The Golomb space is topologically rigid

TARAS BANAKH, DARIO SPIRITO, SŁAWOMIR TUREK

Abstract. The Golomb space \mathbb{N}_{τ} is the set \mathbb{N} of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions $\{a + bn: n \geq 0\}$ with coprime a, b. We prove that the Golomb space \mathbb{N}_{τ} is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.

Keywords: Golomb topology; topologically rigid space Classification: 11A99, 54G15

1. Introduction

In the AMS Meeting announcement [3] M. Brown introduced an amusing topology τ on the set \mathbb{N} of positive integers turning it into a connected Hausdorff space. The topology τ is generated by the base consisting of arithmetic progressions $a + b\mathbb{N}_0 := \{a + bn : n \in \mathbb{N}_0\}$ with coprime parameters $a, b \in \mathbb{N}$. Here by $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$ we denote the set of nonnegative integer numbers.

In [15] the topology τ is called the *relatively prime integer topology*. This topology was popularized by S. Golomb in [7], [8], who observed that the classical Dirichlet theorem on primes in arithmetic progressions is equivalent to the density of the set Π of prime numbers in the topological space (\mathbb{N}, τ) . As a by-product of such popularization efforts, the topological space $\mathbb{N}_{\tau} := (\mathbb{N}, \tau)$ is known in general topology as the *Golomb space*, see [16], [17].

The topological structure of the Golomb space \mathbb{N}_{τ} was studied by T. Banakh, J. Mioduszewski and S. Turek in [2], who proved that the space \mathbb{N}_{τ} is not topologically homogeneous (by showing that 1 is a fixed point of any homeomorphism of \mathbb{N}). Motivated by this results, the authors of [2] posed a problem of the topological rigidity of the Golomb space. This problem was also repeated by the first author at Mathoverflow, see [1]. A topological space X is defined to be topologically rigid if its homeomorphism group is trivial.

The main result of this note is the following theorem answering the above problem.

DOI 10.14712/1213-7243.2021.023

Theorem 1. The Golomb space \mathbb{N}_{τ} is topologically rigid.

The proof of this theorem will be presented in Section 5 after some preparatory work made in Sections 3 and 4. The idea of the proof belongs to the second author who studied in [13] the rigidity properties of the Golomb topology on a Dedekind ring with removed zero, and established in [13, Theorem 6.7] that the homeomorphism group of the Golomb topology on $\mathbb{Z} \setminus \{0\}$ consists of two homeomorphisms. The proof of Theorem 1 is a modified (and simplified) version of the proof of Theorem 6.7 given in [13]. It should be mentioned that the Golomb topology on Dedekind rings with removed zero was studied by J. Knopfmacher, Š. Porubský in [11], P. L. Clark, N. Lebowitz-Lockard, P. Pollack in [4], and D. Spirito in [13], [14].

2. Preliminaries and notations

In this section we fix some notation and recall some known results on the Golomb topology. For a subset A of a topological space X, by \overline{A} we denote the closure of A in X.

A poset is a set X endowed with a partial order " \leq ". A subset L of a partially ordered set (X, \leq) is called

- linearly ordered (or else a chain) if any points $x, y \in L$ are comparable in the sense that $x \leq y$ or $y \leq x$;
- an *antichain* if any two distinct elements $x, y \in A$ are not comparable.

By Π we denote the set of prime numbers. For a number $x \in \mathbb{N}$ we denote by Π_x the set of all prime divisors of x. Two numbers $x, y \in \mathbb{N}$ are *coprime* if and only if $\Pi_x \cap \Pi_y = \emptyset$. For a number $x \in \mathbb{N}$ let $x^{\mathbb{N}} := \{x^n : n \in \mathbb{N}\}$ be the set of all powers of x.

For a number $x \in \mathbb{N}$ and a prime number p let $l_p(x)$ be the largest integer number such that $p^{l_p(x)}$ divides x. The function $l_p(x)$ plays the role of logarithm with base p.

The following formula for the closures of basic open sets in the Golomb topology was established in [2, 2.2].

Lemma 2 (T. Banakh, J. Mioduszewski, S. Turek). For any $a, b \in \mathbb{N}$

$$\overline{a+b\mathbb{N}_0} = \mathbb{N} \cap \bigcap_{p \in \Pi_b} \left(p\mathbb{N} \cup (a+p^{l_p(b)}\mathbb{Z}) \right).$$

Also we shall heavily exploit the following lemma, proved in [2, 5.1].

Lemma 3 (T. Banakh, J. Mioduszewski, S. Turek). Each homeomorphism $h: \mathbb{N}_{\tau} \longrightarrow \mathbb{N}_{\tau}$ of the Golomb space has the following properties:

- (1) h(1) = 1;
- (2) $h(\Pi) = \Pi;$
- (3) $\Pi_{h(x)} = h(\Pi_x)$ for every $x \in \mathbb{N}$;
- (4) $h(x^{\mathbb{N}}) = h(x)^{\mathbb{N}}$ for every $x \in \mathbb{N}$.

Let p be a prime number and $k \in \mathbb{N}$. Let \mathbb{Z} be the ring of integer numbers, \mathbb{Z}_{p^k} be the residue ring $\mathbb{Z}/p^k\mathbb{Z}$, and $\mathbb{Z}_{p^k}^{\times}$ be the multiplicative group of invertible elements of the ring \mathbb{Z}_{p^k} . It is well-known that $|\mathbb{Z}_{p^k}^{\times}| = \varphi(p^k) = p^{k-1}(p-1)$. The structure of the group $\mathbb{Z}_{p^k}^{\times}$ was described by Gauss in [6, art. 52–56] (see also Theorems 2 and 2' in Chapter 4 of [9]).

Lemma 4 (C. F. Gauss). Let p be a prime number and $k \in \mathbb{N}$.

- (1) If p is odd, then the group $\mathbb{Z}_{p^k}^{\times}$ is cyclic.
- (2) If p = 2 and $k \ge 2$, then the element $-1 + 2^k \mathbb{Z}$ generates a two-element cyclic group C_2 in $\mathbb{Z}_{2^k}^{\times}$ and the element $5 + 2^k \mathbb{Z}$ generates a cyclic subgroup $C_{2^{k-2}}$ of order 2^{k-2} in $\mathbb{Z}_{2^k}^{\times}$ such that $\mathbb{Z}_{2^k}^{\times} = C_2 \oplus C_{2^{k-2}}$.

