Decomposition of Cartesian product of complete graphs into paths and stars with four edges

Arockiajeyaraj P. Ezhilarasi, Appu Muthusamy

Abstract

Let P_{k} and S_{k} denote a path and a star, respectively, on k vertices. We give necessary and sufficient conditions for the existence of a complete $\left\{P_{5}, S_{5}\right\}$ decomposition of Cartesian product of complete graphs.

Keywords: graph decomposition; path; star graph; product graph
Classification: 05C51, 05C70

1. Introduction

Unless stated otherwise, all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology, the readers are referred to J. A. Bondy and U. S. R. Murty, see [5]. Let $P_{k}, S_{k}, C_{k}, K_{k}$ denote a path, star, cycle and complete graph, respectively, on k vertices, and let $K_{m, n}$ denote the complete bipartite graph containing m vertices in one partite set and n vertices in the other partite set. A graph whose vertex set is partitioned into subsets V_{1}, \ldots, V_{t} with edge set $\bigcup_{i \neq j \in[t]} V_{i} \times V_{j}$ is a complete t-partite graph, denoted by $K_{n_{1}, \ldots, n_{t}}$, when $\left|V_{i}\right|=n_{i}$ for all i. For $G=K_{2 n}$ or $K_{n, n}$, the graph $G-I$ denotes G with a 1 -factor I removed. For any integer $\lambda>0, \lambda G$ and $G(\lambda)$ respectively denote the graph consisting of λ edge-disjoint copies of G and a multigraph G with uniform edge multiplicity λ. Moreover $v(G)$ and $\varepsilon(G)$ denote the number of vertices and number, respectively, of edges in G. The complement of the graph G is denoted by \bar{G}. For two graphs G and H, we define their Cartesian product, denoted by $G \square H$, with vertex set $V(G \square H)=V(G) \times V(H)$ and edge set

$$
E(G \square H)=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right): g=g^{\prime}, h h^{\prime} \in E(H), \text { or } g g^{\prime} \in E(G), h=h^{\prime}\right\}
$$

[^0]It is well known that the Cartesian product is commutative and associative. For a graph G, if $E(G)$ can be partitioned into E_{1}, \ldots, E_{k} such that the subgraph of G induced by E_{i} is H_{i} for all $1 \leq i \leq k$, then we say that H_{1}, \ldots, H_{k} decompose G, and we write $G=H_{1} \oplus \cdots \oplus H_{k}$, since H_{1}, \ldots, H_{k} are edge-disjoint subgraphs of G. If for $1 \leq i \leq k, H_{i} \cong H$, we say that G has a H-decomposition. If G has a decomposition into p copies of H_{1} and q copies of H_{2}, then we say that G has a $\left\{p H_{1}, q H_{2}\right\}$-decomposition. If such a decomposition exists for all values of p and q satisfying trivial necessary conditions, then we say that G has a $\left\{H_{1}, H_{2}\right\}_{\{p, q\}}$-decomposition or has a complete $\left\{H_{1}, H_{2}\right\}$-decomposition.

Study on $\left\{H_{1}, H_{2}\right\}_{\{p, q\}}$-decomposition of graphs is not new. A. A. Abueida et al. in [1], [3] completely determined the values of n for which $K_{n}(\lambda)$ admits a $\left\{p H_{1}, q H_{2}\right\}$-decomposition such that $H_{1} \cup H_{2} \cong K_{t}$, when $\lambda \geq 1$ and $\left|V\left(H_{1}\right)\right|=$ $\left|V\left(H_{2}\right)\right|=t$, where $t \in\{4,5\}$. A. A. Abueida and M. Daven in [2] proved that there exists a $\left\{p K_{k}, q S_{k+1}\right\}$-decomposition of K_{n} for $k \geq 3$ and $n \equiv 0,1(\bmod k)$. A. A. Abueida and T. O'Neil in [4] proved that for $k \in\{3,4,5\}$, there exists a $\left\{p C_{k}, q S_{k}\right\}$-decomposition of $K_{n}(\lambda)$, whenever $n \geq k+1$ except for the ordered triples $(k, n, \lambda) \in\{(3,4,1),(4,5,1),(5,6,1),(5,6,2),(5,6,4),(5,7,1),(5,8,1)\}$. T.-W. Shyu in [9], [10] obtained a necessary and sufficient condition on (p, q) for the existence of $\left\{P_{4}, S_{4}\right\}_{\{p, q\}}$-decomposition of K_{n} and $K_{m, n}$. H. M. Priyadharsini and A. Muthusamy in [8] established necessary and sufficient conditions for the existence of the $\left(G_{n}, H_{n}\right)$-multidecomposition of $K_{n}(\lambda)$, where $G_{n}, H_{n} \in$ $\left\{C_{n}, P_{n-1}, S_{n-1}\right\}$. A. P. Ezhilarasi and A. Muthusamy in [6] have obtained necessary and sufficient conditions for the existence of a decomposition of product graphs into paths and stars with three edges. S. Jeevadoss and A. Muthusamy in [7] have obtained necessary and sufficient conditions for $\left\{P_{5}, C_{4}\right\}_{\{p, q\}}$-decomposition of product graphs.

In this paper, we show that the necessary condition $m n(m+n-2) \equiv 0(\bmod 8)$ is sufficient for the existence of a complete $\left\{P_{5}, S_{5}\right\}$-decomposition of $K_{m} \square K_{n}$.

Notations. A star S_{k+1} with center at x_{0} and end vertices x_{1}, \ldots, x_{k} is denoted by $\left(x_{0} ; x_{1}, \ldots, x_{k}\right)$ and a path on $k+1$ vertices $x_{0}, x_{1}, \ldots, x_{k}$ is denoted by $x_{0} x_{1} \cdots x_{k}$. We abbreviate the complete $\left\{P_{k+1}, S_{k+1}\right\}$-decomposition as $(4 ; p, q)$ decomposition. In a $(4 ; p, q)$-decomposition of a graph G, we mean p and q are integers with $0 \leq p, q \leq \varepsilon(G) / 4$ and $p+q=\varepsilon(G) / 4$.

To prove our results we state the following:
Theorem 1.1 ([10]). Let $p, q \geq 0, m \geq k>0$, be integers. There exists a $(k ; p, q)$ decomposition of $K_{k, m}$ if and only if the following conditions are fulfilled:

1. $k(p+q)=\varepsilon\left(K_{k, m}\right)$;
2. $p \leq\left\lceil\frac{k}{2}\right\rceil-1 \Rightarrow(p \equiv 0(\bmod 2) \wedge m \geq k+p)$;
3. $\left(\left\lceil\frac{k}{2}\right\rceil \leq p \leq k-1 \wedge k \equiv 1(\bmod 2) \wedge p \equiv 1(\bmod 2)\right) \Rightarrow m \geq k+1$.

Theorem 1.2 ([10]). Let $p, q \geq 0$, and $m>k>0, n \geq 2$, be integers. There exists a $(k ; p, q)$-decomposition of $K_{m, n k}$ if and only if $k(p+q)=\varepsilon\left(K_{m, n k}\right)$.

Theorem 1.3 ([10]). Let $p, q \geq 0$, and $k>m>0, n>0$, be integers. There exists a $(k ; p, q)$-decomposition of $K_{n k, m}$ if and only if the following conditions are fulfilled:

1. $k(p+q)=\varepsilon\left(K_{n k, m}\right)$;
2. there is a $t \in\{0, \ldots, n\}$ such that $\left\lceil\frac{t k}{2}\right\rceil \leq p \leq t m$;
3. $(k \equiv 1(\bmod 2) \wedge n=1) \Rightarrow p \equiv 0(\bmod 2)$.

Theorem 1.4 ([10]). Let $p, q \geq 0$ and $n \geq 4 k>0$ be integers. There exists a $(k ; p, q)$-decomposition of K_{n} if and only if $k(p+q)=\varepsilon\left(K_{n}\right)$.

Remark 1.1. If G and H each have a $(4 ; p, q)$-decomposition, then $G \cup H$ has such a decomposition. In this paper, we denote $G \cup H$ as $G \oplus H$.

Remark 1.2. If two stars S_{5}^{1} and S_{5}^{2} with distinct centers share at least two pendant vertices, then $S_{5}^{1} \oplus S_{5}^{2}$ can be decomposed into $2 P_{5}$. i.e. if $S_{5}^{1}=\left(x_{0} ; y_{0}, \boldsymbol{y}_{\mathbf{1}}\right.$, $\left.\boldsymbol{y}_{2}, y_{3}\right)$ and $S_{5}^{2}=\left(y_{4} ; y_{0}, \boldsymbol{y}_{1}, \boldsymbol{x}_{1}, x_{2}\right)$ are two stars, then the $2 P_{5}$ are $P_{5}^{1}=$ $\boldsymbol{y}_{\mathbf{2}} \boldsymbol{x}_{\mathbf{0}} \boldsymbol{y}_{\boldsymbol{1}} \boldsymbol{y}_{\mathbf{4}} \boldsymbol{x}_{\mathbf{1}}, P_{5}^{2}=y_{3} x_{0} y_{0} y_{4} x_{2}$ (one can easily understand that the edges of stars with bold vertices and ordinary vertices give a required number of paths from stars $)$. We denote such a pair of star as $\left\{\left(x_{0} ; y_{0}, \boldsymbol{y}_{1}, \boldsymbol{y}_{\mathbf{2}}, y_{3}\right),\left(y_{4} ; y_{0}, \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{x}_{1}, x_{2}\right)\right\}$.

Example 1.1. There exists a $(4 ; p, q)$-decomposition of K_{8}.
Solution: Let $V\left(K_{8}\right)=\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$. First we decompose K_{8} into $\left\{2 P_{5}, 5 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& x_{7} x_{1} x_{8} x_{6} x_{2}, x_{2} x_{7} x_{8} x_{4} x_{3},\left(x_{5} ; x_{2}, x_{1}, x_{7}, x_{8}\right),\left\{\left(x_{3} ; \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\boldsymbol{7}}, x_{5}, x_{8}\right),\right. \\
& \left.\quad\left(x_{4} ; x_{1}, x_{5}, \boldsymbol{x}_{\mathbf{6}}, \boldsymbol{x}_{\boldsymbol{7}}\right)\right\},\left\{\left(x_{2} ; x_{1}, \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{8}\right),\left(x_{6} ; x_{5}, \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\boldsymbol{7}}, x_{1}\right)\right\} .
\end{aligned}
$$

Now, we decompose the first $2 P_{5}$ and a S_{5} into $3 P_{5}$ as follows:

$$
\left\{x_{2} x_{5} x_{7} x_{1} x_{8}, x_{1} x_{5} x_{8} x_{6} x_{2}, x_{2} x_{7} x_{8} x_{4} x_{3}\right\}
$$

Hence from the above decompositions and Remark 1.2 we have a $(4 ; p, q)$ decomposition of K_{8} except for the values $p=0,1$. For $p=0,1$, we have the following sets of paths and stars: $\quad\left\{\left(x_{1} ; x_{5}, x_{6}, x_{7}, x_{8}\right),\left(x_{2} ; x_{1}, x_{3}, x_{4}, x_{8}\right)\right.$, $\left(x_{3} ; x_{1}, x_{4}, x_{5}, x_{8}\right), \quad\left(x_{4} ; x_{1}, x_{5}, x_{6}, x_{8}\right), \quad\left(x_{5} ; x_{2}, x_{6}, x_{7}, x_{8}\right), \quad\left(x_{6} ; x_{2}, x_{3}, x_{7}, x_{8}\right)$, $\left.\left(x_{7} ; x_{2}, x_{3}, x_{4}, x_{8}\right)\right\} \quad$ and $\quad\left\{x_{7} x_{1} x_{8} x_{6} x_{2}, \quad\left(x_{2} ; x_{1}, x_{3}, x_{4}, x_{8}\right), \quad\left(x_{3} ; x_{1}, x_{4}, x_{5}, x_{8}\right)\right.$, $\left.\left(x_{4} ; x_{1}, x_{5}, x_{6}, x_{8}\right),\left(x_{5} ; x_{2}, x_{1}, x_{7}, x_{8}\right),\left(x_{6} ; x_{5}, x_{3}, x_{7}, x_{1}\right),\left(x_{7} ; x_{2}, x_{3}, x_{4}, x_{8}\right)\right\}$.

