorphic, the set $\downarrow(h(3)-1)=\left\{d \in \mathcal{D}_{h(3)}\right.$: d divides $h(3)-1\}$ has cardinality 2 , which means that the number $h(3)-1$ is prime. Observing that 3 is a unique odd prime number p such that $p-1$ is prime, we conclude that $h(3)=3$.

Lemma 20. For any homeomorphism h of the Golomb space \mathbb{N}_{τ}, and any prime number p we have $h\left(1+p^{n} \mathbb{N}_{0}\right)=1+h(p)^{n} \mathbb{N}_{0}$ for all $n \in \mathbb{N}$.

Proof: By Lemma 8, the homeomorphism h induces an order isomorphism of the posets \mathcal{X}_{p} and $\mathcal{X}_{h(p)}$.

If $p=2$, then $h(p)=2$ by Lemma 19. Lemma 3 implies $h(2 \mathbb{N})=h(2) \cdot \mathbb{N}=2 \mathbb{N}$ and hence $h\left(1+2 \mathbb{N}_{0}\right)=h(\mathbb{N} \backslash 2 \mathbb{N})=\mathbb{N} \backslash h(2 \mathbb{N})=1+2 \mathbb{N}_{0}$. By Lemma 8, h induces an order automorphism of the poset \mathcal{X}_{2} and hence h is identity on the well-ordered set $\left\{1+2^{n} \mathbb{N}_{0}: n \geq 3\right\}$ of non-minimal elements of \mathcal{X}_{2}, see Lemma 18 . Consequently, $h\left(1+2^{n} \mathbb{N}_{0}\right)=1+2^{n} \mathbb{N}_{0}$ for all $n \geq 3$.

Next, we show that $h\left(1+4 \mathbb{N}_{0}\right)=1+4 \mathbb{N}_{0}$. Observe that for the smallest nonminimal element $\overline{9^{\mathbb{N}}}=1+8 \mathbb{N}_{0}$ of \mathcal{X}_{2} there are only two elements, $\overline{5^{\mathbb{N}}}=1+4 \mathbb{N}_{0}$ and $\overline{3^{\mathbb{N}}}=\left(1+8 \mathbb{N}_{0}\right) \cup\left(3+8 \mathbb{N}_{0}\right)$, which are strictly smaller than $\overline{9^{\mathbb{N}}}$ in the poset \mathcal{X}_{2}. Then $h\left(\overline{5^{\mathbb{N}}}\right) \in\left\{\overline{3^{\mathbb{N}}}, \overline{5^{\mathbb{N}}}\right\}$. By Lemma $19, h(3)=3$ and hence $h\left(\overline{3^{\mathbb{N}}}\right)=\overline{3^{\mathbb{N}}}$, which implies that $h\left(1+4 \mathbb{N}_{0}\right)=h\left(\overline{5^{\mathbb{N}}}\right)=\overline{5^{\mathbb{N}}}=1+4 \mathbb{N}_{0}$.

Now assume that p is an odd prime number. Since $h(2)=2$, the prime number $h(p) \neq h(2)=2$ is odd. By Lemma 14, the well-ordered sets $\left\{1+p^{n} \mathbb{N}_{0}\right.$: $n \in \mathbb{N}\}$ and $\left\{1+h(p)^{n} \mathbb{N}_{0}: n \in \mathbb{N}\right\}$ coincide with the sets of \uparrow-chain elements of the posets \mathcal{X}_{p} and $\mathcal{X}_{h(p)}$, respectively. Taking into account that h is an order isomorphism, we conclude that $h\left(1+p^{n} \mathbb{N}_{0}\right)=1+h(p)^{n} \mathbb{N}_{0}$ for every $n \in \mathbb{N}$.

5. Proof of Theorem 1

In this section we present the proof of Theorem 1. Given any homeomorphism h of the Golomb space \mathbb{N}_{τ}, we need to prove that $h(n)=n$ for all $n \in \mathbb{N}$. This equality will be proved by induction.

For $n \leq 3$ the equality $h(n)=n$ is proved in Lemma 19. Assume that for some number $n \geq 4$ we have proved that $h(k)=k$ for all $k<n$. For every prime number p let α_{p} be the largest integer number such that $p^{\alpha_{p}}$ divides $n-1$ (so, $\alpha_{p}=l_{p}(n-1)$). For every $p \in \Pi_{n-1}$ we have $p \leq n-1$ and hence $h(p)=p$ (by the inductive hypothesis). Then $h\left(\Pi_{n-1}\right)=\Pi_{n-1}$ and $h\left(\Pi \backslash \Pi_{n-1}\right)=\Pi \backslash \Pi_{n-1}$.