Lemma 5. If *H* is a non-cyclic subgroup of the multiplicative group $\mathbb{Z}_{2^k}^{\times}$ for some $k \geq 3$, then *H* contains the Boolean subgroup

$$V = \{1 + 2^{k}\mathbb{Z}, -1 + 2^{k}\mathbb{Z}, 1 + 2^{k-1} + 2^{k}\mathbb{Z}, -1 + 2^{k-1} + 2^{k}\mathbb{Z}\}.$$

PROOF: Observe that the multiplicative group $\mathbb{Z}_{2^k}^{\times}$ has order 2^{k-1} , which implies that the order of every element of $\mathbb{Z}_{2^k}^{\times}$ is a power of 2. The Gauss Lemma 4 implies that the multiplicative group $\mathbb{Z}_{2^k}^{\times}$ has exactly 4 elements of order less than or equal to 2 and those elements form the 4-element Boolean subgroup V.

Applying the Frobenius–Stickelberger theorem 4.2.6, see [12], we conclude that the finite subgroup $H \subseteq \mathbb{Z}_{2^k}^{\times}$ is the direct sum of finite cyclic groups whose orders are powers of 2. Since H is not cyclic, at least two cyclic groups in this direct sum are not trivial, which implies that H contains at least four element of order less than or equal to 2. Taking into account that the elements of the subgroup V are the only elements of order less than or equal to 2 in the group $\mathbb{Z}_{2^k}^{\times}$, we conclude that $V \subseteq H$.

3. Golomb topology versus the *p*-adic topologies on \mathbb{N}

Let p be any prime number. Let us recall that the p-adic topology on \mathbb{Z} is generated by the base consisting of the sets $x + p^n \mathbb{Z}$, where $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. This topology induces the p-adic topology on the subset \mathbb{N} of \mathbb{Z} . It is generated by the base consisting of the sets $x + p^n \mathbb{N}_0$ where $x, n \in \mathbb{N}$. It is easy to see that \mathbb{N} endowed with the p-adic topology is a regular second-countable space without isolated points. So, by Sierpiński theorem, see [5, 6.2.A (d)], this space is homeomorphic to the space of rationals and hence is topologically homogeneous. Consequently, any nonempty open subspace of \mathbb{N} with the *p*-adic topology (in particular, $\mathbb{N} \setminus p\mathbb{N}$) also is homeomorphic to \mathbb{Q} and hence is topologically homogeneous.

The following lemma is a special case of Proposition 3.1 in [13].

Lemma 6. For any clopen subset Ω of $\mathbb{N}_{\tau} \setminus p\mathbb{N}$, and any $x \in \Omega$, there exists $n \in \mathbb{N}$ such that $x + p^n \mathbb{N}_0 \subseteq \Omega$.

PROOF: Since the set $p\mathbb{N}$ is closed in \mathbb{N}_{τ} , the set Ω is open in \mathbb{N}_{τ} and hence $x + p^n b\mathbb{N}_0 \subseteq \Omega$ for some $n \in \mathbb{N}$ and $b \in \mathbb{N}$ which is coprime with px. We claim that $x + p^n \mathbb{N}_0 \subseteq \Omega$. To derive a contradiction, assume that $x + p^n \mathbb{N}_0 \setminus \Omega$ contains some number y. Since Ω is closed in $\mathbb{N}_{\tau} \setminus p\mathbb{N}$, there exist $m \geq n$ and $d \in \mathbb{N}$ such that d is coprime with p and y, and $(y + p^m d\mathbb{N}_0) \cap \Omega = \emptyset$. It follows that $y + p^m \mathbb{N}_0 \subseteq (x + p^n \mathbb{N}_0) + p^m \mathbb{N}_0 \subseteq x + p^n \mathbb{N}_0$. Since $p \notin \Pi_b \cup \Pi_d$, we can apply the Chinese remainder theorem [10, 3.12] and conclude that $\emptyset \neq (y + p^m \mathbb{N}) \cap \bigcap_{q \in \Pi_b \cup \Pi_d} q\mathbb{N}$. Applying Lemma 2 and taking into account that the set Ω is clopen in $\mathbb{N}_{\tau} \setminus p\mathbb{N}$, we conclude that

$$\begin{split} & \emptyset \neq (y + p^m \mathbb{N}_0) \cap \left(\bigcap_{q \in \Pi_b \cup \Pi_d} q \mathbb{N}\right) \\ &= (x + p^n \mathbb{N}_0) \cap \left(\bigcap_{q \in \Pi_b} q \mathbb{N}\right) \cap (y + p^m \mathbb{N}_0) \cap \left(\bigcap_{q \in \Pi_d} q \mathbb{N}\right) \\ & \subseteq \overline{x + p^n b \mathbb{N}_0} \, \cap \, \overline{y + p^m d \mathbb{N}_0} \, \subseteq \, \overline{\Omega} \, \cap \, \overline{(\mathbb{N} \setminus p \mathbb{N}) \setminus \Omega} \, \subseteq \, p \mathbb{N}, \end{split}$$

which is not possible as the sets $x + p^n \mathbb{N}_0$ and $p\mathbb{N}$ are disjoint. This contradiction shows that $x + p^n \mathbb{N}_0 \subseteq \Omega$.

A subset of a topological space is *clopen* if it is closed and open. By the *zero-dimensional reflection* of a topological space X we understand the space X endowed with the topology generated by the base consisting of clopen subsets of the space X.

Lemma 7. The *p*-adic topology on $\mathbb{N} \setminus p\mathbb{N}$ coincides with the zero-dimensional reflection of the subspace $\mathbb{N}_{\tau} \setminus p\mathbb{N}$ of the Golomb space \mathbb{N}_{τ} .

PROOF: Lemma 6 implies that the *p*-adic topology τ_p on $\mathbb{N} \setminus p\mathbb{N}$ is stronger than the topology ζ of zero-dimensional reflection on $\mathbb{N}_{\tau} \setminus p\mathbb{N}$. To see that the τ_p coincides with ζ , it suffices to show that for every $x \in \mathbb{N} \setminus p\mathbb{N}$ and $n \in \mathbb{N}$ the basic open set $\mathbb{N} \cap (x + p^n\mathbb{Z})$ in the *p*-adic topology is clopen in the subspace topology of $\mathbb{N}_{\tau} \setminus p\mathbb{N} \subset \mathbb{N}_{\tau}$. By the definition, the set $\mathbb{N} \cap (x + p^n\mathbb{Z})$ is open in the Golomb topology. To see that it is closed in $\mathbb{N}_{\tau} \setminus p\mathbb{N}$, take any point $y \in (\mathbb{N} \setminus p\mathbb{N}) \setminus (x+p^n\mathbb{Z})$ and observe that the Golomb-open neighborhood $y + p^n\mathbb{N}_0$ of y is disjoint with the set $\mathbb{N} \cap (x+p^n\mathbb{Z})$.