Example 1.2. There exists a $(4 ; p, q)$-decomposition of K_{9}.

Solution: Let $V\left(K_{9}\right)=\left\{x_{1}, x_{2}, \cdots, x_{9}\right\}$ and $G=K_{9}$. Then $G=K_{8} \oplus$ $\left(x_{9} ; x_{1}, x_{2}, x_{3}, x_{4}\right) \oplus\left(x_{9} ; x_{5}, x_{6}, x_{7}, x_{8}\right)$ and by Example 1.1, K_{9} has a $(4 ; p, q)$ decomposition except for the values $p=8$ and 9 . For $p=8,9$, we have the following sets of paths and stars: $\left\{x_{7} x_{1} x_{8} x_{6} x_{2}, x_{2} x_{7} x_{8} x_{4} x_{3}, x_{4} x_{2} x_{1} x_{6} x_{5}, x_{3} x_{2} x_{8} x_{5} x_{1}\right.$, $\left.x_{2} x_{5} x_{7} x_{6} x_{3}, x_{1} x_{3} x_{5} x_{4} x_{6}, x_{1} x_{4} x_{7} x_{9} x_{6}, x_{5} x_{9} x_{8} x_{3} x_{7},\left(x_{9} ; x_{1}, x_{2}, x_{3}, x_{4}\right)\right\} \quad$ and $\left\{x_{7} x_{1} x_{8} x_{6} x_{2}, x_{2} x_{7} x_{8} x_{4} x_{3}, x_{4} x_{2} x_{1} x_{6} x_{5}, x_{2} x_{5} x_{7} x_{6} x_{3}, x_{1} x_{3} x_{5} x_{4} x_{6}, x_{1} x_{4} x_{7} x_{9} x_{6}\right.$, $\left.x_{5} x_{9} x_{8} x_{3} x_{7}, x_{2} x_{9} x_{1} x_{5} x_{8}, x_{8} x_{2} x_{3} x_{9} x_{4}\right\}$.

Example 1.3. There exists a $(4 ; p, q)$-decomposition of $K_{6,6}$.
Solution: Let $V\left(K_{6,6}\right)=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{6}\right\}$. First we decompose $K_{6,6}$ into $\left\{0 P_{5}, 9 S_{5}\right\}$ and $\left\{P_{5}, 9 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1} ; y_{1}, y_{2}, y_{3}, y_{4}\right),\left\{\left(x_{2} ; y_{1}, \boldsymbol{y}_{\mathbf{2}}, \boldsymbol{y}_{\mathbf{5}}, y_{6}\right),\left(x_{3} ; \boldsymbol{y}_{\mathbf{5}}, \boldsymbol{y}_{\mathbf{4}}, y_{3}, y_{6}\right)\right\},\right. \\
& \left\{\left(y_{1} ; \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{3} ; x_{2}, \boldsymbol{x}_{\boldsymbol{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}, \\
& \left\{\left(y_{2} ; \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{5} ; x_{1}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}, \\
& \left.\left\{\left(y_{4} ; \boldsymbol{x}_{\mathbf{2}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{6} ; x_{1}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}\right\} \\
& \text { and } \\
& \left\{y_{1} x_{1} y_{2} x_{2} y_{5},\left\{\left(x_{2} ; \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{3}}, y_{4}, y_{6}\right),\left(x_{3} ; \boldsymbol{y}_{\mathbf{3}}, \boldsymbol{y}_{4}, y_{5}, y_{6}\right)\right\},\right. \\
& \left\{\left(y_{1} ; \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{3} ; x_{1}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}, \\
& \left\{\left(y_{4} ; \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{2} ; x_{3}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}, \\
& \left.\left\{\left(y_{5} ; \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{4}}, x_{5}, x_{6}\right),\left(y_{6} ; x_{1}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{x}_{\mathbf{5}}, x_{6}\right)\right\}\right\} .
\end{aligned}
$$

By Remark 1.2, we obtain a required even number of paths from $\left\{0 P_{5}, 9 S_{5}\right\}$ and a required odd number of paths from $\left\{P_{5}, 8 S_{5}\right\}$.

2. $(4 ; p, q)$-decomposition of $K_{m} \square K_{n}$

In this section we investigate the existence of $(4 ; p, q)$-decomposition of Cartesian product of complete graphs. To prove our results we need the following lemmas.

Lemma 2.1. There exists a $(4 ; p, q)$-decomposition of $K_{4} \square K_{2}$ with $p \geq 2$.
Proof: Let $V\left(K_{4} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 4,1 \leq j \leq 2\right\}$. First we decompose $K_{4} \square K_{2}$ into $\left\{2 P_{5}, 2 S_{5}\right\}$ as follows:

$$
\begin{gathered}
x_{2,1} x_{4,1} x_{3,1} x_{3,2} x_{2,2}, x_{3,1} x_{2,1} x_{2,2} x_{1,2} x_{3,2} \\
\left\{\left(x_{1,1} ; x_{3,1}, x_{4,1}, \boldsymbol{x}_{\mathbf{2 , 1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}\right),\left(x_{4,2} ; \boldsymbol{x}_{\mathbf{1 , 2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{3,2}, x_{4,1}\right)\right\} .
\end{gathered}
$$

By Remark 1.2, we have a $\left\{4 P_{5}, 0 S_{5}\right\}$-decomposition of $K_{4} \square K_{2}$ from $\left\{2 P_{5}, 2 S_{5}\right\}$. Now, the $\left\{3 P_{5}, S_{5}\right\}$-decomposition of $K_{4} \square K_{2}$ is given by $x_{1,2} x_{2,2} x_{2,1} x_{4,1} x_{3,1}$, $x_{1,2} x_{4,2} x_{3,2} x_{3,1} x_{2,1}, x_{1,2} x_{3,2} x_{2,2} x_{4,2} x_{4,1},\left(x_{1,1} ; x_{1,2}, x_{3,1}, x_{4,1}, x_{2,1}\right)$.

Lemma 2.2. There exists a $(4 ; p, q)$-decomposition of $K_{6} \square K_{2}, p \neq 0$.

Proof: Let $V\left(K_{6} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 6,1 \leq j \leq 2\right\}$. First we decompose $K_{6} \square K_{2}$ into $\left\{P_{5}, 8 S_{5}\right\}$ and $\left\{2 P_{5}, 7 S_{5}\right\}$ as follows:

$$
\begin{gathered}
\left\{x_{5,1} x_{2,1} x_{4,1} x_{4,2} x_{3,2},\left\{\left(x_{1,1} ; x_{2,1}, x_{3,1}, \boldsymbol{x}_{\mathbf{4 , \mathbf { 1 }}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}\right),\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}, \boldsymbol{x}_{\boldsymbol{3}, \mathbf{2}}, x_{4,2}\right)\right\},\right. \\
\left\{\left(x_{3,1} ; x_{3,2}, x_{2,1}, \boldsymbol{x}_{\mathbf{4}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}\right),\left(x_{6,2} ; \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, x_{3,2}, x_{4,2}\right)\right\} \\
\left(x_{5,1} ; x_{5,2}, x_{1,1}, x_{3,1}, x_{4,1}\right),\left(x_{6,1} ; x_{2,1}, x_{1,1}, x_{4,1}, x_{5,1}\right) \\
\left.\left(x_{1,2} ; x_{3,2}, x_{4,2}, x_{5,2}, x_{6,2}\right),\left(x_{5,2} ; x_{2,2}, x_{3,2}, x_{4,2}, x_{6,2}\right)\right\} \\
\text { and }\left\{x_{5,1} x_{2,1} x_{4,1} x_{4,2} x_{3,2}, x_{1,1} x_{3,1} x_{4,1} x_{5,1} x_{5,2}\right. \\
\left\{\left(x_{1,1} ; x_{2,1}, x_{4,1}, \boldsymbol{x}_{\mathbf{5 , 1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}\right),\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{1}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{4,2}\right)\right\} \\
\left\{\left(x_{3,1} ; x_{3,2}, x_{2,1}, \boldsymbol{x}_{\mathbf{5 , \mathbf { 1 }}}, \boldsymbol{x}_{\mathbf{6 , 1}}\right),\left(x_{6,2} ; \boldsymbol{x}_{\mathbf{6 , 1}}, \boldsymbol{x}_{\mathbf{2 , 2}}, x_{3,2}, x_{4,2}\right)\right\} \\
\left.\left(x_{6,1} ; x_{2,1}, x_{1,1}, x_{4,1}, x_{5,1}\right),\left(x_{1,2} ; x_{3,2}, x_{4,2}, x_{5,2}, x_{6,2}\right),\left(x_{5,2} ; x_{2,2}, x_{3,2}, x_{4,2}, x_{6,2}\right)\right\} .
\end{gathered}
$$

By Remark 1.2, we obtain a required even number of paths from $\left\{2 P_{5}, 7 S_{5}\right\}$ except $p=8$ and we obtain a required odd number of paths from $\left\{P_{5}, 8 S_{5}\right\}$ except $p=7,9$. Now,

$$
\begin{gathered}
\left\{x_{5,2} x_{4,2} x_{2,2} x_{1,2} x_{3,2}, x_{3,2} x_{6,2} x_{4,2} x_{1,2} x_{5,2}, x_{3,2} x_{2,2} x_{6,2} x_{1,2} x_{1,1},\right. \\
x_{4,1} x_{5,1} x_{3,1} x_{2,1} x_{2,2}, x_{6,1} x_{2,1} x_{5,1} x_{1,1} x_{3,1}, x_{3,1} x_{3,2} x_{4,2} x_{4,1} x_{2,1}, \\
\left.x_{2,1} x_{1,1} x_{4,1} x_{3,1} x_{6,1},\left\{\left(x_{6,1} ; x_{6,2}, x_{1,1}, \boldsymbol{x}_{4, \mathbf{1}}, \boldsymbol{x}_{5, \mathbf{1}}\right),\left(x_{5,2} ; \boldsymbol{x}_{5, \mathbf{1}}, \boldsymbol{x}_{2,2}, x_{3,2}, x_{6,2}\right)\right\}\right\} \\
\text { and } \quad\left\{x_{5,1} x_{2,1} x_{4,1} x_{4,2} x_{3,2}, x_{4,2} x_{2,2} x_{1,2} x_{1,1} x_{3,1}, x_{2,1} x_{1,1} x_{4,1} x_{3,1} x_{6,1},\right. \\
x_{6,1} x_{6,2} x_{2,2} x_{5,2} x_{4,2}, x_{3,2} x_{1,2} x_{4,2} x_{6,2} x_{5,2}, x_{4,1} x_{5,1} x_{5,2} x_{1,2} x_{6,2}, \\
\left.x_{6,2} x_{3,2} x_{3,1} x_{5,1} x_{1,1}, x_{5,2} x_{3,2} x_{2,2} x_{2,1} x_{3,1},\left(x_{6,1} ; x_{2,1}, x_{1,1}, x_{4,1}, x_{5,1}\right)\right\}
\end{gathered}
$$

