Some interpretations of the (k, p)-Fibonacci numbers

NATALIA PAJA, IWONA WŁOCH

Abstract. In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the (k, p)-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the (k, p)-Fibonacci numbers.

Keywords: Fibonacci number; Pell number; tiling

Classification: 11B39, 11B83, 05C15, 05A19

1. Introduction

In general we use the standard notation, see [6], [8]. The *n*th Fibonacci number F_n is defined recursively as follows $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$, with $F_0 = F_1 = 1$. By numbers of the Fibonacci type we mean numbers defined recursively by the *r*th order linear recurrence relation of the form

(1)
$$a_n = b_1 a_{n-1} + b_2 a_{n-2} + \dots + b_r a_{n-r}$$
 for $n \ge r$,

where $r \ge 2$ and $b_i \ge 0$, $i = 1, 2, \dots, r$, are integers.

For special values of r and b_i , $i = 1, 2, \dots, r$, the equality (1) defines other well-known numbers of the Fibonacci type. We list some of them:

- (1) Lucas numbers: $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$, with $L_0 = 2$, $L_1 = 1$.
- (2) Pell numbers: $P_n = 2P_{n-1} + P_{n-2}$ for $n \ge 2$, with $P_0 = 0$, $P_1 = 1$.
- (3) Pell–Lucas numbers: $Q_n = 2Q_{n-1} + Q_{n-2}$ for $n \ge 2$, with $Q_0 = 1$, $Q_1 = 3$.
- (4) Jacobsthal numbers: $J_n = J_{n-1} + 2J_{n-2}$ for $n \ge 2$, with $J_0 = 0$, $J_1 = 1$.
- (5) Padovan numbers: Pv(n) = Pv(n-2) + Pv(n-3) for $n \ge 3$, with Pv(0) = Pv(1) = Pv(2) = 1.
- (6) Tribonacci numbers of the first kind: $T_n = T_{n-1} + T_{n-2} + T_{n-3}$ for $n \ge 3$, with $T_0 = T_1 = T_2 = 1$.

DOI 10.14712/1213-7243.2021.026

There are many generalizations of the classical Fibonacci numbers and numbers of the Fibonacci type. We list some of these generalized numbers. Let k, n, p be integers.

- (1) k-generalized Fibonacci numbers, see E. P. Miles, Jr., [14]: $F_n^{(k)} = F_{n-1}^{(k)} + F_{n-2}^{(k)} + \dots + F_{n-k}^{(k)}$ for $k \ge 2$ and $n \ge k$, with $F_0^{(k)} = F_1^{(k)} = \dots = F_{k-2}^{(k)} = 0$, $F_{k-1}^{(k)} = 1$.
- (2) Fibonacci *p*-numbers, see A. P. Stakhov, [15]: $F_p(n) = F_p(n-1) + F_p(n-p-1)$ for $p \ge 1$ and n > p+1, with $F_p(0) = \cdots = F_p(p+1) = 1$.
- (3) Generalized Fibonacci numbers, see M. Kwaśnik, I. Włoch, [12]: F(k, n) = F(k, n-1) + F(k, n-k) for $k \ge 1$ and $n \ge k+1$, with F(k, n) = n+1 for $0 \le n \le k$.
- (4) k-Fibonacci numbers, see S. Falcón, Á. Plaza, [9]: $F_{k,n} = kF_{k,n-1} + F_{k,n-2}$ for $k \ge 1, n \ge 2$, with $F_{k,0} = 0, F_{k,1} = 1$.
- (5) Generalized Pell numbers, see I. Whoch, [17]: P(k,n) = P(k,n-1) + P(k,n-k+1) + P(k,n-k) for $k \ge 2, n \ge k+1$, with P(2,0) = 0, P(k,0) = 1 for $k \ge 3$ and P(k,1) = 1, P(k,n) = 2n-2 for $2 \le n \le k$.
- (6) Generalized Pell (p, i)-numbers, see E. Kiliç, [10]: $P_p^{(i)}(n) = 2P_p^{(i)}(n-1) + P_p^{(i)}(n-p-1)$ for $p \ge 1, \ 0 \le i \le p, \ n > p+1$, with $P_p^{(i)}(1) = \cdots = P_p^{(i)}(i) = 0$ and $P_p^{(i)}(i+1) = \cdots = P_p^{(i)}(p+1) = 1$.
- (7) k-Pell numbers, see P. Catarino, [7]: $P_{k,n} = 2P_{k,n-1} + kP_{k,n-2}$ for $k \ge 1$, $n \ge 2$, with $P_{k,0} = 0$, $P_{k,1} = 1$.
- (8) (k, c)-generalized Jacobsthal numbers, see D. Marques, P. Trojovský, [13]: $J_n^{(k,c)} = J_{n-1}^{(k,c)} + J_{n-2}^{(k,c)} + \dots + J_{n-k}^{(k,c)}$ for $k \ge 2$ and $n \ge k$, with $J_0^{(k,c)} = J_1^{(k,c)} = \dots = J_{k-2}^{(k,c)} = 0$, $J_{k-1}^{(k,c)} = 1$.