Observe that n is the unique element of the set

$$
\bigcap_{p \in \Pi}\left(1+p^{\alpha_{p}} \mathbb{N}_{0}\right) \backslash\left(1+p^{\alpha_{p}+1} \mathbb{N}_{0}\right)
$$

By Lemma 20, $h(n)$ coincides with the unique element of the set

$$
\begin{aligned}
\bigcap_{p \in \Pi} & \left(1+h(p)^{\alpha_{p}} \mathbb{N}_{0}\right) \backslash\left(1+h(p)^{\alpha_{p}+1} \mathbb{N}_{0}\right) \\
& =\left(\bigcap_{p \in \Pi_{n-1}}\left(1+h(p)^{\alpha_{p}} \mathbb{N}_{0}\right) \backslash\left(1+h(p)^{\alpha_{p}+1} \mathbb{N}_{0}\right)\right) \cap\left(\bigcap_{p \in \Pi \backslash \Pi_{n-1}} \mathbb{N} \backslash\left(1+h(p) \mathbb{N}_{0}\right)\right) \\
& =\left(\bigcap_{p \in \Pi_{n-1}}\left(1+p^{\alpha_{p}} \mathbb{N}_{0}\right) \backslash\left(1+p^{\alpha_{p}+1} \mathbb{N}_{0}\right)\right) \cap\left(\bigcap_{p \in \Pi \backslash \Pi_{n-1}} \mathbb{N} \backslash\left(1+p \mathbb{N}_{0}\right)\right)=\{n\}
\end{aligned}
$$

and hence $h(n)=n$.

References

[1] Banakh T., Is the Golomb countable connected space topologically rigid?, https://mathoverflow.net/questions/285557.
[2] Banakh T., Mioduszewski J., Turek S., On continuous self-maps and homeomorphisms of the Golomb space, Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423-442.
[3] Brown M., A countable connected Hausdorff space, Bull. Amer. Math. Soc. 59 (1953), Abstract \#423, page 367.
[4] Clark P. L., Lebowitz-Lockard N., Pollack P., A Note on Golomb topologies, Quaest. Math. 42 (2019), no. 1, 73-86.
[5] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989.
[6] Gauss C. F., Disquisitiones Arithmeticae, Springer, New York, 1986.
[7] Golomb S., A connected topology for the integers, Amer. Math. Monthly 66 (1959), 663-665.
[8] Golomb S., Arithmetica topologica, in: General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Prague (1962), pages 179-186 (Italian).
[9] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, New York, 1990.
[10] Jones G. A., Jones J. M., Elementary Number Theory, Springer Undergraduate Mathematics Series, Springer, London, 1998.
[11] Knopfmacher J., Porubský Š., Topologies related to arithmetical properties of integral domains, Exposition. Math. 15 (1997), no. 2, 131-148.
[12] Robinson D. J. S., A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer, New York, 1996.
[13] Spirito D., The Golomb topology on a Dedekind domain and the group of units of its quotients, Topology Appl. 273 (2020), 107101, 20 pages.
[14] Spirito D., The Golomb topology of polynomial rings, Quaest. Math. 44 (2021), no. 4, 447-468.
[15] Steen L. A., Seebach J. A., Jr., Counterexamples in Topology, Dover Publications, Mineola, New York, 1995.
[16] Szczuka P., The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies, Demonstratio Math. 43 (2010), no. 4, 899-909.
[17] Szczuka P., The Darboux property for polynomials in Golomb's and Kirch's topologies, Demonstratio Math. 46 (2013), no. 2, 429-435.

T. Banakh:

Ivan Franko National University of Lviv, Universytetska St., 1, Lviv, 79000, UkRAINE;
and:
Jan Kochanowski University in Kielce, Stefana ŻEromskiego 5, 25-369 Kielce, Poland

E-mail: t.o.banakh@gmail.com
D. Spirito:

Dipartimento di Matematica e Fisica, Università degli Studi "Roma Tre", Via Ostiense, 133B, 00154 Roma, Italy;
current address:
Dipartimento di Matematica, Università di Padova, Via Trieste, 63, 35121, Padova, Italy

E-mail: spirito@mat.uniroma3.it
E-mail: spirito@math.unipd.it
S. Turek:

Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815, Warszawa, Poland

E-mail: s.turek@uksw.edu.pl