gives the remaining number of paths and stars of $K_{6} \square K_{2}$.
Lemma 2.3. There exists a (4; p,q)-decomposition of $K_{8} \square K_{2}$.
Proof: Let $V\left(K_{8} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 8,1 \leq j \leq 2\right\}$ and $K_{2}^{i}\left(K_{8}^{j}\right.$, respectively) be K_{2} in the $i^{\text {th }}$ row (K_{8} in the $j^{\text {th }}$ column, respectively) of $K_{8} \square K_{2}$. We can write $K_{8} \square K_{2}=G_{1} \oplus G_{2}$, where $G_{1}=K_{8}^{1} \oplus K_{2}^{1} \oplus K_{2}^{3} \oplus \cdots \oplus K_{2}^{7}$ and $G_{2}=K_{8}^{2} \oplus K_{2}^{2} \oplus K_{2}^{4} \oplus \cdots \oplus K_{2}^{8}$. Since $G_{1} \cong G_{2}$, it is enough to prove without loss of generality that G_{1} has a $(4 ; p, q)$-decomposition. First decompose G_{1} into $\left\{0 P_{5}, 8 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; x_{1,2}, \boldsymbol{x}_{\mathbf{5 , 1}}, \boldsymbol{x}_{\mathbf{7}, \mathbf{1}}, x_{8,1}\right),\left(x_{3,1} ; x_{3,2}, \boldsymbol{x}_{\mathbf{4}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{7}, \mathbf{1}}, x_{8,1}\right)\right\}, \\
& \left\{\left(x_{5,1} ; x_{5,2}, \boldsymbol{x}_{\mathbf{3 , 1}}, \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}, x_{8,1}\right),\left(x_{7,1} ; x_{7,2}, \boldsymbol{x}_{\mathbf{5 , 1}}, \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}, x_{8,1}\right)\right\} \\
& \quad\left(x_{1,1} ; x_{2,1}, x_{3,1}, x_{4,1}, x_{6,1}\right),\left(x_{4,1} ; x_{2,1}, x_{5,1}, x_{7,1}, x_{8,1}\right) \\
& \quad\left(x_{2,1} ; x_{3,1}, x_{5,1}, x_{7,1}, x_{8,1}\right),\left(x_{6,1} ; x_{2,1}, x_{3,1}, x_{4,1}, x_{8,1}\right) .
\end{aligned}
$$

Now, we decompose the last $4 S_{5}$ into either $\left\{1 P_{5}, 3 S_{5}\right\},\left\{2 P_{5}, 2 S_{5}\right\},\left\{3 P_{5}, S_{5}\right\}$ or $\left\{4 P_{5}\right\}$ as follows:

$$
\begin{gathered}
\left\{x_{4,1} x_{5,1} x_{2,1} x_{3,1} x_{1,1},\left(x_{2,1} ; x_{1,1}, x_{6,1}, x_{7,1}, x_{8,1}\right)\right. \\
\left.\left(x_{4,1} ; x_{1,1}, x_{2,1}, x_{7,1}, x_{8,1}\right),\left(x_{6,1} ; x_{1,1}, x_{3,1}, x_{4,1}, x_{8,1}\right)\right\}
\end{gathered}
$$

$$
\begin{gathered}
\left\{x_{3,1} x_{1,1} x_{6,1} x_{8,1} x_{2,1}, x_{7,1} x_{2,1} x_{3,1} x_{6,1} x_{4,1},\right. \\
\left.\left(x_{2,1} ; x_{1,1}, x_{4,1}, x_{5,1}, x_{6,1}\right),\left(x_{4,1} ; x_{1,1}, x_{5,1}, x_{7,1}, x_{8,1}\right)\right\}, \\
\left\{x_{2,1} x_{1,1} x_{6,1} x_{4,1} x_{5,1}, x_{7,1} x_{4,1} x_{8,1} x_{6,1} x_{3,1}\right. \\
\left.x_{3,1} x_{1,1} x_{4,1} x_{2,1} x_{6,1},\left(x_{2,1} ; x_{3,1}, x_{5,1}, x_{7,1}, x_{8,1}\right)\right\} \\
\text { or } \quad\left\{x_{2,1} x_{1,1} x_{6,1} x_{4,1} x_{5,1}, x_{3,1} x_{1,1} x_{4,1} x_{2,1} x_{8,1},\right. \\
\left.x_{6,1} x_{2,1} x_{7,1} x_{4,1} x_{8,1}, x_{8,1} x_{6,1} x_{3,1} x_{2,1} x_{5,1}\right\} .
\end{gathered}
$$

Now, from $\left\{4 P_{5}\right\}$ and the paired stars given above we can obtain an even number of paths and from $\left\{3 P_{5}, S_{5}\right\}$ and the paired stars given above we can obtain an odd number of paths (see Remark 1.2).

Lemma 2.4. There exists a $(4 ; p, q)$-decomposition of $K_{10} \square K_{2}$.
Proof: Let $V\left(K_{10} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 10,1 \leq j \leq 2\right\}$. We can write $K_{10} \square K_{2}=\left(K_{6} \square K_{2}\right) \oplus\left(K_{4} \square K_{2}\right) \oplus 2 K_{6,4}$. By Lemmas 2.1 and 2.2, $K_{4} \square K_{2}$ has a $(4 ; p, q)$-decomposition with $p \geq 2$ and $K_{6} \square K_{2}$ has a ($4 ; p, q$)-decomposition with $p \neq 0$. Also, by Theorem $1.1, K_{6,4}$ has a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{10} \square K_{2}$ has a $(4 ; p, q)$-decomposition with $p \geq 3$. Now, the following $\left\{25 S_{5}\right\}$ gives us the $\left\{0 P_{5}, 25 S_{5}\right\}$ and $\left\{2 P_{5}, 23 S_{5}\right\}$-decomposition of $K_{10} \square K_{2}$ (use Remark 1.2)

$$
\begin{gathered}
\left(x_{8,1} ; x_{1,1}, x_{7,1}, x_{9,1}, x_{10,1}\right),\left(x_{9,1} ; x_{2,1}, x_{4,1}, x_{7,1}, x_{10,1}\right),\left(x_{10,1} ; x_{2,1}, x_{4,1}, x_{5,1}, x_{7,1}\right) \\
\left\{\left(x_{2,1} ; \boldsymbol{x}_{\mathbf{5 , 1}}, \boldsymbol{x}_{\mathbf{6 , 1}}, x_{4,1}, x_{2,2}\right),\left(x_{3,1} ; x_{4,1}, x_{5,1}, \boldsymbol{x}_{\mathbf{6}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{3}, 2}\right)\right\} \\
\left(x_{1,1} ; x_{5,1}, x_{6,1}, x_{9,1}, x_{1,2}\right),\left(x_{4,2} ; x_{2,2}, x_{3,2}, x_{9,2}, x_{4,1}\right),\left(x_{5,2} ; x_{1,2}, x_{2,2}, x_{3,2}, x_{5,1}\right) \\
\left(x_{6,2} ; x_{1,2}, x_{2,2}, x_{3,2}, x_{6,1}\right),\left(x_{7,2} ; x_{8,2}, x_{9,2}, x_{10,2}, x_{7,1}\right),\left(x_{8,2} ; x_{1,2}, x_{9,2}, x_{10,2}, x_{8,1}\right) \\
\quad\left(x_{9,2} ; x_{1,2}, x_{2,2}, x_{10,2}, x_{9,1}\right),\left(x_{10,2} ; x_{2,2}, x_{4,2}, x_{5,2}, x_{10,1}\right) \\
\left(x_{1, j} ; x_{3, j}, x_{4, j}, x_{7, j}, x_{10, j}\right),\left(x_{3, j} ; x_{7, j}, x_{8, j}, x_{9, j}, x_{10, j}\right),\left(x_{2, j} ; x_{1, j}, x_{3, j}, x_{8, j}, x_{7, j}\right) \\
\left(x_{4, j} ; x_{5, j}, x_{6, j}, x_{7, j}, x_{8, j}\right),\left(x_{5, j} ; x_{6, j}, x_{7, j}, x_{8, j}, x_{9, j}\right),\left(x_{6, j} ; x_{7, j}, x_{8, j}, x_{9, j}, x_{10, j}\right)
\end{gathered}
$$

$j=1,2$. For $p=1$, decompose the first $3 S_{5}$ into $\left\{P_{5}, 2 S_{5}\right\}$ as follows:

$$
\left\{x_{1,1} x_{8,1} x_{7,1} x_{10,1} x_{5,1},\left(x_{9,1} ; x_{2,1}, x_{4,1}, x_{7,1}, x_{8,1}\right),\left(x_{10,1} ; x_{2,1}, x_{4,1}, x_{8,1}, x_{9,1}\right)\right\} .
$$

This $\left\{P_{5}, 2 S_{5}\right\}$ together with the remaining stars in the above $\left\{25 S_{5}\right\}$ will give a required decomposition of $K_{10} \square K_{2}$.

Lemma 2.5. There exists a $(4 ; p, q)$-decomposition of $K_{12} \square K_{2}$.
Proof: Let $V\left(K_{12} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 12,1 \leq j \leq 2\right\}$. We can write $K_{12} \square K_{2}=G \oplus\left(K_{8} \square K_{2}\right)$, where $G=\left(K_{12} \square K_{2}\right) \backslash E\left(K_{8} \square K_{2}\right)$ and $G=\left(K_{4} \square\right.$ $\left.K_{2}\right) \oplus 2 K_{8,4}$. By Theorem 1.1 and Lemma $2.1, K_{8,4}$ has a (4; $\left.p, q\right)$-decomposition and $K_{4} \square K_{2}$ has a $(4 ; p, q)$-decomposition with $p \geq 2$. Hence by Remark 1.1, G has a $(4 ; p, q)$-decomposition with $p \geq 2$. Now, for $p=0$ we have the following $20 S_{5}$ of G

$$
\begin{gathered}
\left(x_{1,1} ; x_{2,1}, x_{11,1}, x_{12,1}, x_{1,2}\right),\left(x_{2,1} ; x_{3,1}, x_{4,1}, x_{11,1}, x_{12,1}\right), \\
\left(x_{3,1} ; x_{1,1}, x_{4,1}, x_{11,1}, x_{12,1}\right),\left(x_{4,1} ; x_{4,2}, x_{1,1}, x_{11,1}, x_{12,1}\right), \\
\left(x_{1,2} ; x_{2,2}, x_{3,2}, x_{11,2}, x_{12,2}\right),\left(x_{2,2} ; x_{2,1}, x_{3,2}, x_{11,2}, x_{12,2}\right), \\
\left(x_{3,2} ; x_{3,1}, x_{4,2}, x_{11,2}, x_{12,2}^{2}\right),\left(x_{4,2} ; x_{1,2}, x_{2,2}, x_{11,2}, x_{12,2}\right), \\
\\
\left(x_{i, j} ; x_{1, j}, x_{2, j}, x_{3, j}, x_{4, j}\right)
\end{gathered}
$$

for $5 \leq i \leq 10$ and $j=1,2$. For $p=1$, decompose the first $4 S_{5}$ into $\left\{P_{5}, 3 S_{5}\right\}$ as follows:

$$
\begin{gathered}
\left\{x_{11,1} x_{2,1} x_{12,1} x_{1,1} x_{1,2},\left(x_{1,1} ; x_{2,1}, x_{3,1}, x_{4,1}, x_{11,1}\right)\right. \\
\left.\left(x_{3,1} ; x_{2,1}, x_{4,1}, x_{11,1}, x_{12,1}\right),\left(x_{4,1} ; x_{4,2}, x_{2,1}, x_{11,1}, x_{12,1}\right)\right\} .
\end{gathered}
$$

This $\left\{P_{5}, 3 S_{5}\right\}$ together with the remaining stars in the above stars will give a required decomposition of G. Now, by Remark 1.1, $K_{12} \square K_{2}$ has a $(4 ; p, q)$ decomposition.

