Some interpretations of the (k, p)-Fibonacci numbers

Natalia Paja, Iwona WŁoch

Abstract

In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the (k, p)-Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the (k, p)-Fibonacci numbers.

Keywords: Fibonacci number; Pell number; tiling
Classification: 11B39, 11B83, 05C15, 05A19

1. Introduction

In general we use the standard notation, see [6], [8]. The nth Fibonacci number F_{n} is defined recursively as follows $F_{n}=F_{n-1}+F_{n-2}$ for $n \geqslant 2$, with $F_{0}=F_{1}=1$. By numbers of the Fibonacci type we mean numbers defined recursively by the r th order linear recurrence relation of the form

$$
\begin{equation*}
a_{n}=b_{1} a_{n-1}+b_{2} a_{n-2}+\cdots+b_{r} a_{n-r} \quad \text { for } n \geqslant r, \tag{1}
\end{equation*}
$$

where $r \geqslant 2$ and $b_{i} \geqslant 0, i=1,2, \cdots, r$, are integers.
For special values of r and $b_{i}, i=1,2, \cdots, r$, the equality (1) defines other well-known numbers of the Fibonacci type. We list some of them:
(1) Lucas numbers: $L_{n}=L_{n-1}+L_{n-2}$ for $n \geqslant 2$, with $L_{0}=2, L_{1}=1$.
(2) Pell numbers: $P_{n}=2 P_{n-1}+P_{n-2}$ for $n \geqslant 2$, with $P_{0}=0, P_{1}=1$.
(3) Pell-Lucas numbers: $Q_{n}=2 Q_{n-1}+Q_{n-2}$ for $n \geqslant 2$, with $Q_{0}=1$, $Q_{1}=3$.
(4) Jacobsthal numbers: $J_{n}=J_{n-1}+2 J_{n-2}$ for $n \geqslant 2$, with $J_{0}=0, J_{1}=1$.
(5) Padovan numbers: $P v(n)=P v(n-2)+P v(n-3)$ for $n \geqslant 3$, with $P v(0)=P v(1)=P v(2)=1$.
(6) Tribonacci numbers of the first kind: $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$ for $n \geqslant 3$, with $T_{0}=T_{1}=T_{2}=1$.

There are many generalizations of the classical Fibonacci numbers and numbers of the Fibonacci type. We list some of these generalized numbers. Let k, n, p be integers.
(1) k-generalized Fibonacci numbers, see E. P. Miles, Jr., [14]: $F_{n}^{(k)}=F_{n-1}^{(k)}+$ $F_{n-2}^{(k)}+\cdots+F_{n-k}^{(k)}$ for $k \geqslant 2$ and $n \geqslant k$, with $F_{0}^{(k)}=F_{1}^{(k)}=\cdots=$ $F_{k-2}^{(k)}=0, F_{k-1}^{(k)}=1$.
(2) Fibonacci p-numbers, see A. P. Stakhov, [15]: $F_{p}(n)=F_{p}(n-1)+F_{p}(n-$ $p-1)$ for $p \geqslant 1$ and $n>p+1$, with $F_{p}(0)=\cdots=F_{p}(p+1)=1$.
(3) Generalized Fibonacci numbers, see M. Kwaśnik, I. Włoch, [12]: $F(k, n)=$ $F(k, n-1)+F(k, n-k)$ for $k \geqslant 1$ and $n \geqslant k+1$, with $F(k, n)=n+1$ for $0 \leqslant n \leqslant k$.
(4) k-Fibonacci numbers, see S. Falcón, Á. Plaza, [9]: $F_{k, n}=k F_{k, n-1}+F_{k, n-2}$ for $k \geqslant 1, n \geqslant 2$, with $F_{k, 0}=0, F_{k, 1}=1$.
(5) Generalized Pell numbers, see I. Włoch, [17]: $P(k, n)=P(k, n-1)+$ $P(k, n-k+1)+P(k, n-k)$ for $k \geqslant 2, n \geqslant k+1$, with $P(2,0)=0$, $P(k, 0)=1$ for $k \geqslant 3$ and $P(k, 1)=1, P(k, n)=2 n-2$ for $2 \leqslant n \leqslant k$.
(6) Generalized Pell (p, i)-numbers, see E. Kiliç, [10]: $P_{p}^{(i)}(n)=2 P_{p}^{(i)}(n-1)+$ $P_{p}^{(i)}(n-p-1)$ for $p \geqslant 1,0 \leqslant i \leqslant p, n>p+1$, with $P_{p}^{(i)}(1)=\cdots=$ $P_{p}^{(i)}(i)=0$ and $P_{p}^{(i)}(i+1)=\cdots=P_{p}^{(i)}(p+1)=1$.
(7) k-Pell numbers, see P. Catarino, [7]: $P_{k, n}=2 P_{k, n-1}+k P_{k, n-2}$ for $k \geqslant 1$, $n \geqslant 2$, with $P_{k, 0}=0, P_{k, 1}=1$.
(8) (k, c)-generalized Jacobsthal numbers, see D. Marques, P. Trojovský, [13]: $J_{n}^{(k, c)}=J_{n-1}^{(k, c)}+J_{n-2}^{(k, c)}+\cdots+J_{n-k}^{(k, c)}$ for $k \geqslant 2$ and $n \geqslant k$, with $J_{0}^{(k, c)}=$ $J_{1}^{(k, c)}=\cdots=J_{k-2}^{(k, c)}=0, J_{k-1}^{(k, c)}=1$.