For every prime number p, consider the countable family

$$\mathcal{X}_p = \Big\{ \overline{a^{\mathbb{N}}} \colon a \in \mathbb{N} \setminus p\mathbb{N}, \ a \neq 1 \Big\},\$$

where the closure $\overline{a^{\mathbb{N}}}$ is taken in the *p*-adic topology on $\mathbb{N} \setminus p\mathbb{N}$, which coincides with the topology of zero-dimensional reflection of the Golomb topology on $\mathbb{N} \setminus p\mathbb{N}$ according to Lemma 7.

The family \mathcal{X}_p is endowed with the partial order " \leq " defined by $X \leq Y$ if and only if $Y \subseteq X$. So, \mathcal{X}_p is a poset carrying the partial order of reverse inclusion.

Lemma 8. For any prime number p, any homeomorphism h of the Golomb space \mathbb{N}_{τ} induces an order isomorphism

$$h\colon \mathcal{X}_p \longrightarrow \mathcal{X}_{h(p)}, \qquad h\colon \overline{a^{\mathbb{N}}} \mapsto h(\overline{a^{\mathbb{N}}}) = \overline{h(a)^{\mathbb{N}}}$$

of the posets \mathcal{X}_p and $\mathcal{X}_{h(p)}$.

PROOF: By Lemma 3, h(1) = 1 and h(p) is a prime number. First we show that $h(p\mathbb{N}) = h(p)\mathbb{N}$. Indeed, for any $x \in p\mathbb{N}$ we have $p \in \Pi_x$ and by Lemma 3, $h(p) \in h(\Pi_x) = \Pi_{h(x)}$ and hence $h(x) \in h(p)\mathbb{N}$ and $h(p\mathbb{N}) \subseteq h(p)\mathbb{N}$. Applying the same argument to the homeomorphism h^{-1} , we obtain $h^{-1}(h(p)\mathbb{N}) \subseteq p\mathbb{N}$, which implies the desired equality $h(p\mathbb{N}) = h(p)\mathbb{N}$. The bijectivity of h ensures that hmaps homeomorphically the space $\mathbb{N}_\tau \setminus p\mathbb{N}$ onto the space $\mathbb{N}_\tau \setminus h(p)\mathbb{N}$.

Then h also is a homeomorphism of the spaces $\mathbb{N} \setminus p\mathbb{N}$ and $\mathbb{N} \setminus h(p)\mathbb{N}$ endowed with the zero-dimensional reflections of their subspace topologies inherited from the Golomb topology of \mathbb{N}_{τ} . By Lemma 7, these reflection topologies on $\mathbb{N} \setminus p\mathbb{N}$ and $\mathbb{N} \setminus h(p)\mathbb{N}$ coincide with the *p*-adic and h(p)-adic topologies on $\mathbb{N} \setminus p\mathbb{N}$ and $\mathbb{N} \setminus h(p)\mathbb{N}$, respectively.

By Lemma 3, for any $a \in \mathbb{N} \setminus (\{1\} \cup p\mathbb{N})$ we have

$$h(a)^{\mathbb{N}} = h(a^{\mathbb{N}}) \subseteq h(\mathbb{N} \setminus p\mathbb{N}) = \mathbb{N} \setminus h(p)\mathbb{N}$$

and by the fact that $h: \mathbb{N} \setminus p\mathbb{N} \longrightarrow \mathbb{N} \setminus h(p)\mathbb{N}$ is a homeomorphism in the topologies of zero-dimensional reflections, we get $h(\overline{a^{\mathbb{N}}}) = \overline{h(a^{\mathbb{N}})} = \overline{h(a)^{\mathbb{N}}}$. The same argument applies to the homeomorphism h^{-1} . This implies that

$$h\colon \mathcal{X}_p \longrightarrow \mathcal{X}_{h(p)}, \qquad h\colon \overline{a^{\mathbb{N}}} \mapsto h(\overline{a^{\mathbb{N}}}) = \overline{h(a)^{\mathbb{N}}},$$

is a well-defined bijection. It is clear that this bijection preserves the inclusion order and hence it is an order isomorphism between the posets \mathcal{X}_p and $\mathcal{X}_{h(p)}$. \Box

4. The order structure of the posets \mathcal{X}_p

In this section, given a prime number p, we investigate the order-theoretic structure of the poset \mathcal{X}_p .

For every $n \in \mathbb{N}$ denote by $\pi_n \colon \mathbb{N} \longrightarrow \mathbb{Z}_{p^n}$ the homomorphism assigning to each number $x \in \mathbb{N}$ the residue class $x + p^n \mathbb{Z}$. Also for $n \leq m$ let

$$\pi_{m,n}\colon \mathbb{Z}_{p^m} \longrightarrow \mathbb{Z}_{p^n}$$

be the ring homomorphism assigning to each residue class $x + p^m \mathbb{Z}$ the residue class $x + p^n \mathbb{Z}$. It is easy to see that $\pi_n = \pi_{m,n} \circ \pi_m$. Observe that the multiplicative group $\mathbb{Z}_{p^n}^{\times}$ of invertible elements of the ring \mathbb{Z}_{p^n} coincides with the set $\mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$ and hence has cardinality $p^n - p^{n-1} = p^{n-1}(p-1)$. Observe that for every $a \in \mathbb{N} \setminus p\mathbb{Z}$ the set $\pi_n(a^{\mathbb{N}}) = \pi_n(a)^{\mathbb{N}}$ is a multiplicative subgroup of the finite group $\mathbb{Z}_{p^n}^{\times}$.

First we establish the structure of the elements $\overline{a^{\mathbb{N}}}$ of the family \mathcal{X}_p .

Lemma 9. If for some $a \in \mathbb{N} \setminus p\mathbb{Z}$ and $n \in \mathbb{N}$ the element $\pi_n(a)$ has order greater than or equal to $\max\{p,3\}$ in the multiplicative group $\mathbb{Z}_{p^n}^{\times}$, then $\overline{a^{\mathbb{N}}} = \pi_n^{-1}(\pi_n(a)^{\mathbb{N}})$.