For other generalizations of numbers of the Fibonacci type see for example [5].

In [1] a new two-parameters generalization, named as the (k, p)-Fibonacci numbers, was introduced and studied. We recall this definition.

Let $k \ge 2, n \ge 0$ be integers and let $p \ge 1$ be a rational number. The (k, p)-Fibonacci numbers denoted by $F_{k,p}(n)$ are defined recursively in the following way

(2)
$$F_{k,p}(n) = pF_{k,p}(n-1) + (p-1)F_{k,p}(n-k+1) + F_{k,p}(n-k)$$
 for $n \ge k$

with initial conditions

(3)
$$F_{k,p}(0) = 0$$
 and $F_{k,p}(n) = p^{n-1}$ for $1 \le n \le k-1$.

For special values k, n, p the equality (2) gives well-known number of the Fibonacci type. We list these special cases.

Some interpretations of the (k, p)-Fibonacci numbers

- (1) If $k = 2, p = 1, n \ge 0$ then $F_{2,1}(n+1) = F_n$.
- (2) If $k \ge 2$, p = 1, $n \ge k$ then $F_{k,1}(n) = F(k, n-k)$.
- (3) If $k \ge 2$, p = 1, $n \ge 1$ then $F_{k,1}(n) = F_{k-1}(n)$.
- (4) If $k = 2, p = 3/2, n \ge 0$ then $F_{2,3/2}(n) = P_n$.
- (5) If $k = 2, p = t/2, t \in \mathbb{N}, t \ge 2$ and $n \ge 0$ then $F_{2,p}(n) = F_{2p-1,n}$.

The properties of these numbers were studied in [1].

Theorem 1.1 ([1]). Let $k \ge 2$ be an integer and let $p \ge 1$ be a rational number. The generating function of the sequence $F_{k,p}(n)$ has the following form

$$f_{k,p}(x) = \frac{x}{1 - px - (p-1)x^{k-1} - x^k}$$

The generating function for the (k, p)-Fibonacci numbers generalized other well-known generating functions for Fibonacci numbers, Pell numbers and k-Fibonacci numbers.

2. Main results

The Fibonacci numbers and numbers of the Fibonacci type have many interesting interpretations also in graphs, see for example [10], [11], [12], [17]. The graph interpretation of the Fibonacci numbers was initiated by H. Prodinger and R. F. Tichy in [16]. In [5] a total graph interpretation for numbers of the Fibonacci type was given. In this paper we shall show that this interpretation works also for the (k, p)-Fibonacci numbers. We recall some of necessary definitions and notations.