For other generalizations of numbers of the Fibonacci type see for example [5].
In [1] a new two-parameters generalization, named as the (k, p)-Fibonacci numbers, was introduced and studied. We recall this definition.

Let $k \geqslant 2, n \geqslant 0$ be integers and let $p \geqslant 1$ be a rational number. The (k, p)Fibonacci numbers denoted by $F_{k, p}(n)$ are defined recursively in the following way

$$
\begin{equation*}
F_{k, p}(n)=p F_{k, p}(n-1)+(p-1) F_{k, p}(n-k+1)+F_{k, p}(n-k) \quad \text { for } n \geqslant k \tag{2}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
F_{k, p}(0)=0 \quad \text { and } \quad F_{k, p}(n)=p^{n-1} \quad \text { for } 1 \leqslant n \leqslant k-1 \tag{3}
\end{equation*}
$$

For special values k, n, p the equality (2) gives well-known number of the Fibonacci type. We list these special cases.
(1) If $k=2, p=1, n \geqslant 0$ then $F_{2,1}(n+1)=F_{n}$.
(2) If $k \geqslant 2, p=1, n \geqslant k$ then $F_{k, 1}(n)=F(k, n-k)$.
(3) If $k \geqslant 2, p=1, n \geqslant 1$ then $F_{k, 1}(n)=F_{k-1}(n)$.
(4) If $k=2, p=3 / 2, n \geqslant 0$ then $F_{2,3 / 2}(n)=P_{n}$.
(5) If $k=2, p=t / 2, t \in \mathbb{N}, t \geqslant 2$ and $n \geqslant 0$ then $F_{2, p}(n)=F_{2 p-1, n}$.

The properties of these numbers were studied in [1].
Theorem 1.1 ([1]). Let $k \geqslant 2$ be an integer and let $p \geqslant 1$ be a rational number. The generating function of the sequence $F_{k, p}(n)$ has the following form

$$
f_{k, p}(x)=\frac{x}{1-p x-(p-1) x^{k-1}-x^{k}}
$$

The generating function for the (k, p)-Fibonacci numbers generalized other well-known generating functions for Fibonacci numbers, Pell numbers and k Fibonacci numbers.

2. Main results

The Fibonacci numbers and numbers of the Fibonacci type have many interesting interpretations also in graphs, see for example [10], [11], [12], [17]. The graph interpretation of the Fibonacci numbers was initiated by H. Prodinger and R. F. Tichy in [16]. In [5] a total graph interpretation for numbers of the Fibonacci type was given. In this paper we shall show that this interpretation works also for the (k, p)-Fibonacci numbers. We recall some of necessary definitions and notations.