Lemma 2.6. There exists a $(4 ; p, q)$-decomposition of $K_{14} \square K_{2}$.
Proof: Let $V\left(K_{14} \square K_{2}\right)=\left\{x_{i, j}: 1 \leq i \leq 14,1 \leq j \leq 2\right\}$. We can write $K_{14} \square K_{2}=\left(K_{8} \square K_{2}\right) \oplus\left(K_{6} \square K_{2}\right) \oplus 2 K_{8,6}$. By Theorem 1.2 and Lemmas 2.3 and 2.2, $K_{8,6}$ and $K_{8} \square K_{2}$ each have a $(4 ; p, q)$-decomposition and $K_{6} \square K_{2}$ has a $(4 ; p, q)$-decomposition with $p \neq 0$. Hence by Remark $1.1, K_{14} \square K_{2}$ has a $(4 ; p, q)$ decomposition with $p \neq 0$. Now, consider $K_{14} \square K_{2}$ as $K_{10} \square K_{2} \oplus G$, where $G=\left(K_{14} \square K_{2}\right) \backslash E\left(K_{10} \square K_{2}\right)$. Since $K_{10} \square K_{2}$ has a (4; $\left.p, q\right)$-decomposition (by Lemma 2.4), it is enough to prove that G has a $\left\{24 S_{5}\right\}$-decomposition and the required $\left\{24 S_{5}\right\}$-decomposition is as follows:

$$
\begin{gathered}
\left(x_{1,1} ; x_{2,1}, x_{13,1}, x_{14,1}, x_{1,2}\right),\left(x_{2,1} ; x_{3,1}, x_{4,1}, x_{13,1}, x_{14,1}\right) \\
\left(x_{3,1} ; x_{1,1}, x_{4,1}, x_{13,1}, x_{14,1}\right),\left(x_{4,1} ; x_{4,2}, x_{1,1}, x_{13,1}, x_{14,1}\right) \\
\left(x_{1,2} ; x_{2,2}, x_{3,2}, x_{13,2}, x_{14,2}\right),\left(x_{2,2} ; x_{2,1}, x_{3,2}, x_{13,2}, x_{14,2}\right) \\
\left(x_{3,2} ; x_{3,1}, x_{4,2}, x_{13,2}, x_{14,2}\right),\left(x_{4,2} ; x_{1,2}, x_{2,2}, x_{13,2}, x_{14,2}\right),\left(x_{i, j} ; x_{1, j}, x_{2, j}, x_{3, j}, x_{4, j}\right)
\end{gathered}
$$

for $5 \leq i \leq 12$ and $j=1,2$. Hence $K_{14} \square K_{2}$ has a $(4 ; p, q)$-decomposition.
Lemma 2.7. There exists a $(4 ; p, q)$-decomposition of $K_{4} \square K_{4}$.
Proof: Let $V\left(K_{4} \square K_{4}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 4\right\}$. First we decompose $K_{4} \square K_{4}$ into $\left\{0 P_{5}, 12 S_{5}\right\}$ and $\left\{P_{5}, 11 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{2,3} ; x_{2,1}, x_{2,2}, x_{3,3}, x_{4,3}\right),\left(x_{4,4} ; x_{4,1}, x_{4,3}, x_{3,4}, x_{1,4}\right),\right. \\
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{1,2}, x_{1,4}\right),\left(x_{2,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{2 , \mathbf { 1 }}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, x_{4,4}\right)\right\}, \\
& \left\{\left(x_{1,2} ; x_{3,2}, x_{2,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}\right),\left(x_{3,4} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{3,3}, x_{3,2}\right)\right\} \text {, } \\
& \left\{\left(x_{1,3} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, x_{2,3}, x_{4,3}\right),\left(x_{4,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{4,2}, x_{4,3}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{4,2}\right),\left(x_{3,1} ; x_{2,1}, x_{4,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}\right)\right\}, \\
& \left.\left\{\left(x_{3,3} ; x_{3,1}, x_{3,2}, \boldsymbol{x}_{\mathbf{1 , 3}}, \boldsymbol{x}_{\mathbf{4 , 3}}\right),\left(x_{4,2} ; x_{1,2}, x_{3,2}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{4 , 4}}\right)\right\}\right\} \\
& \text { and } \quad\left\{x_{2,1} x_{2,3} x_{4,3} x_{4,4} x_{4,2},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{1,2}, x_{1,4}\right),\left(x_{2,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{2 , 1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, x_{2,2}\right)\right\}, \\
& \left\{\left(x_{1,2} ; x_{3,2}, x_{2,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}\right),\left(x_{3,4} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{3,3}, x_{3,2}\right)\right\}, \\
& \left\{\left(x_{1,3} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, x_{2,3}, x_{4,3}\right),\left(x_{4,1} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}, x_{3,1}, x_{4,3}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{4,2}\right),\left(x_{3,1} ; x_{2,1}, x_{3,3}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}\right)\right\}, \\
& \left\{\left(x_{3,3} ; x_{2,3}, x_{3,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{4 , 3}}\right),\left(x_{4,2} ; x_{1,2}, x_{3,2}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{1}}\right)\right\}, \\
& \left.\left(x_{4,4} ; x_{4,1}, x_{1,4}, x_{2,4}, x_{3,4}\right)\right\} .
\end{aligned}
$$

By Remark 1.2, we obtain a required even number of paths from $\left\{0 P_{5}, 12 S_{5}\right\}$ except $p=12$ and we obtain a required odd number of paths from $\left\{P_{5}, 11 S_{5}\right\}$. For $p=12$, the required paths are
$x_{1,4} x_{4,4} x_{4,1} x_{3,1} x_{3,2}, x_{4,4} x_{4,2} x_{3,2} x_{3,4} x_{2,4}, x_{4,4} x_{2,4} x_{2,1} x_{2,3} x_{2,2}, x_{2,2} x_{2,4} x_{2,3} x_{3,3} x_{1,3}$, $x_{2,4} x_{1,4} x_{1,1} x_{3,1} x_{3,4}, x_{1,4} x_{1,2} x_{3,2} x_{3,3} x_{3,1}, x_{3,1} x_{2,1} x_{1,1} x_{1,2} x_{1,3}, x_{2,1} x_{4,1} x_{1,1} x_{1,3} x_{2,3}$, $x_{2,3} x_{4,3} x_{1,3} x_{1,4} x_{3,4}, x_{2,1} x_{2,2} x_{4,2} x_{4,3} x_{4,4}, x_{3,2} x_{2,2} x_{1,2} x_{4,2} x_{4,1}, x_{4,1} x_{4,3} x_{3,3} x_{3,4} x_{4,4}$.

Lemma 2.8. There exists a $(4 ; p, q)$-decomposition of $K_{4} \square K_{6}$.
Proof: Let $V\left(K_{4} \square K_{6}\right)=\left\{x_{i, j}: 1 \leq i \leq 4,1 \leq j \leq 6\right\}$. First we decompose $K_{4} \square K_{6}$ into $\left\{0 P_{5}, 24 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{3,2} ; \boldsymbol{x}_{\mathbf{1 , 2}}, \boldsymbol{x}_{\mathbf{4 , 2}}, x_{3,1}, x_{3,4}\right),\left(x_{4,1} ; x_{2,1}, x_{3,1}, \boldsymbol{x}_{\mathbf{4}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{4 , 3}}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,3}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, x_{4,2}\right),\left(x_{2,6} ; x_{1,6}, \boldsymbol{x}_{\mathbf{2 , 1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{2,3}\right)\right\}, \\
& \left\{\left(x_{3,1} ; x_{2,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, x_{3,6}\right),\left(x_{3,3} ; x_{3,2}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, x_{3,6}\right)\right\}, \\
& \left\{\left(x_{4,4} ; x_{4,2}, x_{4,3}, \boldsymbol{x}_{\mathbf{4 , 1}}, \boldsymbol{x}_{\mathbf{2 , 4}}\right),\left(x_{4,5} ; x_{2,5}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{4 , 1}}, x_{4,3}\right)\right\}, \\
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{1 , 3}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, x_{4,1}, x_{1,2}\right),\left(x_{1,5} ; x_{1,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}, x_{4,5}\right)\right\}, \\
& \left\{\left(x_{3,3} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{4,3}, x_{3,1}\right),\left(x_{2,3} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, x_{4,3}\right)\right\}, \\
& \left\{\left(x_{2,4} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, x_{3,4}\right),\left(x_{3,5} ; x_{3,2}, x_{3,4}, \boldsymbol{x}_{\mathbf{3}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,2} ; x_{1,2}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, x_{2,1}\right),\left(x_{2,5} ; x_{1,5}, x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}\right)\right\}, \\
& \left\{\left(x_{4,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{4}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{4 , 6}}, x_{3,4}\right),\left(x_{3,6} ; x_{2,6}, \boldsymbol{x}_{\mathbf{3 , 2}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{6}}, x_{3,4}\right)\right\}, \\
& \left\{\left(x_{1,1} ; x_{2,1}, \boldsymbol{x}_{\mathbf{3}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}, x_{1,6}\right),\left(x_{1,4} ; x_{1,2}, x_{1,6}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}\right)\right\}, \\
& \left\{\left(x_{4,2} ; x_{1,2}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{5}}, x_{4,6}\right),\left(x_{1,3} ; x_{1,2}, x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}\right)\right\} \text {, } \\
& \left(x_{1,6} ; x_{1,2}, x_{1,5}, x_{3,6}, x_{4,6}\right),\left(x_{4,6} ; x_{2,6}, x_{4,1}, x_{4,3}, x_{4,5}\right) \text {. }
\end{aligned}
$$

By Remark 1.2, we obtain a required even number of paths from the paired stars except $p=24$. For $p=24$, the $18 P_{5}$ can be obtained from the first nine paired stars (see Remark 1.2) and the remaining paths can be obtained from the last $6 S_{5}$ as follows:

$$
\begin{aligned}
& \left\{x_{3,1} x_{1,1} x_{1,6} x_{1,4} x_{1,5}, x_{2,1} x_{1,1} x_{1,5} x_{1,6} x_{3,6}, x_{4,3} x_{4,2} x_{4,5} x_{4,6} x_{4,1},\right. \\
& \left.x_{2,6} x_{4,6} x_{1,6} x_{1,3} x_{1,4}, x_{3,4} x_{1,4} x_{1,2} x_{1,3} x_{4,3}, x_{4,3} x_{4,6} x_{4,2} x_{1,2} x_{1,6}\right\} .
\end{aligned}
$$

To get an odd number of paths we decompose the last $6 S_{5}$ into either $\left\{P_{5}, 5 S_{5}\right\}$, $\left\{3 P_{5}, 3 S_{5}\right\}$ or $\left\{5 P_{5}, S_{5}\right\}$ as follows:
$\left\{x_{1,5} x_{1,6} x_{1,2} x_{1,3} x_{4,3},\left(x_{1,6} ; x_{1,4}, x_{1,3}, x_{3,6}, x_{4,6}\right),\left(x_{4,6} ; x_{2,6}, x_{4,1}, x_{4,3}, x_{4,5}\right)\right.$
$\left.\left(x_{4,2} ; x_{1,2}, x_{4,3}, x_{4,5}, x_{4,6}\right),\left(x_{1,4} ; x_{1,2}, x_{1,3}, x_{3,4}, x_{1,5}\right),\left(x_{1,1} ; x_{2,1}, x_{3,1}, x_{1,5}, x_{1,6}\right)\right\}$,
$\quad\left\{x_{2,1} x_{1,1} x_{1,6} x_{1,3} x_{4,3}, x_{4,3} x_{4,2} x_{4,5} x_{4,6} x_{4,1}, x_{3,1} x_{1,1} x_{1,5} x_{1,6} x_{3,6}\right.$
$\left.\left(x_{1,2} ; x_{4,2}, x_{1,3}, x_{1,4}, x_{1,6}\right),\left(x_{1,4} ; x_{1,6}, x_{1,3}, x_{3,4}, x_{1,5}\right),\left(x_{4,6} ; x_{2,6}, x_{4,2}, x_{4,3}, x_{1,6}\right)\right\}$
\quad or $\quad\left\{x_{3,4} x_{1,4} x_{1,2} x_{1,3} x_{4,3}, x_{4,2} x_{1,2} x_{1,6} x_{1,3} x_{1,4}, x_{3,1} x_{1,1} x_{1,6} x_{1,4} x_{1,5}\right.$,
$\left.\quad x_{2,1} x_{1,1} x_{1,5} x_{1,6} x_{3,6}, x_{4,3} x_{4,2} x_{4,5} x_{4,6} x_{4,1},\left(x_{4,6} ; x_{2,6}, x_{4,2}, x_{4,3}, x_{1,6}\right)\right\}$.