Let G be an undirected, simple graph with the vertex set V(G) and the edge set E(G). By P(m), T(m), S(m) and C(m) we denote a path, a tree, a star and a cycle of size m, respectively. Let $\mathcal{I} = \{1, 2, \dots, k\}, k \ge 2$, and let $\mathcal{I}_i = \{1, \dots, b_i\},$ $b_i \ge 1$. Let $\mathcal{C} = \bigcup_{i \in \mathcal{I}} \mathcal{C}_i$ be a nonempty family of colors, where $\mathcal{C}_i = \{iA_j: j \in \mathcal{I}_i\}$ for $i = 1, 2, \dots, k$. The set \mathcal{C}_i will be called as the set of b_i shades of the colour i. Consequently, for all $i \ne p, 1 \le i, p \le k$, it holds $iA_j \ne pA_j$ and this implies that the family \mathcal{C} has exactly $\sum_{i=1}^k |\mathcal{C}_i| = \sum_{i=1}^k b_i$ colours.

A graph G is $(iA_j: i \in \mathcal{I}, j \in \mathcal{I}_i)$ -edge coloured by monochromatic path if for every maximal iA_j -monochromatic subgraph H of G, where $iA_j \in \mathcal{C}_i, 1 \leq i \leq k$, $1 \leq j \leq b_i$, there exists a partition of H into edge disjoint paths of the length i. If $b_1 \neq 0$ then $(iA_j: i \in \mathcal{I}, j \in \mathcal{I}_i)$ -edge colouring by monochromatic paths always exists.

Now we define special graph parameter associated with this edge colouring of the graph. Let G be a graph which can be $(iA_j: i \in \mathcal{I}, j \in \mathcal{I}_i)$ -edge coloured by monochromatic paths. Let \mathcal{F} be a family of distinct $(iA_j: i \in \mathcal{I},$ $j \in \mathcal{I}_i$)-edge coloured graphs obtained by colouring of the graph G. Let $\mathcal{F} = \{G^{(1)}, G^{(2)}, \dots, G^{(l)}\}, l \ge 1$, where $G^{(p)}, 1 \le p \le l$, denotes a graph obtained by $(iA_j : i \in \mathcal{I}, j \in \mathcal{I}_i)$ -edge colouring by monochromatic paths of a graph G.

For $(iA_j: i \in \mathcal{I}, j \in \mathcal{I}_i)$ -edge coloured graph $G^{(p)}, 1 \leq p \leq l$, by $\theta(G^{(p)})$ we denote the number of all partitions of iA_j -monochromatic subgraphs of $G^{(p)}$ into edge disjoint paths of the length *i*. If $G^{(p)}$ is $1A_s$ -monochromatic, $1 \leq s \leq p$, then we put $\theta(G^{(p)}) = 1$.

The number of all $(iA_j: i \in \mathcal{I}, j \in \mathcal{I}_i)$ -edge colourings is defined as the graph parameter as follows

$$\sigma_{(iA_j: i \in \mathcal{I}, j \in \mathcal{I}_i)}(G) = \sum_{p=1}^l \theta(G^{(p)}).$$

The parameter $\sigma_{(A_1,2A_1)}(G)$ was studied for different classes of graphs i.e. paths, trees and unicyclic graphs, see [2], [3], [4], [5].

Theorem 2.1 ([5]). Let m be an integer. Then

$$\begin{aligned} \sigma_{(A_1,2A_1)}(\mathbb{P}(m)) &= F_m & \text{for } m \ge 1, \\ \sigma_{(A_1,2A_1)}(\mathbb{C}(m)) &= L_m & \text{for } m \ge 2. \end{aligned}$$

Theorem 2.2 ([5]). Let T(m) be a tree of size $m, m \ge 1$. Then

$$F_m \leqslant \sigma_{(A_1,2A_1)}(T(m)) \leqslant 1 + \sum_{j\geq 1} \binom{m}{2j} \prod_{p=0}^{j-1} [2j - (2p+1)].$$

Moreover

$$\sigma_{(A_1,2A_1)}(\mathbb{P}(m)) = F_m \quad \text{and} \quad \sigma_{(A_1,2A_1)}(S(m)) = 1 + \sum_{j \ge 1} \binom{m}{2j} \prod_{p=0}^{j-1} [2j - (2p+1)].$$

Theorem 2.3 ([2]). Let G be a unicyclic graph of the size $m, m \ge 3$. Then $\sigma_{(A_1,2A_1)}(G) \ge L_m$. The equality holds if $G \cong C(m)$.