Let G be an undirected, simple graph with the vertex set $V(G)$ and the edge set $E(G)$. By $P(m), T(m), S(m)$ and $C(m)$ we denote a path, a tree, a star and a cycle of size m, respectively. Let $\mathcal{I}=\{1,2, \cdots, k\}, k \geqslant 2$, and let $\mathcal{I}_{i}=\left\{1, \cdots, b_{i}\right\}$, $b_{i} \geqslant 1$. Let $\mathcal{C}=\bigcup_{i \in \mathcal{I}} \mathcal{C}_{i}$ be a nonempty family of colors, where $\mathcal{C}_{i}=\left\{i A_{j}: j \in \mathcal{I}_{i}\right\}$ for $i=1,2, \cdots, k$. The set \mathcal{C}_{i} will be called as the set of b_{i} shades of the colour i. Consequently, for all $i \neq p, 1 \leqslant i, p \leqslant k$, it holds $i A_{j} \neq p A_{j}$ and this implies that the family \mathcal{C} has exactly $\sum_{i=1}^{k}\left|\mathcal{C}_{i}\right|=\sum_{i=1}^{k} b_{i}$ colours.

A graph G is $\left(i A_{j}: i \in \mathcal{I}, j \in \mathcal{I}_{i}\right)$-edge coloured by monochromatic path if for every maximal $i A_{j}$-monochromatic subgraph H of G, where $i A_{j} \in \mathcal{C}_{i}, 1 \leqslant i \leqslant k$, $1 \leqslant j \leqslant b_{i}$, there exists a partition of H into edge disjoint paths of the length i. If $b_{1} \neq 0$ then $\left(i A_{j}: i \in \mathcal{I}, j \in \mathcal{I}_{i}\right)$-edge colouring by monochromatic paths always exists.

Now we define special graph parameter associated with this edge colouring of the graph. Let G be a graph which can be $\left(i A_{j}: i \in \mathcal{I}, j \in \mathcal{I}_{i}\right)$-edge coloured by monochromatic paths. Let \mathcal{F} be a family of distinct $\left(i A_{j}: i \in \mathcal{I}\right.$,
$j \in \mathcal{I}_{i}$)-edge coloured graphs obtained by colouring of the graph G. Let $\mathcal{F}=$ $\left\{G^{(1)}, G^{(2)}, \cdots, G^{(l)}\right\}, l \geqslant 1$, where $G^{(p)}, 1 \leqslant p \leqslant l$, denotes a graph obtained by ($i A_{j}: i \in \mathcal{I}, j \in \mathcal{I}_{i}$)-edge colouring by monochromatic paths of a graph G.

For $\left(i A_{j}: i \in \mathcal{I}, j \in \mathcal{I}_{i}\right)$-edge coloured graph $G^{(p)}, 1 \leqslant p \leqslant l$, by $\theta\left(G^{(p)}\right)$ we denote the number of all partitions of $i A_{j}$-monochromatic subgraphs of $G^{(p)}$ into edge disjoint paths of the length i. If $G^{(p)}$ is $1 A_{s}$-monochromatic, $1 \leqslant s \leqslant p$, then we put $\theta\left(G^{(p)}\right)=1$.

The number of all $\left(i A_{j}: i \in \mathcal{I}, j \in \mathcal{I}_{i}\right)$-edge colourings is defined as the graph parameter as follows

$$
\sigma_{\left(i A_{j}: i \in \mathcal{I}, j \in \mathcal{I}_{i}\right)}(G)=\sum_{p=1}^{l} \theta\left(G^{(p)}\right)
$$

The parameter $\sigma_{\left(A_{1}, 2 A_{1}\right)}(G)$ was studied for different classes of graphs i.e. paths, trees and unicyclic graphs, see [2], [3], [4], [5].

Theorem 2.1 ([5]). Let m be an integer. Then

$$
\begin{array}{ll}
\sigma_{\left(A_{1}, 2 A_{1}\right)}(\mathbb{P}(m))=F_{m} & \text { for } m \geqslant 1 \\
\sigma_{\left(A_{1}, 2 A_{1}\right)}(\mathbb{C}(m))=L_{m} & \text { for } m \geqslant 2
\end{array}
$$

Theorem 2.2 ([5]). Let $T(m)$ be a tree of size $m, m \geqslant 1$. Then

$$
F_{m} \leqslant \sigma_{\left(A_{1}, 2 A_{1}\right)}(T(m)) \leqslant 1+\sum_{j \geq 1}\binom{m}{2 j} \prod_{p=0}^{j-1}[2 j-(2 p+1)] .
$$

Moreover
$\sigma_{\left(A_{1}, 2 A_{1}\right)}(\mathbb{P}(m))=F_{m} \quad$ and $\quad \sigma_{\left(A_{1}, 2 A_{1}\right)}(S(m))=1+\sum_{j \geq 1}\binom{m}{2 j} \prod_{p=0}^{j-1}[2 j-(2 p+1)]$.
Theorem 2.3 ([2]). Let G be a unicyclic graph of the size $m, m \geqslant 3$. Then $\sigma_{\left(A_{1}, 2 A_{1}\right)}(G) \geqslant L_{m}$. The equality holds if $G \cong C(m)$.