PROOF: Let $B = b^{\mathbb{N}}$ be the cyclic group generated by the element $b = \pi_n(a)$ in the multiplicative group $\mathbb{Z}_{p^n}^{\times}$. Since $|\mathbb{Z}_{p^n}^{\times}| = p^{n-1}(p-1)$, and b has order greater than or equal to $\max\{p,3\}$, the cardinality of the group B is equal to $p^k d$ for some $k \in \{1, \ldots, n-1\}$ and some divisor d of the number p-1. Moreover, if p = 2, then $2^k \geq 3$ and hence $k \geq 2$ and $n \geq 3$.

For any number $m \ge n$, consider the quotient homomorphism

$$\pi_{m,n} \colon \mathbb{Z}_{p^m} \longrightarrow \mathbb{Z}_{p^n}, \qquad \pi_{m,n} \colon x + p^m \mathbb{Z} \mapsto x + p^n \mathbb{Z}.$$

We claim that the subgroup $H = \pi_{m,n}^{-1}(B)$ of the multiplicative group $\mathbb{Z}_{p^m}^{\times}$ is cyclic. For odd p this follows from the cyclicity of the group $\mathbb{Z}_{p^n}^{\times}$, see Lemma 4.

For p = 2, by Lemma 4, the multiplicative group $\mathbb{Z}_{2^m}^{\times}$ is isomorphic to the additive group $\mathbb{Z}_2 \times \mathbb{Z}_{2^{m-2}}$. Assuming that H is not cyclic and applying Lemma 5, we conclude that H contains the 4-element Boolean subgroup

$$V = \{1 + 2^m \mathbb{Z}, -1 + 2^m \mathbb{Z}, 1 + 2^{m-1} + 2^m \mathbb{Z}, -1 + 2^{m-1} + 2^m \mathbb{Z}\}$$

of $\mathbb{Z}_{2^m}^{\times}$. Then $B = \pi_{m,n}(H) \supseteq \pi_{m,n}(V) \ni -1 + 2^n \mathbb{Z}$. Taking into account that $-1 + 2^n \mathbb{Z}$ has order 2 in the cyclic group B, we conclude that $-1 + 2^n \mathbb{Z} = a^{2^{k-1}} + 2^n \mathbb{Z}$. Since $k \ge 2$, the odd number $c = a^{2^{k-2}}$ is well-defined and $c^2 + 4\mathbb{Z} = a^{2^{k-1}} + 4\mathbb{Z} = -1 + 4\mathbb{Z}$, which is not possible (as squares of odd numbers are equal to 1 modulo 4). This contradiction shows that the group H is cyclic. By [12, 1.5.5], the number of generators of the cyclic group H can be calculated using the Euler totient function as

$$\begin{split} \varphi(|H|) &= \varphi(p^{m-n}|B|) = \varphi(p^{m-n}p^k d) = \varphi(p^{m-n+k})\varphi(d) \\ &= p^{m-n+k-1}(p-1)\varphi(d) = p^{m-n}\varphi(p^k)\varphi(d) = p^{m-n}\varphi(p^k d) \\ &= p^{m-n}\varphi(|B|), \end{split}$$

which implies that for every generator g of the group B, every element of the set $\pi_{m,n}^{-1}(g)$ is a generator of the group H. In particular, the element $\pi_m(a) \in \pi_{m,n}^{-1}(\pi_n(a))$ is a generator of the group H. By the definition of p-adic topology,

$$\overline{a^{\mathbb{N}}} = \bigcap_{m \ge n} \pi_m^{-1}(\pi_m(a)^{\mathbb{N}}) = \bigcap_{m \ge n} \pi_m^{-1}(\pi_{m,n}^{-1}(B))$$
$$= \bigcap_{m \ge n} \pi_n^{-1}(B) = \pi_n^{-1}(B) = \pi_n^{-1}(\pi_n(a)^{\mathbb{N}}).$$

Lemma 10. (1) For every $X \in \mathcal{X}_p$ there exists $n \in \mathbb{N}$ and a cyclic subgroup H of the multiplicative group $\mathbb{Z}_{p^n}^{\times}$ such that $X = \pi_n^{-1}(H)$ and $|H| \geq \max\{p, 3\}.$

(2) For every $n \in \mathbb{N}$ and cyclic subgroup H of $\mathbb{Z}_{p^n}^{\times}$ of order $|H| \ge \max\{p, 3\}$, there exists a number $a \in \mathbb{N} \setminus p\mathbb{N}$ such that $\pi_n^{-1}(H) = \overline{a^{\mathbb{N}}} \in \mathcal{X}_p$.

PROOF: (1) Given any $X \in \mathcal{X}_p$, find a number $a \in \mathbb{N} \setminus (\{1\} \cup p\mathbb{N})$ such that $X = \overline{a^{\mathbb{N}}}$. Choose any $n \in \mathbb{N}$ with $p^n > a^p$ and observe that the cyclic subgroup $H \subseteq \mathbb{Z}_{p^n}^{\times}$, generated by the element $\pi_n(a) = a + p^n \mathbb{Z}$, has order $|H| \ge p + 1 \ge \max\{p, 3\}$.

(2) Fix $n \in \mathbb{N}$ and a cyclic subgroup H of $\mathbb{Z}_{p^n}^{\times}$ of order $|H| \ge \max\{p, 3\}$. Find a number $a \in \mathbb{N}$ such that the residue class $\pi_n(a) = a + p^n \mathbb{Z}$ is a generator of the cyclic group H. Then $\pi_n(a)$ has order $|H| \ge \max\{p, 3\}$, Lemma 9 ensures that $\pi_n^{-1}(H) = \pi_n^{-1}(\pi_n(a)^{\mathbb{N}}) = \overline{a^{\mathbb{N}}} \in \mathcal{X}_p$.

For any $X \in \mathcal{X}_p$, let

$$n(X) = \min\{n \in \mathbb{N} \colon X = \pi_n^{-1}(\pi_n(X)), \ |\pi_n(X)| \ge \max\{p, 3\}\}.$$

Lemmas 9 and 10 imply that the number n(X) is well-defined and $\pi_{n(X)}(X)$ is a cyclic subgroup of order greater than or equal to max $\{p,3\}$ in the multiplicative group $\mathbb{Z}_{p^n(X)}^{\times}$. Let i(X) be the index of the cyclic subgroup $\pi_{n(X)}(X)$ in $\mathbb{Z}_{p^n(X)}^{\times}$.