For future investigation we use following notation. Let $e \in E(G)$ be a fixed edge. If e is coloured by iA_j then we write $c(e) = iA_j$ and $\sigma_{iA_j(e)}(G)$ be the number of all $(iA_j: i \in \mathcal{I}, j \in \mathcal{I}_i)$ -edge colouring of the graph G with $c(e) = iA_j$, $i \in \mathcal{I}, j \in \mathcal{I}$.

For convenience in the next part of this section instead of $(A_1, \dots, A_p, kB, (k-1)C_1, \dots, (k-1)C_{p-1})$ -edge colouring of the graph G we will write α -edge colouring of the graph G. Consequently instead of

$$\sigma_{(A_1,\cdots,A_p,kB,(k-1)C_1,\cdots,(k-1)C_{p-1})}(G)$$

we put $\sigma_{\alpha}(G)$.

Theorem 2.4. Let $k \ge 2$, $m \ge 1$, $p \ge 1$ be integers. Then for fixed k, p

(4)
$$\sigma_{\alpha}(P(m)) = F_{k,p}(m+1).$$

PROOF: We use induction on m. Let P(m) be the path of size m with $E(P(m)) = \{e_1, e_2, \dots, e_m\}$ and the numbering of edges in the natural fashion. We will prove that for fixed k, p

$$\sigma_{\alpha}(P(m)) = F_{k,p}(m+1)$$

By the definition of α -edge colouring it follows that edges of the path P(m) can be coloured by colours $A_1, \dots, A_p, kB, (k-1)C_1, \dots, (k-1)C_{p-1}$.

Let m = 1. If k = 2 then it is obvious that the unique edge $e_1 \in E(P(1))$ can be coloured using one of colours $A_1, \dots, A_p, C_1, \dots, C_{p-1}$ so $\sigma_{\alpha}(P(1)) = 2p - 1 = F_{2,p}(2)$. If $k \ge 3$ then the unique edge $e_1 \in E(P(1))$ can be coloured by colours A_1, \dots, A_p . Since the colour can be chosen into p ways so $\sigma_{\alpha}(P(1)) = p = F_{k,p}(2)$.

Let $m \ge 2$ and for t < m we have $\sigma_{\alpha}(P(t)) = F_{k,p}(t+1)$. We shall show that

$$\sigma_{\alpha}(P(m)) = F_{k,p}(m+1).$$

Let us consider an arbitrary α -edge colourings of P(m) and let $e_m \in E(P(m))$. We have the following possibilities

(1) Let $c(e_m) = A_i$, $i = 1, \dots, p$. Since the colour of e_m can be chosen into p ways so by the induction's hypothesis we have

$$\sum_{i=1}^{p} \sigma_{A_{i}(e_{m})}(P(m)) = p \cdot \sigma_{\alpha}(P(m-1)) = pF_{k,p}(m).$$

(2) Let $c(e_m) = kB$. Then there exists a kB-monochromatic path $e_{m-k+1} - \cdots - e_m$ in the graph P(m). This path has the length k and using the induction's hypothesis we obtain that

$$\sigma_{kB(e)}(P(m)) = \sigma_{\alpha}(P(m-k)) = F_{k,p}(m-k+1).$$

(3) Let $c(e) = (k-1)C_j$, $j = 1, \dots, p-1$. Then there exists a $(k-1)C_j$ monochromatic path $e_{m-k+2} - \dots - e_m$ in the graph P(m). This path has the length k-1. Because we have exactly p-1 possibilities of colouring of the path $e_{m-k+2} - \dots - e_m$, so from the induction's hypothesis we have

$$\sum_{j=1}^{p-1} \sigma_{(k-1)C_j(e)}(P(m)) = (p-1)\sigma_{\alpha}(P(m-k+1)) = (p-1)F_{k,p}(m-k+2).$$

From above possibilities and (2) we obtained that

$$\sigma_{\alpha}(P(m)) = pF_{k,p}(m) + F_{k,p}(m-k+1) + (p-1)F_{k,p}(m-k+2) = F_{k,p}(m+1),$$

which ends the proof.