For future investigation we use following notation. Let $e \in E(G)$ be a fixed edge. If e is coloured by $i A_{j}$ then we write $c(e)=i A_{j}$ and $\sigma_{i A_{j}(e)}(G)$ be the number of all $\left(i A_{j}: i \in \mathcal{I}, j \in \mathcal{I}_{i}\right)$-edge colouring of the graph G with $c(e)=i A_{j}$, $i \in \mathcal{I}, j \in \mathcal{I}$.

For convenience in the next part of this section instead of $\left(A_{1}, \cdots, A_{p}, k B\right.$, $\left.(k-1) C_{1}, \cdots,(k-1) C_{p-1}\right)$-edge colouring of the graph G we will write α-edge colouring of the graph G. Consequently instead of

$$
\sigma_{\left(A_{1}, \cdots, A_{p}, k B,(k-1) C_{1}, \cdots,(k-1) C_{p-1}\right)}(G)
$$

we put $\sigma_{\alpha}(G)$.

Theorem 2.4. Let $k \geqslant 2, m \geqslant 1, p \geqslant 1$ be integers. Then for fixed k, p

$$
\begin{equation*}
\sigma_{\alpha}(P(m))=F_{k, p}(m+1) \tag{4}
\end{equation*}
$$

Proof: We use induction on m. Let $P(m)$ be the path of size m with $E(P(m))=$ $\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}$ and the numbering of edges in the natural fashion. We will prove that for fixed k, p

$$
\sigma_{\alpha}(P(m))=F_{k, p}(m+1)
$$

By the definition of α-edge colouring it follows that edges of the path $P(m)$ can be coloured by colours $A_{1}, \cdots, A_{p}, k B,(k-1) C_{1}, \cdots,(k-1) C_{p-1}$.

Let $m=1$. If $k=2$ then it is obvious that the unique edge $e_{1} \in E(P(1))$ can be coloured using one of colours $A_{1}, \cdots, A_{p}, C_{1}, \cdots, C_{p-1}$ so $\sigma_{\alpha}(P(1))=2 p-1=$ $F_{2, p}(2)$. If $k \geqslant 3$ then the unique edge $e_{1} \in E(P(1))$ can be coloured by colours A_{1}, \cdots, A_{p}. Since the colour can be chosen into p ways so $\sigma_{\alpha}(P(1))=p=F_{k, p}(2)$.

Let $m \geqslant 2$ and for $t<m$ we have $\sigma_{\alpha}(P(t))=F_{k, p}(t+1)$. We shall show that

$$
\sigma_{\alpha}(P(m))=F_{k, p}(m+1)
$$

Let us consider an arbitrary α-edge colourings of $P(m)$ and let $e_{m} \in E(P(m))$. We have the following possibilities
(1) Let $c\left(e_{m}\right)=A_{i}, i=1, \cdots, p$. Since the colour of e_{m} can be chosen into p ways so by the induction's hypothesis we have

$$
\sum_{i=1}^{p} \sigma_{A_{i}\left(e_{m}\right)}(P(m))=p \cdot \sigma_{\alpha}(P(m-1))=p F_{k, p}(m)
$$

(2) Let $c\left(e_{m}\right)=k B$. Then there exists a $k B$-monochromatic path $e_{m-k+1}-$ $\cdots-e_{m}$ in the graph $P(m)$. This path has the length k and using the induction's hypothesis we obtain that

$$
\sigma_{k B(e)}(P(m))=\sigma_{\alpha}(P(m-k))=F_{k, p}(m-k+1)
$$

(3) Let $c(e)=(k-1) C_{j}, j=1, \cdots, p-1$. Then there exists a $(k-1) C_{j}$ monochromatic path $e_{m-k+2}-\cdots-e_{m}$ in the graph $P(m)$. This path has the length $k-1$. Because we have exactly $p-1$ possibilities of colouring of the path $e_{m-k+2}-\cdots-e_{m}$, so from the induction's hypothesis we have

$$
\sum_{j=1}^{p-1} \sigma_{(k-1) C_{j}(e)}(P(m))=(p-1) \sigma_{\alpha}(P(m-k+1))=(p-1) F_{k, p}(m-k+2)
$$

From above possibilities and (2) we obtained that

$$
\sigma_{\alpha}(P(m))=p F_{k, p}(m)+F_{k, p}(m-k+1)+(p-1) F_{k, p}(m-k+2)=F_{k, p}(m+1)
$$ which ends the proof.