Lemma 11. Let p = 2, a > 1 be an odd integer, and $X = \overline{a^{\mathbb{N}}}$ be the closure of the set $a^{\mathbb{N}}$ in the 2-adic topology of $\mathbb{N} \setminus 2\mathbb{N}$. The cyclic subgroup $\pi_{n(X)}(X)$ of $\mathbb{Z}_{2n(X)}^{\times}$ has order 4 and index $i(X) = 2^{n(X)-3} \geq 2$.

PROOF: By definition of n(X) and Lemma 9, n(X) is the smallest number such that the cyclic subgroup $\pi_{n(X)}(X) = \pi_{n(X)}(a^{\mathbb{N}})$ of $\mathbb{Z}_{2^{n(X)}}^{\times}$ has order greater than or equal to 3. Then $|\pi_{n(X)}(a^{\mathbb{N}})| = 2^k$ for some $k \geq 2$. If $k \neq 2$, then we can consider the projection $\pi_{n(X)-1}(X) = \pi_{n(X),n(X)-1}(\pi_{n(X)}(X))$ and conclude that $|\pi_{n(X)-1}(X)| \geq |\pi_{n(X)}(X)|/2 \geq 2^{k-1} \geq 4 \geq 3$ (since the homomorphism $\pi_{n(X),n(X)-1} \colon \mathbb{Z}_{2^{n(X)}} \longrightarrow \mathbb{Z}_{2^{n(X)-1}}$ has kernel of cardinality 2), but this contradicts the minimality of n(X). This contradiction shows that $|\pi_{n(X)}(X)| = 4$.

The group $\mathbb{Z}_{2^{n}(X)}^{\times}$ has cardinality $|\mathbb{Z}_{2^{n}(X)}^{\times}| \geq |\pi_{n(X)}(X)| = 4$ and therefore $n(X) \geq 3$. By Lemma 4 (2), the multiplicative group $\mathbb{Z}_{2^{n}(X)}^{\times}$ is not cyclic, which implies $\pi_{n(X)}(X) \neq \mathbb{Z}_{2^{n}(X)}^{\times}$ and hence $i(X) \geq |\mathbb{Z}_{2^{n}(X)}^{\times}/\pi_{n(X)}(X)| = 2^{n(X)-3} \geq 2$.

Lemma 12. For any odd prime number p and two sets $X, Y \in \mathcal{X}_p$, the inclusion $X \subseteq Y$ holds if and only if i(Y) divides i(X).

PROOF: Let $m = \max\{n(X), n(Y)\}$. Then $X = \pi_m^{-1}(\pi_m(X)), Y = \pi_m^{-1}(\pi_m(Y))$ and $\pi_m(X), \pi_m(Y)$ are subgroups of the multiplicative group $\mathbb{Z}_{p^m}^{\times}$, which is cyclic by the Gauss Lemma 4 (1). It follows that the subgroups $\pi_m(X)$ and $\pi_m(Y)$ have indexes i(X) and i(Y) in $\mathbb{Z}_{p^m}^{\times}$, respectively. Let g be a generator of the cyclic group $\mathbb{Z}_{p^m}^{\times}$. It follows that the subgroups $\pi_m(X)$ and $\pi_m(Y)$ are generated by the elements $g^{i(X)}$ and $g^{i(Y)}$, respectively. Now we see that $X \subseteq Y$ if and only if $\pi_m(X) \subseteq \pi_m(Y)$ if and only if $g^{i(X)} \in (g^{i(Y)})^{\mathbb{N}}$ if and only if i(Y) divides i(X).

Lemma 13. For any odd prime number p, any $n \in \mathbb{N}$, and the number $a = 1 + p^n$ we have $\overline{a^{\mathbb{N}}} = 1 + p^n \mathbb{N}_0$ and $i(\overline{a^{\mathbb{N}}}) = p^{n-1}(p-1)$.

PROOF: Observe that for any k < p we have $a^k = (1+p^n)^k \in 1+kp^n+p^{n+1}\mathbb{Z} \neq 1+p^{n+1}\mathbb{Z}$ and $a^p = (1+p^n)^p \in 1+p^{n+1}\mathbb{Z}$, which means that the element $\pi_{n+1}(a)$ has order p in the group $\mathbb{Z}_{p^{n+1}}^{\times}$. By Lemma 9,

$$\overline{a^{\mathbb{N}}} = \pi_{n+1}^{-1}(\{a^k + p^{n+1}\mathbb{Z} \colon 0 \le k < p\}) = \bigcup_{k=0}^{p-1} (a^k + p^{n+1}\mathbb{N}_0) = 1 + p^n\mathbb{N}_0.$$

Also $i(\overline{a^{\mathbb{N}}}) = |\mathbb{Z}_{p^{n+1}}^{\times}|/p = p^{n-1}(p-1).$

Lemmas 10 and 12 imply that for an odd prime number p, the poset \mathcal{X}_p is order isomorphic to the set

$$\mathcal{D}_p = \{ d \in \mathbb{N} \colon d \text{ divides } p^n(p-1) \text{ for some } n \in \mathbb{N}_0 \},\$$

endowed with the divisibility relation.

An element t of a partially ordered set (X, \leq) is called \uparrow -chain if its upper set $\uparrow t = \{x \in X : x \geq t\}$ is a chain. It is easy to see that the set of \uparrow -chain

$$\square$$

elements of the poset \mathcal{D}_p coincides with the set $\{p^n(p-1): n \in \mathbb{N}_0\}$ and hence is a well-ordered chain with the smallest element (p-1).

Below on the Hasse diagrams of the posets \mathcal{D}_3 and \mathcal{D}_5 (showing that these posets are not order isomorphic) the \uparrow -chain elements are drawn with the bold font.

Lemmas 12 and 13 and the isomorphness of the posets \mathcal{X}_p and \mathcal{D}_p imply the following lemma.

Lemma 14. For an odd prime number p, the family $\{1+p^n \mathbb{N}_0 : n \in \mathbb{N}\}$ coincides with the well-ordered set of \uparrow -chain elements of the poset \mathcal{X}_p .

Now we reveal the order structure of the poset \mathcal{X}_2 . This poset consists of the closures $\overline{a^{\mathbb{N}}}$ in the 2-adic topology of the sets $a^{\mathbb{N}}$ for odd numbers a > 1.

Lemma 15. Let a > 1 be an odd integer and $X = \overline{a^{\mathbb{N}}}$ be the closure of $a^{\mathbb{N}}$ in the 2-adic topology on $\mathbb{N} \setminus 2\mathbb{N}$.