We can use the above interpretation as the proving tool for some identities.

Theorem 2.5. Let $k \ge 2$, $n \ge k-2$, $m \ge k$, $p \ge 1$ be integers. Then

(5)

$$F_{k,p}(m+n) = pF_{k,p}(m-1)F_{k,p}(n+1) + (p-1)\sum_{i=1}^{k-1} F_{k,p}(m-k+i)F_{k,p}(n-i+2) + \sum_{j=0}^{k-1} F_{k,p}(m-k+j)F_{k,p}(n-j+1).$$

PROOF: Let P(m - 1 + n) be the path of size m - 1 + n with $E(P(m)) = \{e_1, \dots, e_{m-1}, e_m, \dots, e_{m-1+n}\}$ and the numbering of edges in the natural fashion. From Theorem 2.4 we have

$$\sigma_{\alpha}(P(m-1+n)) = F_{k,p}(m+n).$$

We shall show that

$$\sigma_{\alpha}(P(m-1+n)) = pF_{k,p}(m-1)F_{k,p}(n+1) + (p-1)\sum_{i=1}^{k-1}F_{k,p}(m-k+i)F_{k,p}(n-i+2) + \sum_{j=0}^{k-1}F_{k,p}(m-k+j)F_{k,p}(n-j+1).$$

Consider the following cases

(1) Let $c(e_{m-1}) = A_i, i = 1, 2, \dots, p$. Then from Theorem 2.4

$$\sum_{i=1}^{p} \sigma_{A_{i}(e_{m-1})}(P(m-1+n)) = \sigma_{\alpha}(P(m-2)) \cdot p \cdot \sigma_{\alpha}(P(n))$$
$$= pF_{k,p}(m-1)F_{k,p}(n+1).$$

- (2) Let $c(e_{m-1}) = (k-1)C_j$, $j = 1, 2, \dots, p-1$. Then there exists a $(k-1)C_j$ monochromatic path $P = e_i - \dots - e_{m-1} - \dots - e_{i+k-2}$ of the length k-1. Of course this path P can be coloured in p-1 ways. For future investigations let us denote from now by P(m-1) the path of size m-1such that $E(P(m-1)) = \{e_1, e_2, \dots, e_{m-1}\}$ and by P(n) the path of size nwith $E(P(n)) = \{e_m, e_{m+1}, \dots, e_{m-1+n}\}$. Let us consider the following cases
 - i) Let $e_{m-1} = e_{i+k-2}$. Then $P \subseteq P(m-1)$. Because paths P(m-k), P(n) can be α -edge coloured in $F_{k,p}(m-k+1)$, $F_{k,p}(n+1)$ ways,

respectively, so

$$\sum_{j=1}^{p-1} \sigma_{(k-1)C_j(e_{m-1})}(P(m-1+n)) = (p-1)F_{k,p}(m-k+1)F_{k,p}(n+1).$$

ii) Let $e_{m-1} = e_{i+k-3}$. Then $P \setminus \{e_{i+k-2}\} \subseteq P(m-1)$ and $e_{i+k-2} - e_m \in E(P(n))$. Because $\sigma_{\alpha}(P(m-k+1)) = F_{k,p}(m-k+2)$ and $\sigma_{\alpha}(P(n-1)) = F_{k,p}(n)$, so

$$\sum_{j=1}^{p-1} \sigma_{(k-1)C_j(e)}(P(m-1+n)) = (p-1)F_{k,p}(m-k+2)F_{k,p}(n)$$