We can use the above interpretation as the proving tool for some identities.
Theorem 2.5. Let $k \geqslant 2, n \geqslant k-2, m \geqslant k, p \geqslant 1$ be integers. Then

$$
\begin{align*}
F_{k, p}(m+n)= & p F_{k, p}(m-1) F_{k, p}(n+1) \\
& +(p-1) \sum_{i=1}^{k-1} F_{k, p}(m-k+i) F_{k, p}(n-i+2) \tag{5}\\
& +\sum_{j=0}^{k-1} F_{k, p}(m-k+j) F_{k, p}(n-j+1)
\end{align*}
$$

Proof: Let $P(m-1+n)$ be the path of size $m-1+n$ with $E(P(m))=$ $\left\{e_{1}, \cdots, e_{m-1}, e_{m}, \cdots, e_{m-1+n}\right\}$ and the numbering of edges in the natural fashion. From Theorem 2.4 we have

$$
\sigma_{\alpha}(P(m-1+n))=F_{k, p}(m+n)
$$

We shall show that

$$
\begin{aligned}
\sigma_{\alpha}(P(m-1+n))= & p F_{k, p}(m-1) F_{k, p}(n+1) \\
& +(p-1) \sum_{i=1}^{k-1} F_{k, p}(m-k+i) F_{k, p}(n-i+2) \\
& +\sum_{j=0}^{k-1} F_{k, p}(m-k+j) F_{k, p}(n-j+1) .
\end{aligned}
$$

Consider the following cases
(1) Let $c\left(e_{m-1}\right)=A_{i}, i=1,2, \cdots, p$. Then from Theorem 2.4

$$
\begin{aligned}
\sum_{i=1}^{p} \sigma_{A_{i}\left(e_{m-1}\right)}(P(m-1+n)) & =\sigma_{\alpha}(P(m-2)) \cdot p \cdot \sigma_{\alpha}(P(n)) \\
& =p F_{k, p}(m-1) F_{k, p}(n+1)
\end{aligned}
$$

(2) Let $c\left(e_{m-1}\right)=(k-1) C_{j}, j=1,2, \cdots, p-1$. Then there exists a $(k-1) C_{j}$ monochromatic path $P=e_{i}-\cdots-e_{m-1}-\cdots-e_{i+k-2}$ of the length $k-1$. Of course this path P can be coloured in $p-1$ ways. For future investigations let us denote from now by $P(m-1)$ the path of size $m-1$ such that $E(P(m-1))=\left\{e_{1}, e_{2}, \cdots, e_{m-1}\right\}$ and by $P(n)$ the path of size n with $E(P(n))=\left\{e_{m}, e_{m+1}, \cdots, e_{m-1+n}\right\}$. Let us consider the following cases
i) Let $e_{m-1}=e_{i+k-2}$. Then $P \subseteq P(m-1)$. Because paths $P(m-k)$, $P(n)$ can be α-edge coloured in $F_{k, p}(m-k+1), F_{k, p}(n+1)$ ways,
respectively, so

$$
\sum_{j=1}^{p-1} \sigma_{(k-1) C_{j}\left(e_{m-1}\right)}(P(m-1+n))=(p-1) F_{k, p}(m-k+1) F_{k, p}(n+1) .
$$

ii) Let $e_{m-1}=e_{i+k-3}$. Then $P \backslash\left\{e_{i+k-2}\right\} \subseteq P(m-1)$ and $e_{i+k-2}-$ $e_{m} \in E(P(n))$. Because $\sigma_{\alpha}(P(m-k+1))=F_{k, p}(m-k+2)$ and $\sigma_{\alpha}(P(n-1))=F_{k, p}(n)$, so
$\sum_{j=1}^{p-1} \sigma_{(k-1) C_{j}(e)}(P(m-1+n))=(p-1) F_{k, p}(m-k+2) F_{k, p}(n)$.
iii) Let $e_{m-1}=e_{i}$. Consequently $P \backslash\left\{e_{m-1}\right\} \subseteq P(n)$ and of course $e_{m-1} \subseteq E(P(m-1))$. Because paths $P(m-2)$ and $P(n-k+2)$ can be α-edge coloured in $F_{k, p}(m-1)$ and $F_{k, p}(n-k+3)$ ways, respectively, we obtain that