(1) If $a \in 1 + 4\mathbb{N}$, then $\overline{a^{\mathbb{N}}} = 1 + 2^{n(X)-2}\mathbb{N}_0$.

(2) If $a \in 3 + 4\mathbb{N}_0$, then $\overline{a^{\mathbb{N}}} = (1 + 2^{n(X)-1}\mathbb{N}_0) \cup (-1 + 2^{n(X)-2} + 2^{n(X)-1}\mathbb{N}_0)$. In both cases, $i(X) = 2^{n(X)-3} \ge 2$.

PROOF: By Lemma 11, the projection $C_X := \pi_{n(X)}(X) = \pi_{n(X)}(a^{\mathbb{N}})$ is a cyclic subgroup of order 4 and index $i(X) = 2^{n(X)-3} \ge 2$ in the group $\mathbb{Z}_{2^{n(X)}}^{\times}$.

By Lemma 4 (2), the coset $5 + 2^{n(X)}\mathbb{Z}$ generates a maximal cyclic subgroup

$$M_X = \{1 + 4k + 2^{n(X)}\mathbb{Z} \colon 0 \le k < 2^{n(X)-2}\}\$$

of cardinality $2^{n(X)-2}$ in $\mathbb{Z}_{2^{n(X)}}^{\times}$. If $a \in 1 + 4\mathbb{N}$, the subgroup generated by $\pi_{n(X)}(a)$ is contained in M_X . Then $C_X = \{1 + k \cdot 2^{n(X)-2} + 2^{n(X)}\mathbb{Z} : 0 \le k < 4\}$ and $X = \pi_{n(X)}^{-1}(C_X) = 1 + 2^{n(X)-2}\mathbb{N}_0$.

If $a \in 3 + 4\mathbb{N}_0$, then C_X is not contained in M_X . By the Gauss Lemma 4 (2), there are two cyclic subgroups of $\mathbb{Z}_{2^{n(X)}}^{\times}$ of order 4: one generated by $g = (5 + 2^{n(X)}\mathbb{Z})^{n(X)-2}$ (which is contained in M_X) and the other is generated by -g, which is not contained in M_X but contains $-1 + 2^{n(X)}$. Therefore, C_X must be equal to $C_X = \{(-1)^k + k \cdot 2^{n(X)-2} + 2^{n(X)}\mathbb{Z} : 0 \le k < 4\}$ and

$$X = \pi_{n(X)}^{-1}(C_X) = \bigcup_{k=0}^{3} \pi_{n(X)}^{-1} \left((-1)^k + k \cdot 2^{n(X)-2} + 2^{n(X)} \mathbb{Z} \right)$$
$$= (1 + 2^{n(X)-1} \mathbb{N}_0) \cup (-1 + 2^{n(X)-2} + 2^{n(X)-1} \mathbb{N}_0).$$

Lemma 16. For every $n \ge 2$,

(1) the set $X = \overline{(1+2^n)^{\mathbb{N}}} \in \mathcal{X}_2$ coincides with $1+2^n \mathbb{N}_0$ and has $i(X) = 2^{n-1}$;

(2) the set $Y = \overline{(-1+2^n)^{\mathbb{N}}} \in \mathcal{X}_2$ coincides with $(1+2^{n+1}\mathbb{N}_0) \cup (2^n-1+2^{n+1}\mathbb{N}_0)$ and has $i(Y) = 2^{n-1}$.

PROOF: (1) Observe that for every positive k < 4 we have $(1+2^n)^k \in 1 + k2^n + 2^{n+2}\mathbb{Z} \neq 1 + 2^{n+2}\mathbb{Z}$ and $(1+2^n)^4 \in 1 + 2^{n+2}\mathbb{Z}$, which means that the element $(1+2^n) + 2^{n+2}\mathbb{Z}$ has order 4 in the group $\mathbb{Z}_{2^{n+2}}^{\times}$. Then the element $X = \overline{(1+2^n)^{\mathbb{N}}} \in \mathcal{X}_2$ has n(X) = n+2 and hence $X = 1+2^n\mathbb{N}_0$ and $i(X) = 2^{n(X)-3} = 2^{n-1}$ by Lemma 15.

(2) Also for every positive k < 4 we have $(-1 + 2^n)^k \in (-1)^k (1 - k2^n) + 2^{n+2}\mathbb{Z} \neq 1 + 2^{n+2}\mathbb{Z}$ and $(-1 + 2^n)^4 \in 1 + 2^{n+2}\mathbb{Z}$, which means that the element $(-1 + 2^n) + 2^{n+2}\mathbb{Z}$ has order 4 in the group $\mathbb{Z}_{2^{n+2}}^{\times}$. Then the element $Y = (-1 + 2^n)^{\mathbb{N}} \in \mathcal{X}_2$ has n(Y) = n+2 and hence $Y = (1 + 2^{n+1}\mathbb{N}_0) \cup (2^n - 1 + 2^{n+1}\mathbb{N}_0)$ and $i(Y) = 2^{n(Y)-3} = 2^{n-1}$ by Lemma 15.

Lemma 17. For distinct sets $X, Y \in \mathcal{X}_2$, the strict embedding $X \subset Y$ holds if and only if $X \subseteq 1 + 4\mathbb{N}_0$ and i(Y) < i(X).

PROOF: If $X \subseteq 1 + 4\mathbb{N}_0$, then by Lemma 15, $X = 1 + 2^{n(X)-2}\mathbb{N}_0$. If i(Y) < i(X), then n(Y) < n(X) (see Lemma 15). If $Y \subseteq 1 + 4\mathbb{N}_0$, then Lemma 15 implies

$$X = 1 + 2^{n(X)-2} \mathbb{N}_0 \subset 1 + 2^{n(Y)-2} \mathbb{N}_0 = Y.$$

If $Y \not\subseteq 1 + 4\mathbb{N}_0$, then Lemma 15 ensures that

$$X = 1 + 2^{n(X)-2} \mathbb{N}_0 \subset 1 + (2^{n(Y)-1} \mathbb{N}_0) \cup (-1 + 2^{n(Y)-2} + 2^{n(Y)-1} \mathbb{N}_0) = Y.$$

In both cases we have the strict embedding $X \subset Y$.