÷

iii) Let $e_{m-1} = e_i$. Consequently $P \setminus \{e_{m-1}\} \subseteq P(n)$ and of course $e_{m-1} \subseteq E(P(m-1))$. Because paths P(m-2) and P(n-k+2) can be α -edge coloured in $F_{k,p}(m-1)$ and $F_{k,p}(n-k+3)$ ways, respectively, we obtain that

$$\sum_{j=1}^{p-1} \sigma_{(k-1)C_j(e)}(P(m-1+n)) = (p-1)F_{k,p}(m-1)F_{k,p}(n-k+3).$$

From all above cases we have that

$$\sum_{j=1}^{p-1} \sigma_{(k-1)C_j(e)}(P(m-1+n)) = (p-1)F_{k,p}(m-k+1)F_{k,p}(n+1) + (p-1)F_{k,p}(m-k+2)F_{k,p}(n) + \dots + (p-1)F_{k,p}(m-1)F_{k,p}(n-k+3) = (p-1)\sum_{i=1}^{k-1} F_{k,p}(m-k+i)F_{k,p}(n-i+2).$$

(3) Let c(e) = kB. Then there exists a kB-monochromatic path $e_j - \cdots - e_{m-1} - \cdots - e_{j+k-1}$ of the length k. Using the same method as in case (2) we obtain

$$\sigma_{kB(e)}(P(m-1+n)) = F_{k,p}(m-k)F_{k,p}(n+1) + F_{k,p}(m-k+1)F_{k,p}(n) + \dots + F_{k,p}(m-1)F_{k,p}(n-k+2) = \sum_{j=0}^{k-1} F_{k,p}(m-k+j)F_{k,p}(n-j+1).$$

N. Paja, I. Włoch

Therefore from possibilities (1), (2) and (3) we have

$$\sigma_{\alpha}(P(m-1+n)) = pF_{k,p}(m-1)F_{k,p}(n+1) + (p-1)\sum_{i=1}^{k-1} F_{k,p}(m-k+i)F_{k,p}(n-i+2) + \sum_{j=0}^{k-1} F_{k,p}(m-k+j)F_{k,p}(n-j+1),$$

which completes the proof.

Corollary 2.6. Let $k \ge 2$, $m \ge k$, $n \ge k-2$, $p \ge 1$, be integers.

(1) If k = 2, p = 1, then $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$.

(2) If $k = 2, p \ge 1$, then $F_{2p-1,m+n} = F_{2p-1,m}F_{2p-1,n+1} + F_{2p-1,m-1}F_{2p-1,n}$.

Now we give another interpretation of the (k, p)-Fibonacci numbers with respect to tilings.

Let $k \ge 2$, $n \ge 1$, $p \ge 1$ be integers. Let consider tilings of $1 \times (n-1)$ boards, called (n-1)-boards.

The pieces we are going to use in order to tile our (n-1)-boards are: 1×1 red squares (squares), $1 \times (k-1)$ blue rectangles ((k-1)-rectangles) and $1 \times k$ white rectangles (k-rectangles). Suppose that we have unlimited resources for these tiles and we distinguish color shades of squares and (k-1)-rectangles. Let $\mathcal{R} = \{r_1, r_2, \dots, r_p\}$ be the set of shades of red squares. Let $\mathcal{B} = \{b_1, b_2, \dots, b_{p-1}\}$ be the set of shades of blue (k-1)-rectangles.

Let $f_{k,p}(n)$ be the number of tilings on an (n-1)-board using the mentioned pieces.

Theorem 2.7. Let $k \ge 2$, $n \ge 1$, $p \ge 1$, be integers. Then $f_{k,p}(n) = F_{k,p}(n)$.