$$
\sum_{j=1}^{p-1} \sigma_{(k-1) C_{j}(e)}(P(m-1+n))=(p-1) F_{k, p}(m-1) F_{k, p}(n-k+3)
$$

From all above cases we have that

$$
\begin{aligned}
\sum_{j=1}^{p-1} \sigma_{(k-1) C_{j}(e)}(P(m-1+n))= & (p-1) F_{k, p}(m-k+1) F_{k, p}(n+1) \\
& +(p-1) F_{k, p}(m-k+2) F_{k, p}(n) \\
& +\cdots+(p-1) F_{k, p}(m-1) F_{k, p}(n-k+3) \\
= & (p-1) \sum_{i=1}^{k-1} F_{k, p}(m-k+i) F_{k, p}(n-i+2) .
\end{aligned}
$$

(3) Let $c(e)=k B$. Then there exists a $k B$-monochromatic path $e_{j}-\cdots-$ $e_{m-1}-\cdots-e_{j+k-1}$ of the length k. Using the same method as in case (2) we obtain

$$
\begin{aligned}
\sigma_{k B(e)}(P(m-1+n))= & F_{k, p}(m-k) F_{k, p}(n+1)+F_{k, p}(m-k+1) F_{k, p}(n) \\
& +\cdots+F_{k, p}(m-1) F_{k, p}(n-k+2) \\
= & \sum_{j=0}^{k-1} F_{k, p}(m-k+j) F_{k, p}(n-j+1) .
\end{aligned}
$$

Therefore from possibilities (1), (2) and (3) we have

$$
\begin{aligned}
\sigma_{\alpha}(P(m-1+n))= & p F_{k, p}(m-1) F_{k, p}(n+1) \\
& +(p-1) \sum_{i=1}^{k-1} F_{k, p}(m-k+i) F_{k, p}(n-i+2) \\
& +\sum_{j=0}^{k-1} F_{k, p}(m-k+j) F_{k, p}(n-j+1)
\end{aligned}
$$

which completes the proof.
Corollary 2.6. Let $k \geqslant 2, m \geqslant k, n \geqslant k-2, p \geqslant 1$, be integers.
(1) If $k=2, p=1$, then $F_{m+n}=F_{m} F_{n+1}+F_{m-1} F_{n}$.
(2) If $k=2, p \geqslant 1$, then $F_{2 p-1, m+n}=F_{2 p-1, m} F_{2 p-1, n+1}+F_{2 p-1, m-1} F_{2 p-1, n}$.

Now we give another interpretation of the (k, p)-Fibonacci numbers with respect to tilings.

Let $k \geqslant 2, n \geqslant 1, p \geqslant 1$ be integers. Let consider tilings of $1 \times(n-1)$ boards, called ($n-1$)-boards.

The pieces we are going to use in order to tile our $(n-1)$-boards are: 1×1 red squares (squares), $1 \times(k-1)$ blue rectangles $((k-1)$-rectangles) and $1 \times k$ white rectangles (k-rectangles). Suppose that we have unlimited resources for these tiles and we distinguish color shades of squares and $(k-1)$-rectangles. Let $\mathcal{R}=\left\{r_{1}, r_{2}, \cdots, r_{p}\right\}$ be the set of shades of red squares. Let $\mathcal{B}=\left\{b_{1}, b_{2}, \cdots, b_{p-1}\right\}$ be the set of shades of blue $(k-1)$-rectangles.

Let $f_{k, p}(n)$ be the number of tilings on an $(n-1)$-board using the mentioned pieces.