Conversely, assume that $X \,\subseteq Y$. We should prove that $X \subseteq 1+4\mathbb{N}_0$ and i(Y) < i(X). To derive a contradiction, assume that $X \not\subseteq 1 + 4\mathbb{N}_0$. Applying Lemma 15 and taking into account that $X \subset Y$, we conclude that $X = (1 + 2^{n(X)-1}\mathbb{N}_0) \cup (-1+2^{n(X)-2}+2^{n(X)-1}\mathbb{N}_0), Y = (1+2^{n(Y)-1}\mathbb{N}_0) \cup (-1+2^{n(Y)-2}+2^{n(Y)-1}\mathbb{N}_0)$ and n(X) > n(Y). Then $-1 + 2^{n(X)-2} \in X \subseteq Y$ implies that $-1 + 2^{n(X)-2}$ belongs either to $1+2^{n(Y)-1}\mathbb{N}_0$ or to $-1+2^{n(Y)-2}+2^{n(Y)-1}\mathbb{N}_0$. In the first case we conclude that $2 \in 2^{n(Y)-1}\mathbb{Z}$ and hence $n(Y) \leq 2$, which contradicts Lemma 11. In the second case, we obtain that $2^{n(X)-2} \in 2^{n(Y)-2} + 2^{n(Y)-1}\mathbb{N}_0$. Since n(X) > n(Y), this implies $2^{n(Y)-2} \in 2^{n(Y)-1}\mathbb{Z}$, which is the final contradiction showing that $X \subseteq 1 + 4\mathbb{N}_0$. Then $X = 1 + 2^{n(X)-2}\mathbb{N}_0$ according to Lemma 15.

Next, we prove that i(Y) < i(X). By Lemma 15, two cases are possible: $Y = 1 + 2^{n(Y)-2}\mathbb{N}_0$ or $Y = (1 + 2^{n(Y)-1}\mathbb{N}_0) \cup (-1 + 2^{n(Y)-2} + 2^{n(Y)-1}\mathbb{N}_0)$. In both cases the strict inclusion $1 + 2^{n(X)-2}\mathbb{N}_0 = X \subset Y$ implies that n(X) > n(Y)and hence $i(X) = 2^{n(X)-3} > 2^{n(Y)-3} = i(Y)$.

Lemmas 16 and 17 imply:

Lemma 18. The family $\min \mathcal{X}_2 = \{X \in \mathcal{X}_2 : X \not\subseteq 1 + 8\mathbb{N}_0\}$ coincides with the set of minimal elements of the poset \mathcal{X}_2 and the set $\mathcal{X}_2 \setminus \min \mathcal{X}_2 = \{X \in \mathcal{X}_2 : X \subseteq 1 + 8\mathbb{N}_0\}$ is well-ordered and coincides with the set $\{1 + 2^n \mathbb{N}_0 : n \geq 3\}$.

The Hasse diagram of the poset \mathcal{X}_2 .

Lemma 19. For any homeomorphism h of the Golomb space \mathbb{N}_{τ} and any $n \in \{1, 2, 3\}$ we have h(n) = n.

PROOF: 1. The equality h(1) = 1 follows from Lemma 3 (1).

2. By Lemma 8, h induces an order isomorphism of the posets \mathcal{X}_2 and $\mathcal{X}_{h(2)}$. By Lemmas 16 and 18, the set $\{\overline{(-1+2^n)^{\mathbb{N}}}: n \geq 2\}$ is an infinite antichain in the poset \mathcal{X}_2 . Consequently, the poset $\mathcal{X}_{h(2)}$ also contains an infinite antichain. On the other hand, for any odd prime number p the poset \mathcal{X}_p is order-isomorphic to the poset \mathcal{D}_p , which contain no infinite antichains. Consequently, $\mathcal{X}_{h(2)}$ cannot be order isomorphic to \mathcal{X}_p , and hence h(2) = 2.

3. By Lemma 3 (2), h(3) is a prime number, not equal to h(2) = 2. By Lemma 8, h induces an order isomorphism of the posets \mathcal{X}_3 and $\mathcal{X}_{h(3)}$. Then the posets \mathcal{D}_3 and $\mathcal{D}_{h(3)}$ also are order isomorphic. The smallest \uparrow -chain element of the poset \mathcal{D}_3 is 2 and the set $\downarrow 2 = \{d \in \mathcal{D}_3 : d \text{ divides } 2\}$ has cardinality 2. On the other hand, the smallest \uparrow -chain element of the poset $\mathcal{D}_{h(3)}$ is h(3) - 1. Since the sets \mathcal{D}_3 and $\mathcal{D}_{h(3)}$ are order-isomorphic, the set $\downarrow(h(3) - 1) = \{d \in \mathcal{D}_{h(3)} : d \text{ divides } h(3) - 1\}$ has cardinality 2, which means that the number h(3) - 1 is prime. Observing that 3 is a unique odd prime number p such that p-1 is prime, we conclude that h(3) = 3.

Lemma 20. For any homeomorphism h of the Golomb space \mathbb{N}_{τ} , and any prime number p we have $h(1 + p^n \mathbb{N}_0) = 1 + h(p)^n \mathbb{N}_0$ for all $n \in \mathbb{N}$.

PROOF: By Lemma 8, the homeomorphism h induces an order isomorphism of the posets \mathcal{X}_p and $\mathcal{X}_{h(p)}$.

If p = 2, then h(p) = 2 by Lemma 19. Lemma 3 implies $h(2\mathbb{N}) = h(2) \cdot \mathbb{N} = 2\mathbb{N}$ and hence $h(1 + 2\mathbb{N}_0) = h(\mathbb{N} \setminus 2\mathbb{N}) = \mathbb{N} \setminus h(2\mathbb{N}) = 1 + 2\mathbb{N}_0$. By Lemma 8, h induces an order automorphism of the poset \mathcal{X}_2 and hence h is identity on the well-ordered set $\{1 + 2^n \mathbb{N}_0 : n \geq 3\}$ of non-minimal elements of \mathcal{X}_2 , see Lemma 18. Consequently, $h(1 + 2^n \mathbb{N}_0) = 1 + 2^n \mathbb{N}_0$ for all $n \geq 3$.