Now, the remaining number of paths can be obtained from the first nine paired stars (see Remark 1.2). Hence $K_{4} \square K_{6}$ has a ($4 ; p, q$)-decomposition.

Lemma 2.9. There exists a $(4 ; p, q)$-decomposition of $K_{6} \square K_{6}$.
Proof: Let $V\left(K_{6} \square K_{6}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 6\right\}$. Now, we can write $K_{6} \square K_{6}=$ $\left(K_{4} \square K_{6}\right) \oplus\left(K_{2} \square K_{6}\right) \oplus 6 K_{4,2}$. By Lemma 2.8 and Theorem 1.3, $K_{4} \square K_{6}$ and $K_{4,2}$ each have a $(4 ; p, q)$-decomposition. Also, $K_{2} \square K_{6}\left(\cong K_{6} \square K_{2}\right)$ has a $(4 ; p, q)$ decomposition with $p \neq 0$, by Lemma 2.2. Hence $K_{6} \square K_{6}$ has a ($4 ; p, q$)-decomposition with $p \neq 0$. For $p=0$, we have the following $\left\{45 S_{5}\right\}$.

```
( }\mp@subsup{x}{1,1}{};\mp@subsup{x}{1,2}{,},\mp@subsup{x}{1,3}{,},\mp@subsup{x}{2,1}{,},\mp@subsup{x}{3,1}{}),(\mp@subsup{x}{1,1}{};\mp@subsup{x}{1,4}{,},\mp@subsup{x}{1,5}{,},\mp@subsup{x}{4,1}{},\mp@subsup{x}{6,1}{}),(\mp@subsup{x}{6,1}{};\mp@subsup{x}{5,1}{},\mp@subsup{x}{4,1}{},\mp@subsup{x}{6,2}{},\mp@subsup{x}{6,3}{})
( }\mp@subsup{x}{3,4}{;};\mp@subsup{x}{3,3}{,},\mp@subsup{x}{3,5}{,},\mp@subsup{x}{2,4}{,},\mp@subsup{x}{4,4}{}),(\mp@subsup{x}{6,6}{};\mp@subsup{x}{5,6}{},\mp@subsup{x}{4,6}{},\mp@subsup{x}{6,4}{},\mp@subsup{x}{6,5}{}),(\mp@subsup{x}{2,2}{};\mp@subsup{x}{2,1}{},\mp@subsup{x}{2,3}{},\mp@subsup{x}{1,2}{},\mp@subsup{x}{3,2}{})
( }\mp@subsup{x}{1,6}{};\mp@subsup{x}{1,5}{,},\mp@subsup{x}{1,4}{,},\mp@subsup{x}{2,6}{},\mp@subsup{x}{3,6}{}),(\mp@subsup{x}{4,4}{};\mp@subsup{x}{4,3}{},\mp@subsup{x}{4,5}{,},\mp@subsup{x}{6,4}{},\mp@subsup{x}{1,4}{}),(\mp@subsup{x}{6,2}{};\mp@subsup{x}{5,2}{},\mp@subsup{x}{4,2}{},\mp@subsup{x}{6,3}{},\mp@subsup{x}{6,4}{})
(x,6};\mp@subsup{x}{6,1}{},\mp@subsup{x}{6,2}{},\mp@subsup{x}{1,6}{},\mp@subsup{x}{2,6}{}),(\mp@subsup{x}{2,5}{;};\mp@subsup{x}{2,4}{,},\mp@subsup{x}{2,6}{},\mp@subsup{x}{1,5}{},\mp@subsup{x}{3,5}{}),(\mp@subsup{x}{3,4}{};\mp@subsup{x}{3,2}{},\mp@subsup{x}{3,6}{},\mp@subsup{x}{1,4}{},\mp@subsup{x}{5,4}{})
( }\mp@subsup{x}{1,6}{};\mp@subsup{x}{1,1}{,},\mp@subsup{x}{1,3}{,},\mp@subsup{x}{4,6}{},\mp@subsup{x}{5,6}{}),(\mp@subsup{x}{2,2}{};\mp@subsup{x}{2,4}{,},\mp@subsup{x}{2,6}{},\mp@subsup{x}{4,2}{},\mp@subsup{x}{6,2}{}),(\mp@subsup{x}{5,5}{};\mp@subsup{x}{5,1}{},\mp@subsup{x}{5,4}{},\mp@subsup{x}{4,5}{},\mp@subsup{x}{1,5}{})
( }\mp@subsup{x}{1,3}{};\mp@subsup{x}{1,4}{,},\mp@subsup{x}{1,5}{,},\mp@subsup{x}{3,3}{,},\mp@subsup{x}{4,3}{}),(\mp@subsup{x}{2,5}{};\mp@subsup{x}{2,2}{,},\mp@subsup{x}{2,3}{},\mp@subsup{x}{4,5}{,},\mp@subsup{x}{6,5}{}),(\mp@subsup{x}{6,4}{};\mp@subsup{x}{6,1}{},\mp@subsup{x}{6,3}{},\mp@subsup{x}{3,4}{},\mp@subsup{x}{1,4}{})
( }\mp@subsup{x}{2,1}{};\mp@subsup{x}{2,6}{},\mp@subsup{x}{2,5}{},\mp@subsup{x}{6,1}{},\mp@subsup{x}{5,1}{}),(\mp@subsup{x}{5,5}{;};\mp@subsup{x}{3,5}{},\mp@subsup{x}{2,5}{,},\mp@subsup{x}{5,2}{},\mp@subsup{x}{5,3}{}),(\mp@subsup{x}{1,2}{};\mp@subsup{x}{1,3}{},\mp@subsup{x}{1,6}{},\mp@subsup{x}{5,2}{},\mp@subsup{x}{6,2}{})
```



```
( }\mp@subsup{x}{2,3}{;}\mp@subsup{x}{1,3}{,},\mp@subsup{x}{6,3}{,},\mp@subsup{x}{2,1}{},\mp@subsup{x}{2,4}{}),(\mp@subsup{x}{3,6}{};\mp@subsup{x}{3,2}{2},\mp@subsup{x}{4,6}{},\mp@subsup{x}{5,6}{},\mp@subsup{x}{6,6}{}),(\mp@subsup{x}{5,4}{};\mp@subsup{x}{5,1}{},\mp@subsup{x}{5,2}{},\mp@subsup{x}{5,6}{},\mp@subsup{x}{6,4}{})
( }\mp@subsup{x}{5,2}{};\mp@subsup{x}{4,2}{,},\mp@subsup{x}{3,2}{,},\mp@subsup{x}{2,2}{,},\mp@subsup{x}{5,3}{)}),(\mp@subsup{x}{4,3}{};\mp@subsup{x}{4,1}{},\mp@subsup{x}{4,5}{,},\mp@subsup{x}{2,3}{},\mp@subsup{x}{6,3}{}),(\mp@subsup{x}{6,5}{};\mp@subsup{x}{6,1}{},\mp@subsup{x}{6,2}{},\mp@subsup{x}{6,4}{},\mp@subsup{x}{5,5}{})
```



```
( }\mp@subsup{x}{4,6}{};\mp@subsup{x}{4,1}{,},\mp@subsup{x}{4,2}{,},\mp@subsup{x}{4,3}{},\mp@subsup{x}{5,6}{}),(\mp@subsup{x}{3,2}{};\mp@subsup{x}{3,1}{,},\mp@subsup{x}{3,5}{,},\mp@subsup{x}{1,2}{},\mp@subsup{x}{6,2}{}),(\mp@subsup{x}{5,6}{};\mp@subsup{x}{5,1}{},\mp@subsup{x}{5,2}{},\mp@subsup{x}{5,3}{},\mp@subsup{x}{5,5}{})
( }\mp@subsup{x}{2,6}{};\mp@subsup{x}{2,3}{,},\mp@subsup{x}{3,6}{},\mp@subsup{x}{4,6}{},\mp@subsup{x}{5,6}{}),(\mp@subsup{x}{4,1}{};\mp@subsup{x}{2,1}{},\mp@subsup{x}{3,1}{},\mp@subsup{x}{5,1}{},\mp@subsup{x}{4,2}{}),(\mp@subsup{x}{5,1}{};\mp@subsup{x}{3,1}{},\mp@subsup{x}{1,1}{},\mp@subsup{x}{5,2}{},\mp@subsup{x}{5,3}{})
```

Lemma 2.10. There exists a (4; p, q)-decomposition of $K_{5} \square K_{5}$.
Proof: Let $V\left(K_{5} \square K_{5}\right)=\left\{x_{i, j}: 1 \leq i, j \leq 5\right\}$. First we decompose $K_{5} \square K_{5}$ into $\left\{0 P_{5}, 25 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; \boldsymbol{x}_{\mathbf{2 , 1}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, x_{3,1}, x_{1,5}\right),\left(x_{1,4} ; \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{1,5}, x_{5,4}\right)\right\}, \\
& \left\{\left(x_{1,1} ; x_{1,2}, \boldsymbol{x}_{\mathbf{1 , 4}}, \boldsymbol{x}_{\mathbf{4 , 1}}, x_{5,1}\right),\left(x_{2,1} ; \boldsymbol{x}_{\mathbf{3 , 1}}, \boldsymbol{x}_{\mathbf{4 , 1}}, x_{5,1}, x_{2,5}\right)\right\}, \\
& \left\{\left(x_{5,5} ; x_{1,5}, x_{2,5}, \boldsymbol{x}_{\mathbf{5 , 4}}, \boldsymbol{x}_{\mathbf{4 , 5}}\right),\left(x_{3,5} ; x_{2,5}, \boldsymbol{x}_{\mathbf{4 , 5}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{3,1}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(x_{3,3} ; \boldsymbol{x}_{\mathbf{5 , 3}}, \boldsymbol{x}_{\mathbf{3 , 2}}, x_{3,4}, x_{3,5}\right),\left(x_{3,1} ; x_{4,1}, \boldsymbol{x}_{\mathbf{5}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{2}}, x_{3,4}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2 , 3}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{2}}, x_{5,2}\right),\left(x_{1,2} ; x_{1,3}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{2}}, x_{5,2}\right)\right\}, \\
& \left\{\left(x_{3,3} ; x_{1,3}, \boldsymbol{x}_{\mathbf{2 , 3}}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, x_{3,1}\right),\left(x_{5,3} ; x_{5,1}, \boldsymbol{x}_{\mathbf{5}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}, x_{1,3}\right)\right\}, \\
& \left\{\left(x_{2,2} ; x_{1,2}, \boldsymbol{x}_{\mathbf{3 , 2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{2,5}\right),\left(x_{2,3} ; x_{2,1}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}, x_{2,5}\right)\right\}, \\
& \left\{\left(x_{4,4} ; x_{1,4}, \boldsymbol{x}_{\mathbf{4 , 2}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{5,4}\right),\left(x_{2,4} ; \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, x_{1,4}, x_{2,1}\right)\right\}, \\
& \left\{\left(x_{5,5} ; x_{5,1}, \boldsymbol{x}_{\mathbf{5 , 2}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}, x_{3,5}\right),\left(x_{5,4} ; x_{2,4}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{2}}, x_{5,1}\right)\right\}, \\
& \left\{\left(x_{3,2} ; x_{1,2}, x_{4,2}, \boldsymbol{x}_{\mathbf{3}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}\right),\left(x_{1,5} ; x_{1,3}, x_{1,2}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{3}, \mathbf{5}}\right)\right\}, \\
& \left\{\left(x_{5,2} ; x_{4,2}, x_{3,2}, \boldsymbol{x}_{\mathbf{5}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}\right),\left(x_{4,3} ; x_{4,2}, x_{2,3}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}\right)\right\}, \\
& \left(x_{4,4} ; x_{4,1}, x_{2,4}, x_{4,3}, x_{4,5}\right),\left(x_{4,5} ; x_{4,2}, x_{4,3}, x_{1,5}, x_{2,5}\right),\left(x_{4,1} ; x_{4,2}, x_{4,3}, x_{4,5}, x_{5,1}\right) \text {. }
\end{aligned}
$$