Theorem 2.7. Let $k \geqslant 2, n \geqslant 1, p \geqslant 1$, be integers. Then $f_{k, p}(n)=F_{k, p}(n)$.
Proof: We use induction on n. Let k, n, p be as in the statement of the theorem. We consider the following cases:
(1) If $n=1$ then $f_{k, p}(1)$ counts the empty tiling so $f_{k, p}(1)=1=F_{k, p}(1)$.
(2) Let $2 \leqslant n<k$. Then every piece of the $(n-1)$-board can be tiled using only red squares. Since we have p shades of red color so there are $p^{n-1}=F_{k, p}(n)$ possibilities in this case.
(3) Let $n=k$. Then we can use red squares or a blue $(k-1)$-rectangle in order to tile the $(k-1)$-board. Since we have p shades of red color and $(p-1)$ shades of blue color so there are $p^{k-1}+p-1=F_{k, p}(k)$ possibilities in this case.
(4) Let $n \geqslant k+1$. Assume that for $m<n$ we have $f_{k, p}(m)=F_{k, p}(m)$. We shall show that $f_{k, p}(n)=F_{k, p}(n)$. We consider the following cases:
(a) The $(n-1)$-board ends with the red square in one of the p shades. Then the remaining board can be covered on $f_{k, p}(n-1)$ ways.
(b) The $(n-1)$-board ends with the blue $(k-1)$-rectangle in one of the $p-1$ shades. Then by removing this last piece we are left with $f_{k, p}(n-k+1)$ tilings.
(c) The $(n-1)$-board ends with the white k-rectangle. Then the remaining board can be covered in $f_{k, p}(n-k)$ ways.

Consequently, from above cases we obtain

$$
f_{k, p}(n)=p f_{k, p}(n-1)+(p-1) f_{k, p}(n-k+1)+f_{k, p}(n-k) .
$$

From the above and by the initial conditions we have that $F_{k, p}(n)=f_{k, p}(n)$, which completes the proof.

Using this interpretation we can prove the following identity.
Theorem 2.8. Let $k \geqslant 2, n \geqslant 2, p \geqslant 1$ be integers.
(1) If k is an even number then

$$
\begin{aligned}
F_{k, p}(2 n)= & p \sum_{i=0}^{[(2 n-1) / k]} F_{k, p}(2 n-1-k i) \\
& +(p-1) \sum_{j=0}^{[(2 n-k+1) / k]} F_{k, p}(2 n-k+1-k j) .
\end{aligned}
$$

(2) If k is an odd number then

$$
\begin{aligned}
F_{k, p}(2 n)= & p \sum_{i=0}^{[(2 n-1) /(k-1)]}(p-1)^{i} F_{k, p}(2 n-1-(k-1) i) \\
& +(p-1) \sum_{j=0}^{[(2 n-k) /(k-1)]} F_{k, p}(2 n-k-(k-1) j) .
\end{aligned}
$$

Proof: We prove only case (1) as case (2) can be proved similarly. Suppose that k is an even number. We will show that

$$
\begin{aligned}
f_{k, p}(2 n)= & p\left[f_{k, p}(2 n-1)+f_{k, p}(2 n-k-1)+\cdots+f_{k, p}\left(2 n-1-\left[\frac{2 n-1}{k}\right] k\right)\right] \\
& +(p-1)\left[f_{k, p}(2 n-k+1)+f_{k, p}(2 n-2 k+1)\right. \\
& \left.+f_{k, p}(2 n-3 k+1)+\cdots+f_{k, p}\left(2 n-k+1-\left[\frac{2 n-k+1}{k}\right] k\right)\right]
\end{aligned}
$$

Since ($2 n-1$)-board is an odd length so each tiling of this board have to contain at least one square or at least one $(k-1)$-rectangle. Let us consider the location of the last odd length piece. We have the following possibilities

1. The last odd length piece is a square. Of course we have exactly p possibilities to choose a red square. Moreover the last square can occur in cells with number: $(2 n-1)$ or $(2 n-k-1)$ or $(2 n-2 k-1) \cdots$ or $(2 n-1-[(2 n-1) / k] k)$. Then the remaining board can be covered in $f_{k, p}(2 n-1)$ or $f_{k, p}(2 n-k-1)$ or $f_{k, p}(2 n-2 k-1) \cdots$ or $f_{k, p}(2 n-1-[(2 n-1) / k] k)$ ways, respectively. So in that case the number of all possible tilings of the $(2 n-1)$-board is equal to

$$
p f_{k, p}(2 n-1)+p f_{k, p}(2 n-k-1)+\cdots+p f_{k, p}\left(2 n-1-\left[\frac{2 n-1}{k}\right] k\right) .
$$

2. The last odd length piece is a blue $(k-1)$-rectangle. Since we have exactly ($p-1$) shades of the blue $(k-1)$-rectangle, so by considering the location of the last $(k-1)$-rectangle we obtain the following possibilities.