Next, we show that $h(1 + 4\mathbb{N}_0) = 1 + 4\mathbb{N}_0$. Observe that for the smallest nonminimal element $\overline{9^{\mathbb{N}}} = 1 + 8\mathbb{N}_0$ of \mathcal{X}_2 there are only two elements, $\overline{5^{\mathbb{N}}} = 1 + 4\mathbb{N}_0$ and $\overline{3^{\mathbb{N}}} = (1 + 8\mathbb{N}_0) \cup (3 + 8\mathbb{N}_0)$, which are strictly smaller than $\overline{9^{\mathbb{N}}}$ in the poset \mathcal{X}_2 . Then $h(\overline{5^{\mathbb{N}}}) \in \{\overline{3^{\mathbb{N}}}, \overline{5^{\mathbb{N}}}\}$. By Lemma 19, h(3) = 3 and hence $h(\overline{3^{\mathbb{N}}}) = \overline{3^{\mathbb{N}}}$, which implies that $h(1 + 4\mathbb{N}_0) = h(\overline{5^{\mathbb{N}}}) = \overline{5^{\mathbb{N}}} = 1 + 4\mathbb{N}_0$.

Now assume that p is an odd prime number. Since h(2) = 2, the prime number $h(p) \neq h(2) = 2$ is odd. By Lemma 14, the well-ordered sets $\{1 + p^n \mathbb{N}_0: n \in \mathbb{N}\}$ and $\{1 + h(p)^n \mathbb{N}_0: n \in \mathbb{N}\}$ coincide with the sets of \uparrow -chain elements of the posets \mathcal{X}_p and $\mathcal{X}_{h(p)}$, respectively. Taking into account that h is an order isomorphism, we conclude that $h(1 + p^n \mathbb{N}_0) = 1 + h(p)^n \mathbb{N}_0$ for every $n \in \mathbb{N}$. \Box

5. Proof of Theorem 1

In this section we present the proof of Theorem 1. Given any homeomorphism h of the Golomb space \mathbb{N}_{τ} , we need to prove that h(n) = n for all $n \in \mathbb{N}$. This equality will be proved by induction.

For $n \leq 3$ the equality h(n) = n is proved in Lemma 19. Assume that for some number $n \geq 4$ we have proved that h(k) = k for all k < n. For every prime number p let α_p be the largest integer number such that p^{α_p} divides n - 1 (so, $\alpha_p = l_p(n-1)$). For every $p \in \prod_{n-1}$ we have $p \leq n-1$ and hence h(p) = p (by the inductive hypothesis). Then $h(\prod_{n-1}) = \prod_{n-1}$ and $h(\prod \setminus \prod_{n-1}) = \prod \setminus \prod_{n-1}$.

Observe that n is the unique element of the set

$$\bigcap_{p\in\Pi} (1+p^{\alpha_p}\mathbb{N}_0)\setminus (1+p^{\alpha_p+1}\mathbb{N}_0).$$

By Lemma 20, h(n) coincides with the unique element of the set

$$\begin{split} &\bigcap_{p\in\Pi} (1+h(p)^{\alpha_p}\mathbb{N}_0)\setminus (1+h(p)^{\alpha_p+1}\mathbb{N}_0) \\ &= \left(\bigcap_{p\in\Pi_{n-1}} (1+h(p)^{\alpha_p}\mathbb{N}_0)\setminus (1+h(p)^{\alpha_p+1}\mathbb{N}_0)\right)\cap \left(\bigcap_{p\in\Pi\setminus\Pi_{n-1}}\mathbb{N}\setminus (1+h(p)\mathbb{N}_0)\right) \\ &= \left(\bigcap_{p\in\Pi_{n-1}} (1+p^{\alpha_p}\mathbb{N}_0)\setminus (1+p^{\alpha_p+1}\mathbb{N}_0)\right)\cap \left(\bigcap_{p\in\Pi\setminus\Pi_{n-1}}\mathbb{N}\setminus (1+p\mathbb{N}_0)\right) = \{n\} \end{split}$$

and hence h(n) = n.

References

- Banakh T., Is the Golomb countable connected space topologically rigid?, https://mathoverflow.net/questions/285557.
- [2] Banakh T., Mioduszewski J., Turek S., On continuous self-maps and homeomorphisms of the Golomb space, Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442.
- Brown M., A countable connected Hausdorff space, Bull. Amer. Math. Soc. 59 (1953), Abstract #423, page 367.
- [4] Clark P. L., Lebowitz-Lockard N., Pollack P., A Note on Golomb topologies, Quaest. Math. 42 (2019), no. 1, 73–86.
- [5] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989.
- [6] Gauss C. F., Disquisitiones Arithmeticae, Springer, New York, 1986.
- [7] Golomb S., A connected topology for the integers, Amer. Math. Monthly 66 (1959), 663–665.
- [8] Golomb S., Arithmetica topologica, in: General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Prague (1962), pages 179–186 (Italian).

- [9] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, New York, 1990.
- [10] Jones G. A., Jones J. M., Elementary Number Theory, Springer Undergraduate Mathematics Series, Springer, London, 1998.
- [11] Knopfmacher J., Porubský Š., Topologies related to arithmetical properties of integral domains, Exposition. Math. 15 (1997), no. 2, 131–148.
- [12] Robinson D. J. S., A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer, New York, 1996.
- [13] Spirito D., The Golomb topology on a Dedekind domain and the group of units of its quotients, Topology Appl. 273 (2020), 107101, 20 pages.
- [14] Spirito D., The Golomb topology of polynomial rings, Quaest. Math. 44 (2021), no. 4, 447–468.
- [15] Steen L. A., Seebach J. A., Jr., Counterexamples in Topology, Dover Publications, Mineola, New York, 1995.
- [16] Szczuka P., The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies, Demonstratio Math. 43 (2010), no. 4, 899–909.
- [17] Szczuka P., The Darboux property for polynomials in Golomb's and Kirch's topologies, Demonstratio Math. 46 (2013), no. 2, 429–435.

T. Banakh:

IVAN FRANKO NATIONAL UNIVERSITY OF LVIV, UNIVERSYTETSKA ST., 1, LVIV, 79000, UKRAINE;

and:

Jan Kochanowski University in Kielce, Stefana Żeromskiego 5, 25-369 Kielce, Poland

E-mail: t.o.banakh@gmail.com

D. Spirito:

DIPARTIMENTO DI MATEMATICA E FISICA, UNIVERSITÀ DEGLI STUDI "ROMA TRE", VIA OSTIENSE, 133B, 00154 ROMA, ITALY;

current address:

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PADOVA, VIA TRIESTE, 63, 35121, PADOVA, ITALY

E-mail: spirito@mat.uniroma3.it

E-mail: spirito@math.unipd.it

S. Turek:

Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815, Warszawa, Poland

E-mail: s.turek@uksw.edu.pl

(Received January 13, 2020, revised December 9, 2020)