Decomposition of Cartesian product of complete graphs into paths and stars with four edges

Arockiajeyaraj P. Ezhilarasi, Appu Muthusamy

Abstract. Let P_k and S_k denote a path and a star, respectively, on k vertices. We give necessary and sufficient conditions for the existence of a complete $\{P_5, S_5\}$ -decomposition of Cartesian product of complete graphs.

Keywords: graph decomposition; path; star graph; product graph

Classification: 05C51, 05C70

1. Introduction

Unless stated otherwise, all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology, the readers are referred to J. A. Bondy and U. S. R. Murty, see [5]. Let P_k, S_k, C_k, K_k denote a path, star, cycle and complete graph, respectively, on k vertices, and let $K_{m,n}$ denote the complete bipartite graph containing m vertices in one partite set and n vertices in the other partite set. A graph whose vertex set is partitioned into subsets V_1, \ldots, V_t with edge set $\bigcup_{i \neq j \in [t]} V_i \times V_j$ is a complete t-partite graph, denoted by K_{n_1,\ldots,n_t} , when $|V_i| = n_i$ for all i. For $G = K_{2n}$ or $K_{n,n}$, the graph G - I denotes G with a 1-factor I removed. For any integer $\lambda > 0$, λG and $G(\lambda)$ respectively denote the graph consisting of λ edge-disjoint copies of G and a multigraph G with uniform edge multiplicity λ . Moreover v(G) and $\varepsilon(G)$ denote the number of vertices and number, respectively, of edges in G. The complement of the graph G is denoted by \overline{G} . For two graphs G and H, we define their Cartesian product, denoted by $G \Box H$, with vertex set $V(G \Box H) = V(G) \times V(H)$ and edge set

$$E(G \Box H) = \{(g,h)(g',h') \colon g = g', hh' \in E(H), \text{ or } gg' \in E(G), h = h'\}.$$

DOI 10.14712/1213-7243.2021.024

The authors thank the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/ SR/ S4/ MS:828/13. Also, the second author thank the University Grants Commission for its support through the Grant No. F.510/7/DRS-I/2016(SAP-I).

It is well known that the Cartesian product is commutative and associative. For a graph G, if E(G) can be partitioned into E_1, \ldots, E_k such that the subgraph of G induced by E_i is H_i for all $1 \le i \le k$, then we say that H_1, \ldots, H_k decompose G, and we write $G = H_1 \oplus \cdots \oplus H_k$, since H_1, \ldots, H_k are edge-disjoint subgraphs of G. If for $1 \le i \le k$, $H_i \cong H$, we say that G has a H-decomposition. If G has a decomposition into p copies of H_1 and q copies of H_2 , then we say that G has a $\{pH_1, qH_2\}$ -decomposition. If such a decomposition exists for all values of p and q satisfying trivial necessary conditions, then we say that G has a $\{H_1, H_2\}_{\{p,q\}}$ -decomposition or has a complete $\{H_1, H_2\}$ -decomposition.

Study on $\{H_1, H_2\}_{\{p,q\}}$ -decomposition of graphs is not new. A. A. Abueida et al. in [1], [3] completely determined the values of n for which $K_n(\lambda)$ admits a $\{pH_1, qH_2\}$ -decomposition such that $H_1 \cup H_2 \cong K_t$, when $\lambda \ge 1$ and $|V(H_1)| =$ $|V(H_2)| = t$, where $t \in \{4, 5\}$. A. A. Abueida and M. Daven in [2] proved that there exists a $\{pK_k, qS_{k+1}\}$ -decomposition of K_n for $k \ge 3$ and $n \equiv 0, 1 \pmod{k}$. A. A. Abueida and T. O'Neil in [4] proved that for $k \in \{3, 4, 5\}$, there exists a $\{pC_k, qS_k\}$ -decomposition of $K_n(\lambda)$, whenever $n \geq k+1$ except for the ordered triples $(k, n, \lambda) \in \{(3, 4, 1), (4, 5, 1), (5, 6, 1), (5, 6, 2), (5, 6, 4), (5, 7, 1), (5, 8, 1)\}$. T.-W. Shyu in [9], [10] obtained a necessary and sufficient condition on (p,q)for the existence of $\{P_4, S_4\}_{\{p,q\}}$ -decomposition of K_n and $K_{m,n}$. H. M. Priyadharsini and A. Muthusamy in [8] established necessary and sufficient conditions for the existence of the (G_n, H_n) -multidecomposition of $K_n(\lambda)$, where $G_n, H_n \in$ $\{C_n, P_{n-1}, S_{n-1}\}$. A.P. Ezhilarasi and A. Muthusamy in [6] have obtained necessary and sufficient conditions for the existence of a decomposition of product graphs into paths and stars with three edges. S. Jeevadoss and A. Muthusamy in [7] have obtained necessary and sufficient conditions for $\{P_5, C_4\}_{\{p,q\}}$ -decomposition of product graphs.

In this paper, we show that the necessary condition $mn(m+n-2) \equiv 0 \pmod{8}$ is sufficient for the existence of a complete $\{P_5, S_5\}$ -decomposition of $K_m \Box K_n$.

Notations. A star S_{k+1} with center at x_0 and end vertices x_1, \ldots, x_k is denoted by $(x_0; x_1, \ldots, x_k)$ and a path on k+1 vertices x_0, x_1, \ldots, x_k is denoted by $x_0x_1 \cdots x_k$. We abbreviate the complete $\{P_{k+1}, S_{k+1}\}$ -decomposition as (4; p, q)-decomposition. In a (4; p, q)-decomposition of a graph G, we mean p and q are integers with $0 \le p, q \le \varepsilon(G)/4$ and $p+q = \varepsilon(G)/4$.