- If $(k-1)$-rectangle is the last piece of the $(2 n-1)$-board, then the remaining board can be covered in $f_{k, p}(2 n-k+1)$ ways.
- If $(k-1)$-rectangle occurs in cells with numbers from $(2 n-2 k+1)$ to $(2 n-k-1)$, then the remaining $(2 n-2 k)$-board can be covered in $f_{k, p}(2 n-2 k+1)$ ways.
- If $(k-1)$-rectangle occurs in cells with numbers from $(2 n-k+1-$ $[(2 n-k+1) / k] k)$ to $(2 n-1-[(2 n-k+1) / k] k)$, then the remaining board can be covered on $f_{k, p}(2 n-k+1-[(2 n-k+1) / k] k)$ ways. From all above possibilities we obtain that the number of all possible tilings of the $(2 n-1)$-board in that case is equal to

$$
\begin{aligned}
(p-1) f_{k, p}(2 n-k+1) & +(p-1) f_{k, p}(2 n-2 k+1)+(p-1) f_{k, p}(2 n-3 k+1) \\
& +\cdots+(p-1) f_{k, p}\left(2 n-k+1-\left[\frac{2 n-k+1}{k}\right] k\right) .
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
F_{k, p}(2 n)= & p \sum_{i=0}^{[(2 n-1) / k]} F_{k, p}(2 n-1-k i) \\
& +(p-1) \sum_{j=0}^{[(2 n-k+1) / k]} F_{k, p}(2 n-k+1-k j)
\end{aligned}
$$

References

[1] Bednarz N., On (k, p)-Fibonacci numbers, Mathematics 9 (2021), no. 7, page 727.
[2] Bednarz N., Włoch A., Włoch I., The Fibonacci numbers in edge coloured unicyclic graphs, Util. Math. 106 (2018), 39-49.
[3] Bednarz U., Bród D., Szynal-Liana A., Włoch I., Wołowiec-Musiał M., On Fibonacci numbers in edge coloured trees, Opuscula Math. 37 (2017), no. 4, 479-490.
[4] Bednarz U., Włoch I., Fibonacci and telephone numbers in extremal trees, Discuss. Math. Graph Theory 38 (2018), no. 1, 121-133.
[5] Bednarz U., Włoch I., Wołowiec-Musiał M., Total graph interpretation of the numbers of the Fibonacci type, J. Appl. Math. (2015), Art. ID 837917, 7 pages.
[6] Berge C., Principles of Combinatorics, translated from the French Mathematics in Science and Engineering, 72, Academic Press, New York, 1971.
[7] Catarino P., On some identities and generating functions for k-Pell numbers, Int. J. Math. Anal. (Ruse) 7(2013), no. 37-40, 1877-1884.
[8] Diestel R., Graph Theory, Graduate Texts in Mathematics, 173, Springer, Berlin, 2005.
[9] Falcón S., Plaza Á., On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007), no. 5, 1615-1624.
[10] Kiliç E., The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums, Chaos Solitons Fractals 40 (2009), no. 4, 2047-2063.
[11] Koshy T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
[12] Kwaśnik M., Włoch I., The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000), 139-146.
[13] Marques D., Trojovský P., On characteristic polynomial of higher order generalized Jacobsthal numbers, Adv. Difference Equ. (2019), Paper No. 392, 9 pages.
[14] Miles E. P., Jr., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960), 745-752.
[15] Stakhov A. P., An Introduction to the Algorithmic Theory of Measurement, Sovetskoe Radio, Moscow, 1977 (Russian).
[16] Prodinger H., Tichy R. F., Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), no. 1, 16-21.
[17] Włoch I., On generalized Pell numbers and their graph representations, Comment. Math. 48 (2008), no. 2, 169-175.
N. Paja, I. Włoch:

Rzeszów University of Technology,
The Faculty of Mathematics and Applied Physics, al. Powstańców Warszawy 12, 35-359 Rzeszów, Poland

E-mail: nbednarz@prz.edu.pl
E-mail: iwloch@prz.edu.pl
(Received January 23, 2020, revised June 25, 2020)