PROOF: We use induction on n. Let k, n, p be as in the statement of the theorem. We consider the following cases:

- (1) If n = 1 then $f_{k,p}(1)$ counts the empty tiling so $f_{k,p}(1) = 1 = F_{k,p}(1)$.
- (2) Let $2 \leq n < k$. Then every piece of the (n-1)-board can be tiled using only red squares. Since we have p shades of red color so there are $p^{n-1} = F_{k,p}(n)$ possibilities in this case.
- (3) Let n = k. Then we can use red squares or a blue (k 1)-rectangle in order to tile the (k 1)-board. Since we have p shades of red color and (p-1) shades of blue color so there are $p^{k-1} + p 1 = F_{k,p}(k)$ possibilities in this case.
- (4) Let $n \ge k+1$. Assume that for m < n we have $f_{k,p}(m) = F_{k,p}(m)$. We shall show that $f_{k,p}(n) = F_{k,p}(n)$. We consider the following cases:

304

- (a) The (n-1)-board ends with the red square in one of the p shades. Then the remaining board can be covered on $f_{k,p}(n-1)$ ways.
- (b) The (n − 1)-board ends with the blue (k − 1)-rectangle in one of the p − 1 shades. Then by removing this last piece we are left with f_{k,p}(n − k + 1) tilings.
- (c) The (n-1)-board ends with the white k-rectangle. Then the remaining board can be covered in $f_{k,p}(n-k)$ ways.

Consequently, from above cases we obtain

$$f_{k,p}(n) = pf_{k,p}(n-1) + (p-1)f_{k,p}(n-k+1) + f_{k,p}(n-k).$$

From the above and by the initial conditions we have that $F_{k,p}(n) = f_{k,p}(n)$, which completes the proof.

Using this interpretation we can prove the following identity.

Theorem 2.8. Let $k \ge 2$, $n \ge 2$, $p \ge 1$ be integers.

(1) If k is an even number then

$$F_{k,p}(2n) = p \sum_{i=0}^{\lfloor (2n-1)/k \rfloor} F_{k,p}(2n-1-ki) + (p-1) \sum_{j=0}^{\lfloor (2n-k+1)/k \rfloor} F_{k,p}(2n-k+1-kj)$$

(2) If k is an odd number then

$$F_{k,p}(2n) = p \sum_{i=0}^{[(2n-1)/(k-1)]} (p-1)^i F_{k,p}(2n-1-(k-1)i) + (p-1) \sum_{j=0}^{[(2n-k)/(k-1)]} F_{k,p}(2n-k-(k-1)j).$$

PROOF: We prove only case (1) as case (2) can be proved similarly. Suppose that k is an even number. We will show that

$$f_{k,p}(2n) = p \Big[f_{k,p}(2n-1) + f_{k,p}(2n-k-1) + \dots + f_{k,p} \Big(2n-1 - \Big[\frac{2n-1}{k} \Big] k \Big) \Big]$$

+ $(p-1) \Big[f_{k,p}(2n-k+1) + f_{k,p}(2n-2k+1) + f_{k,p}(2n-3k+1) + \dots + f_{k,p} \Big(2n-k+1 - \Big[\frac{2n-k+1}{k} \Big] k \Big) \Big].$

Since (2n-1)-board is an odd length so each tiling of this board have to contain at least one square or at least one (k-1)-rectangle. Let us consider the location of the last odd length piece. We have the following possibilities

1. The last odd length piece is a square. Of course we have exactly p possibilities to choose a red square. Moreover the last square can occur in cells with number: (2n-1) or (2n-k-1) or $(2n-2k-1) \cdots$ or (2n-1-[(2n-1)/k]k). Then the remaining board can be covered in $f_{k,p}(2n-1)$ or $f_{k,p}(2n-k-1)$ or $f_{k,p}(2n-2k-1) \cdots$ or $f_{k,p}(2n-1-[(2n-1)/k]k)$ ways, respectively. So in that case the number of all possible tilings of the (2n-1)-board is equal to

$$pf_{k,p}(2n-1) + pf_{k,p}(2n-k-1) + \dots + pf_{k,p}\left(2n-1-\left[\frac{2n-1}{k}\right]k\right).$$

- 2. The last odd length piece is a blue (k-1)-rectangle. Since we have exactly (p-1) shades of the blue (k-1)-rectangle, so by considering the location of the last (k-1)-rectangle we obtain the following possibilities.
 - If (k-1)-rectangle is the last piece of the (2n-1)-board, then the remaining board can be covered in $f_{k,p}(2n-k+1)$ ways.
 - If (k-1)-rectangle occurs in cells with numbers from (2n-2k+1) to (2n-k-1), then the remaining (2n-2k)-board can be covered in $f_{k,p}(2n-2k+1)$ ways.
 - If (k-1)-rectangle occurs in cells with numbers from (2n-k+1-((2n-k+1)/k)k) to (2n-1-((2n-k+1)/k)k), then the remaining board can be covered on $f_{k,p}(2n-k+1-((2n-k+1)/k)k)$ ways.