To prove our results we state the following:

Theorem 1.1 ([10]). Let $p, q \ge 0, m \ge k > 0$, be integers. There exists a (k; p, q)-decomposition of $K_{k,m}$ if and only if the following conditions are fulfilled:

- 1. $k(p+q) = \varepsilon(K_{k,m});$
- 2. $p \leq \left\lceil \frac{k}{2} \right\rceil 1 \Rightarrow (p \equiv 0 \pmod{2}) \land m \geq k + p);$
- 3. $\left(\left\lceil \frac{k}{2} \right\rceil \le p \le k 1 \land k \equiv 1 \pmod{2} \land p \equiv 1 \pmod{2}\right) \Rightarrow m \ge k + 1.$

Theorem 1.2 ([10]). Let $p, q \ge 0$, and m > k > 0, $n \ge 2$, be integers. There exists a (k; p, q)-decomposition of $K_{m,nk}$ if and only if $k(p+q) = \varepsilon(K_{m,nk})$.

Theorem 1.3 ([10]). Let $p, q \ge 0$, and k > m > 0, n > 0, be integers. There exists a (k; p, q)-decomposition of $K_{nk,m}$ if and only if the following conditions are fulfilled:

- 1. $k(p+q) = \varepsilon(K_{nk,m});$
- 2. there is a $t \in \{0, \ldots, n\}$ such that $\left\lfloor \frac{tk}{2} \right\rfloor \leq p \leq tm$;
- 3. $(k \equiv 1 \pmod{2} \land n = 1) \Rightarrow p \equiv 0 \pmod{2}$.

Theorem 1.4 ([10]). Let $p, q \ge 0$ and $n \ge 4k > 0$ be integers. There exists a (k; p, q)-decomposition of K_n if and only if $k(p+q) = \varepsilon(K_n)$.

Remark 1.1. If G and H each have a (4; p, q)-decomposition, then $G \cup H$ has such a decomposition. In this paper, we denote $G \cup H$ as $G \oplus H$.

Remark 1.2. If two stars S_5^1 and S_5^2 with distinct centers share at least two pendant vertices, then $S_5^1 \oplus S_5^2$ can be decomposed into $2P_5$. i.e. if $S_5^1 = (x_0; y_0, y_1, y_2, y_3)$ and $S_5^2 = (y_4; y_0, y_1, x_1, x_2)$ are two stars, then the $2P_5$ are $P_5^1 = y_2 x_0 y_1 y_4 x_1$, $P_5^2 = y_3 x_0 y_0 y_4 x_2$ (one can easily understand that the edges of stars with bold vertices and ordinary vertices give a required number of paths from stars). We denote such a pair of star as $\{(x_0; y_0, y_1, y_2, y_3), (y_4; y_0, y_1, x_1, x_2)\}$.

Example 1.1. There exists a (4; p, q)-decomposition of K_8 .

SOLUTION: Let $V(K_8) = \{x_1, x_2, \dots, x_8\}$. First we decompose K_8 into $\{2P_5, 5S_5\}$ as follows:

$$x_7x_1x_8x_6x_2, x_2x_7x_8x_4x_3, (x_5; x_2, x_1, x_7, x_8), \{(x_3; x_1, x_7, x_5, x_8), (x_4; x_1, x_5, x_6, x_7)\}, \{(x_2; x_1, x_3, x_4, x_8), (x_6; x_5, x_3, x_7, x_1)\}.$$

Now, we decompose the first $2P_5$ and a S_5 into $3P_5$ as follows:

 $\{x_2x_5x_7x_1x_8, x_1x_5x_8x_6x_2, x_2x_7x_8x_4x_3\}.$

Hence from the above decompositions and Remark 1.2 we have a (4; p, q)decomposition of K_8 except for the values p = 0, 1. For p = 0, 1, we have the following sets of paths and stars: { $(x_1; x_5, x_6, x_7, x_8)$, $(x_2; x_1, x_3, x_4, x_8)$, $(x_3; x_1, x_4, x_5, x_8)$, $(x_4; x_1, x_5, x_6, x_8)$, $(x_5; x_2, x_6, x_7, x_8)$, $(x_6; x_2, x_3, x_7, x_8)$, $(x_7; x_2, x_3, x_4, x_8)$ } and { $x_7x_1x_8x_6x_2$, $(x_2; x_1, x_3, x_4, x_8)$, $(x_3; x_1, x_4, x_5, x_8)$, $(x_4; x_1, x_5, x_6, x_8)$, $(x_5; x_2, x_1, x_7, x_8)$, $(x_6; x_5, x_3, x_7, x_1)$, $(x_7; x_2, x_3, x_4, x_8)$ }.

Example 1.2. There exists a (4; p, q)-decomposition of K_9 .

SOLUTION: Let $V(K_9) = \{x_1, x_2, \dots, x_9\}$ and $G = K_9$. Then $G = K_8 \oplus (x_9; x_1, x_2, x_3, x_4) \oplus (x_9; x_5, x_6, x_7, x_8)$ and by Example 1.1, K_9 has a (4; p, q)-decomposition except for the values p = 8 and 9. For p = 8, 9, we have the following sets of paths and stars: $\{x_7x_1x_8x_6x_2, x_2x_7x_8x_4x_3, x_4x_2x_1x_6x_5, x_3x_2x_8x_5x_1, x_2x_5x_7x_6x_3, x_1x_3x_5x_4x_6, x_1x_4x_7x_9x_6, x_5x_9x_8x_3x_7, (x_9; x_1, x_2, x_3, x_4)\}$ and $\{x_7x_1x_8x_6x_2, x_2x_7x_8x_4x_3, x_4x_2x_1x_6x_5, x_2x_5x_7x_6x_3, x_1x_3x_5x_4x_6, x_1x_4x_7x_9x_6, x_5x_9x_8x_3x_7, x_2x_9x_1x_5x_8, x_8x_2x_3x_9x_4\}.$

Example 1.3. There exists a (4; p, q)-decomposition of $K_{6,6}$.