Now, we decompose the last $3 S_{5}$ into either $\left\{1 P_{5}, 2 S_{5}\right\},\left\{2 P_{5}, 1 S_{5}\right\}$ or $\left\{3 P_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{x_{2,4} x_{4,4} x_{4,3} x_{4,5} x_{4,1},\left(x_{4,5} ; x_{4,2}, x_{4,4}, x_{1,5}, x_{2,5}\right),\left(x_{4,1} ; x_{4,2}, x_{4,3}, x_{4,4}, x_{5,1}\right)\right\}, \\
& \quad\left\{x_{2,4} x_{4,4} x_{4,3} x_{4,1} x_{4,2}, x_{4,2} x_{4,5} x_{4,4} x_{4,1} x_{5,1},\left(x_{4,5} ; x_{4,1}, x_{4,3}, x_{1,5}, x_{2,5}\right)\right\} \\
& \quad \text { or } \quad\left\{x_{2,4} x_{4,4} x_{4,1} x_{4,5} x_{4,3}, x_{2,5} x_{4,5} x_{4,4} x_{4,3} x_{4,1}, x_{1,5} x_{4,5} x_{4,2} x_{4,1} x_{5,1}\right\} .
\end{aligned}
$$

Now, from $\left\{2 P_{5}, 1 S_{5}\right\}$ and the paired stars given above we can obtain an even number of paths and from $\left\{3 P_{5}\right\}$ and the paired stars given above we can obtain an odd number of paths (see Remark 1.2).

Lemma 2.11. There exists a $(4 ; p, q)$-decomposition of $K_{3} \square K_{7}$.
Proof: Let $V\left(K_{3} \square K_{7}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 7\right\}$ and $K_{7}^{i}\left(K_{3}^{j}\right.$, respectively) be a K_{7} in the $i^{\text {th }}$ row (K_{3} in the $j^{\text {th }}$ column, respectively) of $K_{3} \square K_{7}$. For $i=1,2,3$, let $F_{i}=\left\{x_{i, 1} x_{i+1,1}, \ldots, x_{i, 7} x_{i+1,7}\right\}$, where the first coordinate of the subscripts of x are taken modulo 3 with residues $1,2,3$. We can write $K_{3} \square K_{7}=G_{1} \oplus G_{2} \oplus G_{3}$, where $G_{i}=F_{i} \oplus K_{7}^{i}$. Since $G_{1} \cong G_{2} \cong G_{3}$, it is enough to prove without loss of generality that G_{1} has a $(4 ; p, q)$-decomposition. Now, G_{1} has a $(4 ; p, q)$-decomposition as follows:

1. For $p=0, q=7$, the required stars are $\left(x_{1,1} ; x_{2,1}, x_{1,2}, x_{1,3}, x_{1,4}\right)$, $\left(x_{1,2} ; x_{2,2}, x_{1,5}, x_{1,3}, x_{1,4}\right), \quad\left(x_{1,3} ; x_{2,3}, x_{1,4}, x_{1,5}, x_{1,6}\right), \quad\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$, $\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,6}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,1}, x_{1,2}, x_{1,7}\right), \quad\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
2. For $p=1, q=6$, the required path and stars are $x_{2,1} x_{1,1} x_{1,4} x_{1,3} x_{1,2}$, $\left(x_{1,2} ; x_{2,2}, x_{1,5}, x_{1,1}, x_{1,4}\right), \quad\left(x_{1,3} ; x_{2,3}, x_{1,1}, x_{1,5}, x_{1,6}\right), \quad\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$, $\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,6}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,1}, x_{1,2}, x_{1,7}\right), \quad\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
3. For $p=2, q=5$, the required paths and stars are $x_{2,1} x_{1,1} x_{1,4} x_{1,3} x_{1,2}$, $x_{2,3} x_{1,3} x_{1,1} x_{1,6} x_{1,5}, \quad\left(x_{1,2} ; x_{2,2}, x_{1,5}, x_{1,1}, x_{1,4}\right), \quad\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$, $\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7}\right), \quad\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
4. For $p=3, q=4$, the required paths and stars are $x_{2,1} x_{1,1} x_{1,4} x_{1,3} x_{1,2}$, $x_{2,3} x_{1,3} x_{1,1} x_{1,2} x_{1,4}, \quad \quad x_{1,1} x_{1,6} x_{1,5} x_{1,2} x_{2,2}, \quad\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$, $\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7}\right), \quad\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
5. For $p=4, q=3$, the required paths and stars are $x_{2,7} x_{1,7} x_{1,1} x_{1,4} x_{1,3}$, $x_{2,3} x_{1,3} x_{1,7} x_{1,2} x_{1,5}, \quad x_{2,2} x_{1,2} x_{1,1} x_{1,6} x_{1,5}, \quad x_{2,1} x_{1,1} x_{1,3} x_{1,2} x_{1,4}$, $\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right), \quad\left(x_{1,5} ; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7}\right), \quad\left(x_{1,6} ; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7}\right)$.
6. For $p=5, q=2$, the required paths and stars are $x_{2,1} x_{1,1} x_{1,4} x_{1,3} x_{1,2}$, $x_{2,3} x_{1,3} x_{1,1} x_{1,2} x_{1,4}, x_{1,1} x_{1,6} x_{1,5} x_{1,2} x_{2,2}, x_{2,5} x_{1,5} x_{1,7} x_{1,6} x_{1,2}, x_{2,6} x_{1,6} x_{1,3} x_{1,5} x_{1,1}$, $\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right),\left(x_{1,7} ; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2}\right)$.
7. For $p=6, q=1$, the require paths and stars are $x_{2,7} x_{1,7} x_{1,1} x_{1,4} x_{1,3}$, $x_{2,3} x_{1,3} x_{1,7} x_{1,2} x_{1,5}, x_{2,2} x_{1,2} x_{1,1} x_{1,6} x_{1,5}, x_{2,1} x_{1,1} x_{1,3} x_{1,2} x_{1,4}, x_{2,5} x_{1,5} x_{1,7} x_{1,6} x_{1,2}$, $x_{2,6} x_{1,6} x_{1,3} x_{1,5} x_{1,1},\left(x_{1,4} ; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5}\right)$.
8. For $p=7, q=0$, the required paths are $x_{2,1} x_{1,1} x_{1,2} x_{1,3} x_{1,4}$, $x_{2,2} x_{1,2} x_{1,4} x_{1,6} x_{1,7}, x_{2,3} x_{1,3} x_{1,1} x_{1,7} x_{1,5}, x_{2,4} x_{1,4} x_{1,1} x_{1,5} x_{1,3}, x_{2,5} x_{1,5} x_{1,2} x_{1,6} x_{1,1}$, $x_{2,6} x_{1,6} x_{1,3} x_{1,7} x_{1,2}, x_{2,7} x_{1,7} x_{1,4} x_{1,5} x_{1,6}$.

Hence by Remark 1.1, $K_{3} \square K_{7}$ has a $(4 ; p, q)$-decomposition.
Lemma 2.12. There exists a $(4 ; p, q)$-decomposition of $K_{3} \square K_{8}$.
Proof: Let $V\left(K_{3} \square K_{8}\right)=\left\{x_{i, j}: 1 \leq i \leq 3,1 \leq j \leq 8\right\}$ and $K_{8}^{i}\left(K_{3}^{j}\right.$, respectively) be a K_{8} in the $i^{\text {th }}$ row (K_{3} in the $j^{\text {th }}$ column, respectively) of $K_{3} \square K_{8}$. For $i=1,2,3$, let $F_{i}=\left\{x_{i, 1} x_{i+1,1}, \ldots, x_{i, 8} x_{i+1,8}\right\}$, where the first subscripts of x are taken modulo 3 with residues $1,2,3$. We can write $K_{3} \square K_{8}=G_{1} \oplus G_{2} \oplus G_{3}$, where $G_{i}=F_{i} \oplus K_{8}^{i}$. Since $G_{1} \cong G_{2} \cong G_{3}$, it is enough to prove without loss of generality that G_{1} has a $(4 ; p, q)$-decomposition. Now,

$$
G_{1}=F_{1}^{\prime} \oplus K_{7}^{1} \oplus\left(x_{1,8} ; x_{2,8}, x_{1,1}, x_{1,3}, x_{1,2}\right) \oplus\left(x_{1,8} ; x_{1,4}, x_{1,5}, x_{1,6}, x_{1,7}\right)
$$

where $F_{1}^{\prime}=\left\{x_{i, 1} x_{i+1,1}, \ldots, x_{i, 7} x_{i+1,7}\right\}$ and it has a (4; p, q)-decomposition except for the values $p=8$ and 9 (see Lemma 2.11). For $p=8,9$, we have the following sets of paths and stars:

$$
\begin{gathered}
\left\{x_{2,1} x_{1,1} x_{1,2} x_{1,3} x_{1,4}, x_{2,2} x_{1,2} x_{1,4} x_{1,6} x_{1,7}, x_{2,3} x_{1,3} x_{1,1} x_{1,7} x_{1,5},\right. \\
x_{2,4} x_{1,4} x_{1,1} x_{1,5} x_{1,3}, x_{1,2} x_{1,6} x_{1,1} x_{1,8} x_{2,8}, x_{2,5} x_{1,5} x_{1,2} x_{1,8} x_{1,3}, \\
\left.x_{2,6} x_{1,6} x_{1,3} x_{1,7} x_{1,2}, x_{2,7} x_{1,7} x_{1,4} x_{1,5} x_{1,6},\left(x_{1,8} ; x_{1,4}, x_{1,5}, x_{1,6}, x_{1,7}\right)\right\} \\
\text { and } \quad\left\{x_{2,1} x_{1,1} x_{1,2} x_{1,3} x_{1,4}, x_{2,3} x_{1,3} x_{1,1} x_{1,7} x_{1,5}, x_{2,4} x_{1,4} x_{1,1} x_{1,5} x_{1,3},\right. \\
x_{1,2} x_{1,6} x_{1,1} x_{1,8} x_{2,8}, x_{2,5} x_{1,5} x_{1,2} x_{1,8} x_{1,3}, x_{2,6} x_{1,6} x_{1,3} x_{1,7} x_{1,2}, \\
\left.x_{1,5} x_{1,8} x_{1,6} x_{1,7} x_{2,7}, x_{1,4} x_{1,8} x_{1,7} x_{1,4} x_{1,5}, x_{2,2} x_{1,2} x_{1,4} x_{1,6} x_{1,5}\right\} .
\end{gathered}
$$