From all above possibilities we obtain that the number of all possible tilings of the (2n - 1)-board in that case is equal to

$$(p-1)f_{k,p}(2n-k+1) + (p-1)f_{k,p}(2n-2k+1) + (p-1)f_{k,p}(2n-3k+1) + \dots + (p-1)f_{k,p}\Big(2n-k+1-\Big[\frac{2n-k+1}{k}\Big]k\Big).$$

Finally, we have

$$F_{k,p}(2n) = p \sum_{i=0}^{[(2n-1)/k]} F_{k,p}(2n-1-ki) + (p-1) \sum_{j=0}^{[(2n-k+1)/k]} F_{k,p}(2n-k+1-kj).$$

_	_	_	_
_			

References

- [1] Bednarz N., On (k, p)-Fibonacci numbers, Mathematics 9 (2021), no. 7, page 727.
- Bednarz N., Włoch A., Włoch I., The Fibonacci numbers in edge coloured unicyclic graphs, Util. Math. 106 (2018), 39–49.
- [3] Bednarz U., Bród D., Szynal-Liana A., Włoch I., Wołowiec-Musiał M., On Fibonacci numbers in edge coloured trees, Opuscula Math. 37 (2017), no. 4, 479–490.
- Bednarz U., Włoch I., Fibonacci and telephone numbers in extremal trees, Discuss. Math. Graph Theory 38 (2018), no. 1, 121–133.
- [5] Bednarz U., Włoch I., Wołowiec-Musiał M., Total graph interpretation of the numbers of the Fibonacci type, J. Appl. Math. (2015), Art. ID 837917, 7 pages.
- [6] Berge C., Principles of Combinatorics, translated from the French Mathematics in Science and Engineering, 72, Academic Press, New York, 1971.
- [7] Catarino P., On some identities and generating functions for k-Pell numbers, Int. J. Math. Anal. (Ruse) 7(2013), no. 37–40, 1877–1884.
- [8] Diestel R., Graph Theory, Graduate Texts in Mathematics, 173, Springer, Berlin, 2005.
- [9] Falcón S., Plaza Á., On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007), no. 5, 1615–1624.
- [10] Kiliç E., The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums, Chaos Solitons Fractals **40** (2009), no. 4, 2047–2063.
- [11] Koshy T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- [12] Kwaśnik M., Włoch I., The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000), 139–146.
- [13] Marques D., Trojovský P., On characteristic polynomial of higher order generalized Jacobsthal numbers, Adv. Difference Equ. (2019), Paper No. 392, 9 pages.
- [14] Miles E. P., Jr., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960), 745–752.
- [15] Stakhov A. P., An Introduction to the Algorithmic Theory of Measurement, Sovetskoe Radio, Moscow, 1977 (Russian).
- [16] Prodinger H., Tichy R. F., Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), no. 1, 16–21.
- [17] Whoch I., On generalized Pell numbers and their graph representations, Comment. Math. 48 (2008), no. 2, 169–175.

N. Paja, I. Włoch:

RZESZÓW UNIVERSITY OF TECHNOLOGY,

THE FACULTY OF MATHEMATICS AND APPLIED PHYSICS,

AL. POWSTAŃCÓW WARSZAWY 12, 35-359 RZESZÓW, POLAND

E-mail: nbednarz@prz.edu.pl

E-mail: iwloch@prz.edu.pl

(Received January 23, 2020, revised June 25, 2020)