SOLUTION: Let $V(K_{6,6}) = \{x_1, x_2, \dots, x_6\} \cup \{y_1, y_2, \dots, y_6\}$. First we decompose $K_{6,6}$ into $\{0P_5, 9S_5\}$ and $\{P_5, 9S_5\}$ as follows:

$$\{ (x_1; y_1, y_2, y_3, y_4), \{ (x_2; y_1, y_2, y_5, y_6), (x_3; y_5, y_4, y_3, y_6) \}, \\ \{ (y_1; x_3, x_4, x_5, x_6), (y_3; x_2, x_4, x_5, x_6) \}, \\ \{ (y_2; x_3, x_4, x_5, x_6), (y_5; x_1, x_4, x_5, x_6) \}, \\ \{ (y_4; x_2, x_4, x_5, x_6), (y_6; x_1, x_4, x_5, x_6) \} \} \\ \text{and} \qquad \{ y_1 x_1 y_2 x_2 y_5, \{ (x_2; y_1, y_3, y_4, y_6), (x_3; y_3, y_4, y_5, y_6) \}, \\ \{ (y_4; x_1, x_4, x_5, x_6), (y_2; x_3, x_4, x_5, x_6) \}, \\ \{ (y_4; x_1, x_4, x_5, x_6), (y_6; x_1, x_4, x_5, x_6) \}, \\ \{ (y_5; x_1, x_4, x_5, x_6), (y_6; x_1, x_4, x_5, x_6) \}.$$

By Remark 1.2, we obtain a required even number of paths from $\{0P_5, 9S_5\}$ and a required odd number of paths from $\{P_5, 8S_5\}$.

2. (4; p, q)-decomposition of $K_m \Box K_n$

In this section we investigate the existence of (4; p, q)-decomposition of Cartesian product of complete graphs. To prove our results we need the following lemmas.

Lemma 2.1. There exists a (4; p, q)-decomposition of $K_4 \Box K_2$ with $p \ge 2$.

PROOF: Let $V(K_4 \Box K_2) = \{x_{i,j}: 1 \le i \le 4, 1 \le j \le 2\}$. First we decompose $K_4 \Box K_2$ into $\{2P_5, 2S_5\}$ as follows:

$$\begin{array}{l} x_{2,1}x_{4,1}x_{3,1}x_{3,2}x_{2,2}, \ x_{3,1}x_{2,1}x_{2,2}x_{1,2}x_{3,2}, \\ \{(x_{1,1};x_{3,1},x_{4,1},\boldsymbol{x_{2,1}},\boldsymbol{x_{1,2}}), \ (x_{4,2};\boldsymbol{x_{1,2}},\boldsymbol{x_{2,2}},x_{3,2},x_{4,1})\}. \end{array}$$

By Remark 1.2, we have a $\{4P_5, 0S_5\}$ -decomposition of $K_4 \Box K_2$ from $\{2P_5, 2S_5\}$. Now, the $\{3P_5, S_5\}$ -decomposition of $K_4 \Box K_2$ is given by $x_{1,2}x_{2,2}x_{2,1}x_{4,1}x_{3,1}$, $x_{1,2}x_{4,2}x_{3,2}x_{3,1}x_{2,1}, x_{1,2}x_{3,2}x_{2,2}x_{4,2}x_{4,1}, (x_{1,1}; x_{1,2}, x_{3,1}, x_{4,1}, x_{2,1})$.

Lemma 2.2. There exists a (4; p, q)-decomposition of $K_6 \Box K_2$, $p \neq 0$.

PROOF: Let $V(K_6 \Box K_2) = \{x_{i,j}: 1 \le i \le 6, 1 \le j \le 2\}$. First we decompose $K_6 \Box K_2$ into $\{P_5, 8S_5\}$ and $\{2P_5, 7S_5\}$ as follows:

$$\{x_{5,1}x_{2,1}x_{4,1}x_{4,2}x_{3,2}, \{(x_{1,1};x_{2,1},x_{3,1},\boldsymbol{x_{4,1}},\boldsymbol{x_{1,2}}), (x_{2,2};x_{2,1},\boldsymbol{x_{1,2}},\boldsymbol{x_{3,2}},x_{4,2})\}, \\ \{(x_{3,1};x_{3,2},x_{2,1},\boldsymbol{x_{4,1}},\boldsymbol{x_{6,1}}), (x_{6,2};\boldsymbol{x_{6,1}},\boldsymbol{x_{2,2}},x_{3,2},x_{4,2})\}, \\ (x_{5,1};x_{5,2},x_{1,1},x_{3,1},x_{4,1}), (x_{6,1};x_{2,1},x_{1,1},x_{4,1},x_{5,1}), \\ (x_{1,2};x_{3,2},x_{4,2},x_{5,2},x_{6,2}), (x_{5,2};x_{2,2},x_{3,2},x_{4,2},x_{6,2})\} \\ \text{and} \quad \{x_{5,1}x_{2,1}x_{4,1}x_{4,2}x_{3,2},x_{1,1}x_{3,1}x_{4,1}x_{5,1}x_{5,2}, \\ \{(x_{1,1};x_{2,1},x_{4,1},\boldsymbol{x_{5,1}},\boldsymbol{x_{1,2}}), (x_{2,2};x_{2,1},\boldsymbol{x_{1,2}},\boldsymbol{x_{3,2}},x_{4,2})\}, \\ \{(x_{3,1};x_{3,2},x_{2,1},\boldsymbol{x_{5,1}},\boldsymbol{x_{6,1}}), (x_{6,2};\boldsymbol{x_{6,1}},\boldsymbol{x_{2,2}},x_{3,2},x_{4,2})\}, \\ \{(x_{6,1};x_{2,1},x_{1,1},x_{4,1},x_{5,1}), (x_{1,2};x_{3,2},x_{4,2},x_{5,2},x_{6,2}), (x_{5,2};x_{2,2},x_{3,2},x_{4,2},x_{6,2})\}. \end{cases}$$