Hence by Remark 1.1, $K_{3} \square K_{8}$ has a $(4 ; p, q)$-decomposition.
Lemma 2.13. There exists a $(4 ; p, q)$-decomposition of $K_{5} \square K_{8}$.
Proof: Let $V\left(K_{5} \square K_{8}\right)=\left\{x_{i, j}: 1 \leq i \leq 5,1 \leq j \leq 8\right\}$. We can write $K_{5} \square K_{8}=$ $\left(K_{5} \square K_{8} \backslash E\left(K_{3} \square K_{8}\right)\right) \oplus\left(K_{3} \square K_{8}\right)$. First we decompose $\left(K_{5} \square K_{8}\right) \backslash E\left(K_{3} \square K_{8}\right)$ into $\left\{0 P_{5}, 28 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{\left(x_{1,1} ; x_{3,1}, \boldsymbol{x}_{\mathbf{4}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{1}}, x_{1,2}\right),\left(x_{2,1} ; x_{3,1}, x_{4,1}, \boldsymbol{x}_{\mathbf{5}, \mathbf{1}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{8}}\right)\right\}, \\
& \left\{\left(x_{1,2} ; x_{3,2}, \boldsymbol{x}_{\mathbf{4 , 2}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{2}}, x_{1,3}\right),\left(x_{2,2} ; x_{3,2}, x_{4,2}, \boldsymbol{x}_{\mathbf{5}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,3} ; x_{3,3}, \boldsymbol{x}_{\mathbf{4}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}, x_{1,4}\right),\left(x_{2,3} ; x_{3,3}, x_{4,3}, \boldsymbol{x}_{\mathbf{5}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,4} ; x_{3,4}, \boldsymbol{x}_{\mathbf{4}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{4}}, x_{1,5}\right),\left(x_{2,4} ; x_{3,4}, x_{4,4}, \boldsymbol{x}_{\mathbf{5}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{2 , 5}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,5} ; x_{3,5}, \boldsymbol{x}_{\mathbf{4}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{5}}, x_{1,6}\right),\left(x_{2,5} ; x_{3,5}, x_{4,5}, \boldsymbol{x}_{\mathbf{5}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{2}, \boldsymbol{7}}\right)\right\}, \\
& \left\{\left(x_{1,6} ; x_{3,6}, \boldsymbol{x}_{\mathbf{4}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{6}}, x_{1,7}\right),\left(x_{2,6} ; x_{3,6}, x_{4,6}, \boldsymbol{x}_{\mathbf{5}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{1}}\right)\right\}, \\
& \left\{\left(x_{1,7} ; x_{3,7}, \boldsymbol{x}_{\mathbf{4}, \boldsymbol{7}}, \boldsymbol{x}_{\mathbf{5}, \boldsymbol{7}}, x_{1,8}\right),\left(x_{2,7} ; x_{3,7}, x_{4,7}, \boldsymbol{x}_{\mathbf{5}, \boldsymbol{7}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,8} ; x_{3,8}, \boldsymbol{x}_{\mathbf{4}, \mathbf{8}}, \boldsymbol{x}_{\mathbf{5}, \mathbf{8}}, x_{1,1}\right),\left(x_{2,8} ; x_{3,8}, x_{4,8}, \boldsymbol{x}_{\mathbf{5}, \mathbf{8}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,7} ; x_{1,2}, \boldsymbol{x}_{\mathbf{1}, \mathbf{3}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, x_{1,5}\right),\left(x_{1,8} ; x_{1,2}, x_{1,3}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}\right)\right\}, \\
& \left\{\left(x_{1,2} ; x_{1,5}, \boldsymbol{x}_{\mathbf{1}, \mathbf{4}}, \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, x_{2,2}\right),\left(x_{1,3} ; x_{1,1}, x_{1,5}, \boldsymbol{x}_{\mathbf{1}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{3}}\right)\right\}, \\
& \left\{\left(x_{1,1} ; x_{1,4}, \boldsymbol{x}_{\mathbf{1}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{1}, \boldsymbol{7}}, x_{2,1}\right),\left(x_{2,7} ; x_{2,1}, x_{2,4}, \boldsymbol{x}_{\mathbf{1}, \boldsymbol{7}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{8}}\right)\right\} \text {, } \\
& \left\{\left(x_{1,6} ; x_{1,1}, \boldsymbol{x}_{1, \mathbf{4}}, \boldsymbol{x}_{1,8}, x_{2,6}\right),\left(x_{2,8} ; x_{2,3}, x_{2,6}, \boldsymbol{x}_{\mathbf{1}, \mathbf{8}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{4}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,4} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{2}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, x_{1,4}\right),\left(x_{2,5} ; x_{2,1}, x_{2,8}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{1 , 5}}\right)\right\} \text {, } \\
& \left\{\left(x_{2,2} ; x_{2,1}, \boldsymbol{x}_{\mathbf{2}, \mathbf{5}}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, x_{2,7}\right),\left(x_{2,3} ; x_{2,1}, x_{2,5}, \boldsymbol{x}_{\mathbf{2}, \mathbf{6}}, \boldsymbol{x}_{\mathbf{2}, \boldsymbol{7}}\right)\right\} \text {. }
\end{aligned}
$$

By Remark 1.2, we obtain a required even number of paths and stars from the paired stars given above. To obtain an odd number of paths consider the last $4 S_{5}$ and decompose it into either $\left\{1 P_{5}, 3 S_{5}\right\}$ or $\left\{3 P_{5}, 1 S_{5}\right\}$ as follows:

$$
\begin{aligned}
& \left\{x_{1,4} x_{2,4} x_{2,2} x_{2,7} x_{2,3},\left(x_{2,1} ; x_{2,4}, x_{2,2}, x_{2,3}, x_{2,5}\right)\right. \\
& \left.\left(x_{2,6} ; x_{2,2}, x_{2,3}, x_{2,4}, x_{2,5}\right),\left(x_{2,5} ; x_{2,2}, x_{2,3}, x_{2,8}, x_{1,5}\right)\right\} \\
& \text { or } \quad\left\{x_{1,4} x_{2,4} x_{2,2} x_{2,7} x_{2,3}, x_{2,3} x_{2,6} x_{2,2} x_{2,1} x_{2,4}\right. \\
& \left.x_{2,3} x_{2,1} x_{2,5} x_{2,6} x_{2,4},\left(x_{2,5} ; x_{2,2}, x_{2,3}, x_{2,8}, x_{1,5}\right)\right\} .
\end{aligned}
$$

The remaining choices for odd number of paths can be obtained from the remaining paired stars (see Remark 1.2). Also, by Lemma 2.12, $K_{3} \square K_{8}$ has a $(4 ; p, q)$ decomposition. Hence by Remark 1.1, $K_{5} \square K_{8}$ has a ($4 ; p, q$)-decomposition.

Lemma 2.14. There exists a $(4 ; p, q)$-decomposition of $K_{7} \square K_{8}$.
Proof: Let $V\left(K_{7} \square K_{8}\right)=\left\{x_{i, j}: 1 \leq i \leq 7,1 \leq j \leq 8\right\}$. We can write $K_{7} \square K_{8}=$ $\left(K_{7} \square K_{8} \backslash E\left(K_{2} \square K_{8}\right)\right) \oplus\left(K_{2} \square K_{8}\right)$ and $\left(K_{7} \square K_{8}\right) \backslash E\left(K_{2} \square K_{8}\right)=8\left(K_{7} \backslash E\left(K_{2}\right)\right) \oplus$ $5 K_{8}$. By Lemma 2.3 and Example 1.1, $K_{2} \square K_{8}\left(\cong K_{8} \square K_{2}\right)$ and K_{8} have a $(4 ; p, q)$ decomposition. So, it is enough to prove that $K_{7} \backslash E\left(K_{2}\right)$ has a $(4 ; p, q)$-decomposition Let $V\left(K_{7}\right)=\left\{x_{i}: 1 \leq i \leq 7\right\}$. Now, $K_{7} \backslash E\left(K_{2}\right)$ has a ($4 ; p, q$)-decomposition as follows:

1. For $p=0, q=5$, the required stars are $\left(x_{1} ; x_{4}, x_{5}, x_{6}, x_{7}\right),\left(x_{2} ; x_{1}, x_{5}, x_{6}, x_{7}\right)$, $\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right),\left(x_{4} ; x_{2}, x_{3}, x_{6}, x_{7}\right),\left(x_{5} ; x_{3}, x_{4}, x_{6}, x_{7}\right)$.
2. For $p=1, q=4$, the required paths and stars are $x_{6} x_{1} x_{7} x_{5} x_{2}$,
$\left(x_{2} ; x_{1}, x_{4}, x_{6}, x_{7}\right),\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right),\left(x_{4} ; x_{1}, x_{3}, x_{6}, x_{7}\right),\left(x_{5} ; x_{3}, x_{4}, x_{6}, x_{1}\right)$.
3. For $p=2, q=3$, the required paths and stars are $x_{1} x_{4} x_{7} x_{5} x_{2}, x_{3} x_{4} x_{6} x_{1} x_{7}$, $\left(x_{2} ; x_{1}, x_{4}, x_{6}, x_{7}\right),\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right),\left(x_{5} ; x_{3}, x_{4}, x_{6}, x_{1}\right)$.
4. For $p=3, q=2$, the required paths and stars are $x_{6} x_{1} x_{7} x_{5} x_{2}, x_{3} x_{5} x_{4} x_{2} x_{6}$, $x_{6} x_{5} x_{1} x_{2} x_{7},\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right),\left(x_{4} ; x_{1}, x_{3}, x_{6}, x_{7}\right)$.
5. For $p=4, q=1$, the required paths and stars are $x_{1} x_{4} x_{7} x_{5} x_{2}, x_{3} x_{4} x_{6} x_{1} x_{7}$, $x_{3} x_{5} x_{4} x_{2} x_{6}, x_{6} x_{5} x_{1} x_{2} x_{7},\left(x_{3} ; x_{1}, x_{2}, x_{6}, x_{7}\right)$.
6. For $p=5, q=0$, the required paths are $x_{2} x_{3} x_{1} x_{4} x_{7}, x_{6} x_{3} x_{7} x_{5} x_{2}$, $x_{3} x_{4} x_{6} x_{1} x_{7}, x_{3} x_{5} x_{4} x_{2} x_{6}, x_{6} x_{5} x_{1} x_{2} x_{7}$.

Lemma 2.15. There exists a $(4 ; p, q)$-decomposition of $K_{n} \backslash E\left(K_{i}\right)$, when $n \equiv$ $i(\bmod 8), i \in\{3,5,7\}$.

Proof: Let $n \equiv i(\bmod 8)$ and $n=8 k+i$, where k is a positive integer and $i \in\{3,5,7\}$. The graph $K_{n} \backslash E\left(K_{i}\right)$ can be viewed as edge-disjoint union of $K_{8 k}$ and $K_{8 k, i}$. By Theorems 1.2 to 1.4 , both the graphs $K_{8 k}$ and $K_{8 k, i}$ have a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, the graph $K_{n} \backslash E\left(K_{i}\right)$ has a $(4 ; p, q)$-decomposition.

Theorem 2.1. $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition if and only if $m n(m+$ $n-2) \equiv 0(\bmod 8)$.