By Remark 1.2, we obtain a required even number of paths from $\{2P_5, 7S_5\}$ except p = 8 and we obtain a required odd number of paths from $\{P_5, 8S_5\}$ except p = 7, 9. Now,

$$\begin{split} & \left\{ x_{5,2}x_{4,2}x_{2,2}x_{1,2}x_{3,2}, x_{3,2}x_{6,2}x_{4,2}x_{1,2}x_{5,2}, x_{3,2}x_{2,2}x_{6,2}x_{1,2}x_{1,1}, \\ & x_{4,1}x_{5,1}x_{3,1}x_{2,1}x_{2,2}, x_{6,1}x_{2,1}x_{5,1}x_{1,1}x_{3,1}, x_{3,1}x_{3,2}x_{4,2}x_{4,1}x_{2,1}, \\ & x_{2,1}x_{1,1}x_{4,1}x_{3,1}x_{6,1}, \left\{ (x_{6,1};x_{6,2},x_{1,1}, \boldsymbol{x_{4,1}}, \boldsymbol{x_{5,1}}), (x_{5,2}; \boldsymbol{x_{5,1}}, \boldsymbol{x_{2,2}}, x_{3,2}, x_{6,2}) \right\} \right\} \\ \text{ and } \left\{ x_{5,1}x_{2,1}x_{4,1}x_{4,2}x_{3,2}, x_{4,2}x_{2,2}x_{1,2}x_{1,1}x_{3,1}, x_{2,1}x_{1,1}x_{4,1}x_{3,1}x_{6,1}, \\ & x_{6,1}x_{6,2}x_{2,2}x_{5,2}x_{4,2}, x_{3,2}x_{1,2}x_{4,2}x_{6,2}x_{5,2}, x_{4,1}x_{5,1}x_{5,2}x_{1,2}x_{6,2}, \\ & x_{6,2}x_{3,2}x_{3,1}x_{5,1}x_{1,1}, x_{5,2}x_{3,2}x_{2,2}x_{2,1}x_{3,1}, (x_{6,1}; x_{2,1}, x_{1,1}, x_{4,1}, x_{5,1}) \right\} \end{split}$$

gives the remaining number of paths and stars of $K_6 \Box K_2$.

Lemma 2.3. There exists a (4; p, q)-decomposition of $K_8 \Box K_2$.

PROOF: Let $V(K_8 \Box K_2) = \{x_{i,j}: 1 \le i \le 8, 1 \le j \le 2\}$ and K_2^i $(K_8^j, \text{respectively})$ be K_2 in the *i*th row $(K_8$ in the *j*th column, respectively) of $K_8 \Box K_2$. We can write $K_8 \Box K_2 = G_1 \oplus G_2$, where $G_1 = K_8^1 \oplus K_2^1 \oplus K_2^3 \oplus \cdots \oplus K_2^7$ and $G_2 = K_8^2 \oplus K_2^2 \oplus K_2^4 \oplus \cdots \oplus K_2^8$. Since $G_1 \cong G_2$, it is enough to prove without loss of generality that G_1 has a (4; p, q)-decomposition. First decompose G_1 into $\{0P_5, 8S_5\}$ as follows:

$$\{ (x_{1,1}; x_{1,2}, \boldsymbol{x_{5,1}}, \boldsymbol{x_{7,1}}, x_{8,1}), (x_{3,1}; x_{3,2}, \boldsymbol{x_{4,1}}, \boldsymbol{x_{7,1}}, x_{8,1}) \}, \\ \{ (x_{5,1}; x_{5,2}, \boldsymbol{x_{3,1}}, \boldsymbol{x_{6,1}}, x_{8,1}), (x_{7,1}; x_{7,2}, \boldsymbol{x_{5,1}}, \boldsymbol{x_{6,1}}, x_{8,1}) \}, \\ (x_{1,1}; x_{2,1}, x_{3,1}, x_{4,1}, x_{6,1}), (x_{4,1}; x_{2,1}, x_{5,1}, x_{7,1}, x_{8,1}), \\ (x_{2,1}; x_{3,1}, x_{5,1}, x_{7,1}, x_{8,1}), (x_{6,1}; x_{2,1}, x_{3,1}, x_{4,1}, x_{8,1}).$$

Now, we decompose the last $4S_5$ into either $\{1P_5, 3S_5\}$, $\{2P_5, 2S_5\}$, $\{3P_5, S_5\}$ or $\{4P_5\}$ as follows:

$$\{ x_{4,1}x_{5,1}x_{2,1}x_{3,1}x_{1,1}, (x_{2,1}; x_{1,1}, x_{6,1}, x_{7,1}, x_{8,1}), \\ (x_{4,1}; x_{1,1}, x_{2,1}, x_{7,1}, x_{8,1}), (x_{6,1}; x_{1,1}, x_{3,1}, x_{4,1}, x_{8,1}) \}$$

A.P. Ezhilarasi, A. Muthusamy

$$\begin{array}{l} \{x_{3,1}x_{1,1}x_{6,1}x_{8,1}x_{2,1}, x_{7,1}x_{2,1}x_{3,1}x_{6,1}x_{4,1}, \\ (x_{2,1};x_{1,1},x_{4,1},x_{5,1},x_{6,1}), (x_{4,1};x_{1,1},x_{5,1},x_{7,1},x_{8,1})\}, \\ \{x_{2,1}x_{1,1}x_{6,1}x_{4,1}x_{5,1}, x_{7,1}x_{4,1}x_{8,1}x_{6,1}x_{3,1}, \\ x_{3,1}x_{1,1}x_{4,1}x_{2,1}x_{6,1}, (x_{2,1};x_{3,1},x_{5,1},x_{7,1},x_{8,1})\} \\ \text{or} \quad \{x_{2,1}x_{1,1}x_{6,1}x_{4,1}x_{5,1}, x_{3,1}x_{1,1}x_{4,1}x_{2,1}x_{8,1}, \\ x_{6,1}x_{2,1}x_{7,1}x_{4,1}x_{8,1}, x_{8,1}x_{6,1}x_{3,1}x_{2,1}x_{5,1}\}. \end{array}$$

Now, from $\{4P_5\}$ and the paired stars given above we can obtain an even number of paths and from $\{3P_5, S_5\}$ and the paired stars given above we can obtain an odd number of paths (see Remark 1.2).

Lemma 2.4. There exists a (4; p, q)-decomposition of $K_{10} \Box K_2$.

PROOF: Let $V(K_{10}\Box K_2) = \{x_{i,j}: 1 \leq i \leq 10, 1 \leq j \leq 2\}$. We can write $K_{10}\Box K_2 = (K_6\Box K_2) \oplus (K_4\Box K_2) \oplus 2K_{6,4}$. By Lemmas 2.1 and 2.2, $K_4\Box K_2$ has a (4; p, q)-decomposition with $p \geq 2$ and $K_6\Box K_2$ has a (4; p, q)-decomposition with $p \neq 0$. Also, by Theorem 1.1, $K_{6,4}$ has a (4; p, q)-decomposition. Hence by Remark 1.1, $K_{10}\Box K_2$ has a (4; p, q)-decomposition with $p \geq 3$. Now, the following $\{25S_5\}$ gives us the $\{0P_5, 25S_5\}$ and $\{2P_5, 23S_5\}$ -decomposition of $K_{10}\Box K_2$ (use Remark 1.2)

$$\begin{array}{l} (x_{8,1};x_{1,1},x_{7,1},x_{9,1},x_{10,1}), \ (x_{9,1};x_{2,1},x_{4,1},x_{7,1},x_{10,1}), \ (x_{10,1};x_{2,1},x_{4,1},x_{5,1},x_{7,1}), \\ \{(x_{2,1};x_{5,1},x_{6,1},x_{4,1},x_{2,2}), \ (x_{3,1};x_{4,1},x_{5,1},x_{6,1},x_{3,2})\}, \end{array}$$

 $\begin{array}{l} (x_{1,1};x_{5,1},x_{6,1},x_{9,1},x_{1,2}), (x_{4,2};x_{2,2},x_{3,2},x_{9,2},x_{4,1}), (x_{5,2};x_{1,2},x_{2,2},x_{3,2},x_{5,1}), \\ (x_{6,2};x_{1,2},x_{2,2},x_{3,2},x_{6,1}), (x_{7,2};x_{8,2},x_{9,2},x_{10,2},x_{7,1}), (x_{8,2};x_{1,2},x_{9,2},x_{10,2},x_{8,1}), \\ (x_{9,2};x_{1,2},x_{2,2},x_{10,2},x_{9,1}), (x_{10,2};x_{2,2},x_{4,2},x_{5,2},x_{10,1}), \end{array}$

 $(x_{1,j}; x_{3,j}, x_{4,j}, x_{7,j}, x_{10,j}), (x_{3,j}; x_{7,j}, x_{8,j}, x_{9,j}, x_{10,j}), (x_{2,j}; x_{1,j}, x_{3,j}, x_{8,j}, x_{7,j}), (x_{4,j}; x_{5,j}, x_{6,j}, x_{7,j}, x_{8,j}, x_{7,j}, x_{8,j}, x_{9,j}), (x_{5,j}; x_{6,j}, x_{7,j}, x_{8,j}, x_{9,j}), (x_{6,j}; x_{7,j}, x_{8,j}, x_{9,j}, x_{10,j}),$

j = 1, 2. For p = 1, decompose the first $3S_5$ into $\{P_5, 2S_5\}$ as follows:

 $\{x_{1,1}x_{8,1}x_{7,1}x_{10,1}x_{5,1}, (x_{9,1}; x_{2,1}, x_{4,1}, x_{7,1}, x_{8,1}), (x_{10,1}; x_{2,1}, x_{4,1}, x_{8,1}, x_{9,1})\}.$

This $\{P_5, 2S_5\}$ together with the remaining stars in the above $\{25S_5\}$ will give a required decomposition of $K_{10} \square K_2$.

Lemma 2.5. There exists a (4; p, q)-decomposition of $K_{12} \Box K_2$.

PROOF: Let $V(K_{12}\Box K_2) = \{x_{i,j}: 1 \leq i \leq 12, 1 \leq j \leq 2\}$. We can write $K_{12}\Box K_2 = G \oplus (K_8\Box K_2)$, where $G = (K_{12}\Box K_2) \setminus E(K_8\Box K_2)$ and $G = (K_4\Box K_2) \oplus 2K_{8,4}$. By Theorem 1.1 and Lemma 2.1, $K_{8,4}$ has a (4; p, q)-decomposition and $K_4\Box K_2$ has a (4; p, q)-decomposition with $p \geq 2$. Hence by Remark 1.1, G has a (4; p, q)-decomposition with $p \geq 2$. Now, for p = 0 we have the following $20S_5$ of G

Decomposition of Cartesian product of complete graphs

$$\begin{aligned} & (x_{1,1}; x_{2,1}, x_{11,1}, x_{12,1}, x_{1,2}), \ (x_{2,1}; x_{3,1}, x_{4,1}, x_{11,1}, x_{12,1}), \\ & (x_{3,1}; x_{1,1}, x_{4,1}, x_{11,1}, x_{12,1}), \ (x_{4,1}; x_{4,2}, x_{1,1}, x_{11,1}, x_{12,1}), \\ & (x_{1,2}; x_{2,2}, x_{3,2}, x_{11,2}, x_{12,2}), \ (x_{2,2}; x_{2,1}, x_{3,2}, x_{11,2}, x_{12,2}), \\ & (x_{3,2}; x_{3,1}, x_{4,2}, x_{11,2}, x_{12,2}), \ (x_{4,2}; x_{1,2}, x_{2,2}, x_{11,2}, x_{12,2}), \\ & & (x_{i,j}; x_{1,j}, x_{2,j}, x_{3,j}, x_{4,j}) \end{aligned}$$

for $5 \le i \le 10$ and j = 1, 2. For p = 1, decompose the first $4S_5$ into $\{P_5, 3S_5\}$ as follows:

 $\{ x_{11,1}x_{2,1}x_{12,1}x_{1,1}x_{1,2}, (x_{1,1}; x_{2,1}, x_{3,1}, x_{4,1}, x_{11,1}), \\ (x_{3,1}; x_{2,1}, x_{4,1}, x_{11,1}, x_{12,1}), (x_{4,1}; x_{4,2}, x_{2,1}, x_{11,1}, x_{12,1}) \}.$

This $\{P_5, 3S_5\}$ together with the remaining stars in the above stars will give a required decomposition of G. Now, by Remark 1.1, $K_{12} \Box K_2$ has a (4; p, q)decomposition. \Box

Lemma 2.6. There exists a (4; p, q)-decomposition of $K_{14} \Box K_2$.

PROOF: Let $V(K_{14}\Box K_2) = \{x_{i,j}: 1 \leq i \leq 14, 1 \leq j \leq 2\}$. We can write $K_{14}\Box K_2 = (K_8\Box K_2) \oplus (K_6\Box K_2) \oplus 2K_{8,6}$. By Theorem 1.2 and Lemmas 2.3 and 2.2, $K_{8,6}$ and $K_8\Box K_2$ each have a (4; p, q)-decomposition and $K_6\Box K_2$ has a (4; p, q)-decomposition with $p \neq 0$. Hence by Remark 1.1, $K_{14}\Box K_2$ has a (4; p, q)-decomposition with $p \neq 0$. Now, consider $K_{14}\Box K_2$ as $K_{10}\Box K_2 \oplus G$, where $G = (K_{14}\Box K_2) \setminus E(K_{10}\Box K_2)$. Since $K_{10}\Box K_2$ has a (4; p, q)-decomposition (by Lemma 2.4), it is enough to prove that G has a $\{24S_5\}$ -decomposition and the required $\{24S_5\}$ -decomposition is as follows:

$$\begin{aligned} & (x_{1,1}; x_{2,1}, x_{13,1}, x_{14,1}, x_{1,2}), (x_{2,1}; x_{3,1}, x_{4,1}, x_{13,1}, x_{14,1}), \\ & (x_{3,1}; x_{1,1}, x_{4,1}, x_{13,1}, x_{14,1}), (x_{4,1}; x_{4,2}, x_{1,1}, x_{13,1}, x_{14,1}), \\ & (x_{1,2}; x_{2,2}, x_{3,2}, x_{13,2}, x_{14,2}), (x_{2,2}; x_{2,1}, x_{3,2}, x_{13,2}, x_{14,2}), \end{aligned}$$

 $(x_{3,2}; x_{3,1}, x_{4,2}, x_{13,2}, x_{14,2}), (x_{4,2}; x_{1,2}, x_{2,2}, x_{13,2}, x_{14,2}), (x_{i,j}; x_{1,j}, x_{2,j}, x_{3,j}, x_{4,j})$

for $5 \le i \le 12$ and j = 1, 2. Hence $K_{14} \square K_2$ has a (4; p, q)-decomposition. \square

Lemma 2.7. There exists a (4; p, q)-decomposition of $K_4 \square K_4$.

PROOF: Let $V(K_4 \Box K_4) = \{x_{i,j} : 1 \le i, j \le 4\}$. First we decompose $K_4 \Box K_4$ into $\{0P_5, 12S_5\}$ and $\{P_5, 11S_5\}$ as follows:

$$\begin{split} & \{(x_{2,3}; x_{2,1}, x_{2,2}, x_{3,3}, x_{4,3}), (x_{4,4}; x_{4,1}, x_{4,3}, x_{3,4}, x_{1,4}), \\ & \{(x_{1,1}; \boldsymbol{x_{3,1}}, \boldsymbol{x_{2,1}}, x_{1,2}, x_{1,4}), (x_{2,4}; x_{1,4}, \boldsymbol{x_{2,1}}, \boldsymbol{x_{2,3}}, x_{4,4})\}, \\ & \{(x_{1,2}; x_{3,2}, x_{2,2}, \boldsymbol{x_{1,3}}, \boldsymbol{x_{1,4}}), (x_{3,4}; \boldsymbol{x_{1,4}}, \boldsymbol{x_{2,4}}, x_{3,3}, x_{3,2})\}, \\ & \{(x_{1,3}; \boldsymbol{x_{1,4}}, \boldsymbol{x_{1,1}}, x_{2,3}, x_{4,3}), (x_{4,1}; \boldsymbol{x_{1,1}}, \boldsymbol{x_{2,1}}, x_{4,2}, x_{4,3})\}, \\ & \{(x_{2,2}; x_{2,1}, \boldsymbol{x_{2,4}}, \boldsymbol{x_{3,2}}, x_{4,2}), (x_{3,1}; x_{2,1}, x_{4,1}, \boldsymbol{x_{3,2}}, \boldsymbol{x_{3,4}})\}, \\ & \{(x_{3,3}; x_{3,1}, x_{3,2}, \boldsymbol{x_{1,3}}, \boldsymbol{x_{4,3}}), (x_{4,2}; x_{1,2}, x_{3,2}, \boldsymbol{x_{4,3}}, \boldsymbol{x_{4,4}})\}\} \\ & \text{ and } \quad \{x_{2,1}x_{2,3}x_{4,3}x_{4,4}x_{4,2}, \end{aligned}$$