Proof: Necessity. Since $K_{m} \square K_{n}$ is $(m+n-2)$-regular and has $m n$ vertices, $K_{m} \square K_{n}$ has $m n(m+n-2) / 2$ edges. Now, assume that $K_{m} \square K_{n}$ has a $(4 ; p, q)-$ decomposition. Then the number of edges in the graph must be divisible by 4, i.e., $8 \mid m n(m+n-2)$ and hence $m n(m+n-2) \equiv 0(\bmod 8)$, this condition is satisfied precisely when one of the following holds: (i) $m, n \equiv 0(\bmod 2)$, (ii) $m, n \equiv$ $1(\bmod 8),($ iii $) m, n \equiv 5(\bmod 8),($ iv $) m \equiv 3(\bmod 8), n \equiv 7(\bmod 8),(\mathrm{v}) m \equiv$ $0(\bmod 8), n \equiv 1(\bmod 2)$.
Sufficiency. We construct the required decomposition in five cases.
Case 1. Let $m, n \equiv 0(\bmod 2)$. We construct the required decomposition in three subcases separately.
(a) Let $m, n \equiv 0(\bmod 4)$. Let $m=4 k$ and $n=4 l, k, l \in \mathbb{Z}^{+}$. We can write $K_{m} \square K_{n}=k l\left(K_{4} \square K_{4}\right) \oplus 2 k l(l+k-2) K_{4,4}$. By Lemma 2.7 and Theorem 1.1, $K_{4} \square K_{4}$ and $K_{4,4}$ each have a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.
(b) Let $m \equiv 0(\bmod 4), n \equiv 2(\bmod 4)$. When $n=2$, by Lemmas 2.1, 2.3 and $2.5, K_{m} \square K_{2}$ has a $(4 ; p, q)$-decomposition for $m=4,8,12$. If $m>12$, and $m \equiv 0(\bmod 8)$, let $m=8 k, k>1$, be an integer. Then $K_{m} \square K_{2}=$ $k\left(K_{8} \square K_{2}\right) \oplus k(k-1) K_{8,8}$. By Lemma 2.3 and Theorem 1.2, $K_{8} \square K_{2}$ and $K_{8,8}$ each have a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$ decomposition. If $m \equiv 4(\bmod 8)$, let $m=8 k+12, k \in \mathbb{Z}^{+}$. Then $K_{m} \square K_{2}=$ $\left(K_{8 k} \square K_{2}\right) \oplus\left(K_{12} \square K_{2}\right) \oplus 2 K_{8 k, 12}$. By Lemma 2.5 and Theorem $1.2, K_{12} \square K_{2}$ and $K_{8 k, 12}$ each have a $(4 ; p, q)$-decomposition. Also, we proved that $K_{8 k} \square K_{2}$

Figure 1. $K_{m} \square K_{n}$.
has a $(4 ; p, q)$-decomposition in this case. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

When $n=6$, let $m=4 k, k \in \mathbb{Z}^{+}$. Then $K_{m} \square K_{n}=k\left(K_{4} \square K_{6}\right) \oplus$ $3 k(k-1) K_{4,4}$. By Lemma 2.8 and Theorem 1.1, $K_{4} \square K_{6}$ and $K_{4,4}$ each have a (4; p,q)-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (4; p, q)-decomposition.

When $n>6$, let $m=4 k$ and $n=4 l+2, k, l \in \mathbb{Z}^{+}$. Then $K_{m} \square K_{n}=$ $\left(K_{4 k} \square K_{4(l-1)}\right) \oplus\left(K_{4 k} \square K_{6}\right) \oplus 4 k K_{4(l-1), 6}$. By Case 1 (a), $K_{4 k} \square K_{4(l-1)}$ has a $(4 ; p, q)$-decomposition. Also, we proved that $K_{4 k} \square K_{6}$ has a $(4 ; p, q)$-decomposition in this case. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.
(c) Let $m, n \equiv 2(\bmod 4)$. When $n=2$, clearly there is no $(4 ; p, q)$-decomposition for $K_{2} \square K_{2}$ and hence $m>2$. By Lemmas 2.2, 2.4 and 2.6, $K_{6} \square K_{2}$, $K_{10} \square K_{2}$ and $K_{14} \square K_{2}$ each have a ($4 ; p, q$)-decomposition.

Figure 2. $K_{m} \square K_{n}$.

For $m>14$, let $m=4 k+2, k>3$, be an integer. Then $K_{m} \square K_{2}=$ $\left(K_{4(k-2)} \square K_{2}\right) \oplus\left(K_{10} \square K_{2}\right) \oplus K_{4(k-2), 10}$. By Lemma 2.4, Case 1 (b) and Theorem 1.2, $K_{10} \square K_{2}, K_{4(k-2)} \square K_{2}$ and $K_{4(k-2), 10}$ each have a (4;p,q)-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

When $n=6$, since $K_{2} \square K_{6}\left(\cong K_{6} \square K_{2}\right)$ and $K_{6} \square K_{6}$ (by Lemmas 2.2, 2.9) each have a $(4 ; p, q)$-decomposition, $m>6$. Let $m=4 k+2, k>1$, be an integer, then $K_{m} \square K_{6}=\left(K_{4(k-1)} \square K_{6}\right) \oplus\left(K_{6} \square K_{6}\right) \oplus 6 K_{4(k-1), 6}$. By Lemma 2.9, Case 1 (b) and Theorems 1.1 and $1.2, K_{6} \square K_{6}, K_{4(k-1)} \square K_{6}$ and $K_{4(k-1), 6}$ each have a $(4 ; p, q)$ decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.

When $m, n>6$, let $m=4 k+2$ and $n=4 l+2, k, l>1$ are integers. We can write $K_{m} \square K_{n}=\left(K_{4 k+2} \square K_{4(l-1)}\right) \oplus\left(K_{4 k+2} \square K_{6}\right) \oplus(4 k+2) K_{4(l-1), 6}=$ $\left(K_{4 k+2} \square K_{4(l-1)}\right) \oplus(k-1)\left(K_{4} \square K_{6}\right) \oplus\left(K_{6} \square K_{6}\right) \oplus 3(k-1)(k-2) K_{4,4} \oplus 6(k-1) K_{4,6} \oplus$ $(4 k+2) K_{4(l-1), 6}$. By Lemmas 2.8 and 2.9 and Theorems 1.1 and $1.2, K_{4} \square K_{6}$, $K_{6} \square K_{6}, K_{4,6}, K_{4(l-1), 6}$ and $K_{4,4}$ each have a $(4 ; p, q)$-decomposition. Also by Case 1 (b), $K_{4 k+2} \square K_{4(l-1)}$ has a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a (4; p, q)-decomposition.

Case 2. Let $m, n \equiv 1(\bmod 8)$. We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}$. By Theorem 1.4, K_{m} and K_{n} each have a $(4 ; p, q)$-decomposition whenever $m, n \geq 16$. Hence by Example 1.2 and Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

Case 3. Let $m, n \equiv 5(\bmod 8)$. Let $m=8 k+5$ and $n=8 l+5, k, l \geq 0$, be integers. We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}=8 l\left(K_{m} \backslash E\left(K_{5}\right)\right) \oplus 8 k\left(K_{n} \backslash E\left(K_{5}\right)\right) \oplus$ $k\left(K_{8} \square K_{5}\right) \oplus l\left(K_{5} \square K_{8}\right) \oplus \frac{5}{2}(k(k-1)+l(l-1)) K_{8,8} \oplus\left(K_{5} \square K_{5}\right) \oplus 5(k+l) K_{8,5}$ (see Figure 1 with $i=j=5$). By Theorem 1.2 and Lemmas 2.10, 2.13 and 2.15, $K_{8,8}, K_{8,5}, K_{m} \backslash E\left(K_{5}\right), K_{n} \backslash E\left(K_{5}\right), K_{5} \square K_{8}$ and $K_{5} \square K_{5}$ each have a $(4 ; p, q)$ decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.

Case 4. Let $m \equiv 3(\bmod 8), n \equiv 7(\bmod 8)$. Let $m=8 k+3, n=8 l+7$, $k, l \geq 0$, are integers. We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}=8 k\left(K_{n} \backslash E\left(K_{7}\right)\right) \oplus$ $8 l\left(K_{m} \backslash E\left(K_{3}\right)\right) \oplus l\left(K_{3} \square K_{8}\right) \oplus k\left(K_{7} \square K_{8}\right) \oplus((3 l(l-1)+7 k(k-1)) / 2) K_{8,8} \oplus$ $\left(K_{3} \square K_{7}\right) \oplus 7 k K_{8,3} \oplus 3 l K_{8,7}$ (refer Figure 1 with $i=3, j=7$). By Lemmas 2.11, 2.12 and 2.14 and Theorems 1.2 and $1.3, K_{3} \square K_{8}, K_{7} \square K_{8}, K_{3} \square K_{7}, K_{8,3}, K_{8,7}$ and $K_{8,8}$ each have a $(4 ; p, q)$-decomposition. Also by Lemma $2.15, K_{m} \backslash E\left(K_{3}\right)$ and $K_{n} \backslash E\left(K_{7}\right)$ each have a $(4 ; p, q)$-decomposition. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

Case 5. Let $m \equiv 0(\bmod 8), n \equiv 1(\bmod 2)$. If $n \equiv 1(\bmod 8)$, then K_{m} and K_{n} each have a $(4 ; p, q)$-decomposition, by Theorem 1.4 and Examples 1.1 and 1.2. Hence by Remark 1.1, $K_{m} \square K_{n}$ has a ($4 ; p, q$)-decomposition.

When $n \equiv i(\bmod 8)$ with $i=3,5,7$, let $m=8 k, k \in \mathbb{Z}^{+}$. We can write $K_{m} \square K_{n}=n K_{m} \oplus m K_{n}=(n-i) K_{m} \oplus k\left(K_{8} \square K_{i}\right) \oplus i(k(k-1) / 2) K_{8,8} \oplus$ $m\left(K_{n} \backslash E\left(K_{i}\right)\right), i \in\{3,5,7\}$ (see Figure 2). By Lemmas 2.12 to 2.15, Theorem 1.2 and Remark 1.1, $K_{m} \square K_{n}$ has a $(4 ; p, q)$-decomposition.

References

[1] Abueida A. A., Daven M., Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003), no. 4, 433-447.
[2] Abueida A. A., Daven M., Multidecompositions of the complete graph, Ars Combin. 72 (2004), 17-22.
[3] Abueida A. A., Daven M., Roblee K. J., Multidesigns of the λ-fold complete graph for graphpairs of orders 4 and 5, Australas. J. Combin. 32 (2005), 125-136.
[4] Abueida A. A., O'Neil T., Multidecomposition of λK_{m} into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007), 32-40.
[5] Bondy J. A., Murty U. S. R., Graph Theory with Applications, American Elsevier Publishing, New York, 1976.
[6] Ezhilarasi A. P., Muthusamy A., Decomposition of product graphs into paths and stars with three edges, Bull. Inst. Combin. Appl. 87 (2019), 47-74.
[7] Jeevadoss S., Muthusamy A., Decomposition of product graphs into paths and cycles of length four, Graphs Combin. 32 (2016), 199-223.
[8] Priyadharsini H. M., Muthusamy A., $\left(G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda)$, Bull. Inst. Combin. Appl. 66 (2012), 42-48.
[9] Shyu T.-W., Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010), no. 15-16, 2164-2169.
[10] Shyu T.-W., Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013), no. 7, 865-871.

A. P. Ezhilarasi, A. Muthusamy:
Department of Mathematics, Periyar University, Salem-11, Tamil Nadu 636011, India
E-mail: post2pauline@gmail.com
E-mail: appumuthusamy@gmail.com

[^0]: DOI 10.14712/1213-7243.2021.024
 The authors thank the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/ SR/ S4/ MS:828/13. Also, the second author thank the University Grants Commission for its support through the Grant No. F.510/7/DRS-I/2016(SAP-I).