$$\begin{split} &\{(x_{1,1}; \boldsymbol{x_{3,1}}, \boldsymbol{x_{2,1}}, x_{1,2}, x_{1,4}), (x_{2,4}; x_{1,4}, \boldsymbol{x_{2,1}}, \boldsymbol{x_{2,3}}, x_{2,2})\}, \\ &\{(x_{1,2}; x_{3,2}, x_{2,2}, \boldsymbol{x_{1,3}}, \boldsymbol{x_{1,4}}), (x_{3,4}; \boldsymbol{x_{1,4}}, \boldsymbol{x_{2,4}}, x_{3,3}, x_{3,2})\}, \\ &\{(x_{1,3}; \boldsymbol{x_{1,4}}, \boldsymbol{x_{1,1}}, x_{2,3}, x_{4,3}), (x_{4,1}; \boldsymbol{x_{1,1}}, \boldsymbol{x_{2,1}}, x_{3,1}, x_{4,3})\}, \\ &\{(x_{2,2}; x_{2,1}, \boldsymbol{x_{2,3}}, \boldsymbol{x_{3,2}}, x_{4,2}), (x_{3,1}; x_{2,1}, x_{3,3}, \boldsymbol{x_{3,2}}, \boldsymbol{x_{3,4}})\}, \\ &\{(x_{3,3}; x_{2,3}, x_{3,2}, \boldsymbol{x_{1,3}}, \boldsymbol{x_{4,3}}), (x_{4,2}; x_{1,2}, x_{3,2}, \boldsymbol{x_{4,3}}, \boldsymbol{x_{4,1}})\}, \\ &(x_{4,4}; x_{4,1}, x_{1,4}, x_{2,4}, x_{3,4})\}. \end{split}$$

By Remark 1.2, we obtain a required even number of paths from $\{0P_5, 12S_5\}$ except p = 12 and we obtain a required odd number of paths from $\{P_5, 11S_5\}$. For p = 12, the required paths are

 $\begin{array}{l} x_{1,4}x_{4,4}x_{4,1}x_{3,1}x_{3,2}, x_{4,4}x_{4,2}x_{3,2}x_{3,4}x_{2,4}, x_{4,4}x_{2,4}x_{2,1}x_{2,3}x_{2,2}, x_{2,2}x_{2,4}x_{2,3}x_{3,3}x_{1,3}, \\ x_{2,4}x_{1,4}x_{1,1}x_{3,1}x_{3,4}, x_{1,4}x_{1,2}x_{3,2}x_{3,3}x_{3,1}, x_{3,1}x_{2,1}x_{1,1}x_{1,2}x_{1,3}, x_{2,1}x_{4,1}x_{1,1}x_{1,3}x_{2,3}, \\ x_{2,3}x_{4,3}x_{1,3}x_{1,4}x_{3,4}, x_{2,1}x_{2,2}x_{4,2}x_{4,3}x_{4,4}, x_{3,2}x_{2,2}x_{1,2}x_{4,2}x_{4,1}, x_{4,1}x_{4,3}x_{3,3}x_{3,4}x_{4,4}. \end{array}$

 \Box

Lemma 2.8. There exists a (4; p, q)-decomposition of $K_4 \Box K_6$.

- - -

PROOF: Let $V(K_4 \Box K_6) = \{x_{i,j}: 1 \le i \le 4, 1 \le j \le 6\}$. First we decompose $K_4 \Box K_6$ into $\{0P_5, 24S_5\}$ as follows:

$$\{ (x_{3,2}; x_{1,2}, x_{4,2}, x_{3,1}, x_{3,4}), (x_{4,1}; x_{2,1}, x_{3,1}, x_{4,2}, x_{4,3}) \}, \\ \{ (x_{2,2}; x_{2,3}, x_{2,4}, x_{2,5}, x_{4,2}), (x_{2,6}; x_{1,6}, x_{2,1}, x_{2,4}, x_{2,3}) \}, \\ \{ (x_{3,1}; x_{2,1}, x_{3,4}, x_{3,5}, x_{3,6}), (x_{3,3}; x_{3,2}, x_{2,3}, x_{3,5}, x_{3,6}) \}, \\ \{ (x_{4,4}; x_{4,2}, x_{4,3}, x_{4,1}, x_{2,4}), (x_{4,5}; x_{2,5}, x_{3,5}, x_{4,1}, x_{4,3}) \}, \\ \{ (x_{1,1}; x_{1,3}, x_{1,4}, x_{4,1}, x_{1,2}), (x_{1,5}; x_{1,2}, x_{1,3}, x_{3,5}, x_{4,5}) \}, \\ \{ (x_{3,3}; x_{1,3}, x_{3,4}, x_{4,3}, x_{3,1}), (x_{2,3}; x_{2,1}, x_{2,4}, x_{1,3}, x_{4,3}) \}, \\ \{ (x_{2,2}; x_{2,1}, x_{2,5}, x_{1,4}, x_{3,4}), (x_{3,5}; x_{3,2}, x_{3,4}, x_{3,6}, x_{2,5}) \}, \\ \{ (x_{2,2}; x_{1,2}, x_{3,2}, x_{2,6}, x_{2,1}), (x_{2,5}; x_{1,5}, x_{2,1}, x_{2,3}, x_{2,6}) \}, \\ \{ (x_{4,4}; x_{1,4}, x_{4,5}, x_{4,6}, x_{3,4}), (x_{3,6}; x_{2,6}, x_{3,2}, x_{4,6}, x_{3,4}) \}, \\ \{ (x_{1,1}; x_{2,1}, x_{3,1}, x_{1,5}, x_{1,6}), (x_{1,4}; x_{1,2}, x_{1,6}, x_{3,4}, x_{1,5}) \}, \\ \{ (x_{4,2}; x_{1,2}, x_{4,3}, x_{4,5}, x_{4,6}), (x_{1,3}; x_{1,2}, x_{1,4}, x_{1,6}, x_{4,3}) \}, \\ \{ (x_{1,6}; x_{1,2}, x_{1,5}, x_{3,6}, x_{4,6}), (x_{4,6}; x_{2,6}, x_{4,1}, x_{4,3}, x_{4,5}). \end{cases}$$

By Remark 1.2, we obtain a required even number of paths from the paired stars except p = 24. For p = 24, the $18P_5$ can be obtained from the first nine paired stars (see Remark 1.2) and the remaining paths can be obtained from the last $6S_5$ as follows:

```
 \{ x_{3,1}x_{1,1}x_{1,6}x_{1,4}x_{1,5}, x_{2,1}x_{1,1}x_{1,5}x_{1,6}x_{3,6}, x_{4,3}x_{4,2}x_{4,5}x_{4,6}x_{4,1}, \\ x_{2,6}x_{4,6}x_{1,6}x_{1,3}x_{1,4}, x_{3,4}x_{1,4}x_{1,2}x_{1,3}x_{4,3}, x_{4,3}x_{4,6}x_{4,2}x_{1,2}x_{1,6} \}.
```

To get an odd number of paths we decompose the last $6S_5$ into either $\{P_5, 5S_5\}$, $\{3P_5, 3S_5\}$ or $\{5P_5, S_5\}$ as follows:

 $\begin{cases} x_{1,5}x_{1,6}x_{1,2}x_{1,3}x_{4,3}, (x_{1,6}; x_{1,4}, x_{1,3}, x_{3,6}, x_{4,6}), (x_{4,6}; x_{2,6}, x_{4,1}, x_{4,3}, x_{4,5}), \\ (x_{4,2}; x_{1,2}, x_{4,3}, x_{4,5}, x_{4,6}), (x_{1,4}; x_{1,2}, x_{1,3}, x_{3,4}, x_{1,5}), (x_{1,1}; x_{2,1}, x_{3,1}, x_{1,5}, x_{1,6}) \}, \\ \{x_{2,1}x_{1,1}x_{1,6}x_{1,3}x_{4,3}, x_{4,3}x_{4,2}x_{4,5}x_{4,6}x_{4,1}, x_{3,1}x_{1,1}x_{1,5}x_{1,6}x_{3,6}, \\ (x_{1,2}; x_{4,2}, x_{1,3}, x_{1,4}, x_{1,6}), (x_{1,4}; x_{1,6}, x_{1,3}, x_{3,4}, x_{1,5}), (x_{4,6}; x_{2,6}, x_{4,2}, x_{4,3}, x_{1,6}) \} \\ \text{or} \quad \{x_{3,4}x_{1,4}x_{1,2}x_{1,3}x_{4,3}, x_{4,2}x_{1,2}x_{1,6}x_{1,3}x_{1,4}, x_{3,1}x_{1,1}x_{1,6}x_{1,4}x_{1,5}, \\ x_{2,1}x_{1,1}x_{1,5}x_{1,6}x_{3,6}, x_{4,3}x_{4,2}x_{4,5}x_{4,6}x_{4,1}, (x_{4,6}; x_{2,6}, x_{4,2}, x_{4,3}, x_{1,6}) \}. \end{cases}$

Now, the remaining number of paths can be obtained from the first nine paired stars (see Remark 1.2). Hence $K_4 \square K_6$ has a (4; p, q)-decomposition. \square

Lemma 2.9. There exists a (4; p, q)-decomposition of $K_6 \square K_6$.

PROOF: Let $V(K_6 \Box K_6) = \{x_{i,j} : 1 \le i, j \le 6\}$. Now, we can write $K_6 \Box K_6 = (K_4 \Box K_6) \oplus (K_2 \Box K_6) \oplus 6K_{4,2}$. By Lemma 2.8 and Theorem 1.3, $K_4 \Box K_6$ and $K_{4,2}$ each have a (4; p, q)-decomposition. Also, $K_2 \Box K_6 \cong K_6 \Box K_2$) has a (4; p, q)-decomposition with $p \ne 0$, by Lemma 2.2. Hence $K_6 \Box K_6$ has a (4; p, q)-decomposition with $p \ne 0$. For p = 0, we have the following $\{45S_5\}$.

 $(x_{1,1}; x_{1,2}, x_{1,3}, x_{2,1}, x_{3,1}), (x_{1,1}; x_{1,4}, x_{1,5}, x_{4,1}, x_{6,1}), (x_{6,1}; x_{5,1}, x_{4,1}, x_{6,2}, x_{6,3}), \\ (x_{3,4}; x_{3,3}, x_{3,5}, x_{2,4}, x_{4,4}), (x_{6,6}; x_{5,6}, x_{4,6}, x_{6,4}, x_{6,5}), (x_{2,2}; x_{2,1}, x_{2,3}, x_{1,2}, x_{3,2}), \\ (x_{1,6}; x_{1,5}, x_{1,4}, x_{2,6}, x_{3,6}), (x_{4,4}; x_{4,3}, x_{4,5}, x_{6,4}, x_{1,4}), (x_{6,2}; x_{5,2}, x_{4,2}, x_{6,3}, x_{6,4}), \\ (x_{6,6}; x_{6,1}, x_{6,2}, x_{1,6}, x_{2,6}), (x_{2,5}; x_{2,4}, x_{2,6}, x_{1,5}, x_{3,5}), (x_{3,4}; x_{3,2}, x_{3,6}, x_{1,4}, x_{5,4}), \\ (x_{1,6}; x_{1,1}, x_{1,3}, x_{4,6}, x_{5,6}), (x_{2,2}; x_{2,4}, x_{2,6}, x_{4,2}, x_{6,2}), (x_{5,5}; x_{5,1}, x_{5,4}, x_{4,5}, x_{1,5}), \\ (x_{1,3}; x_{1,4}, x_{1,5}, x_{3,3}, x_{4,3}), (x_{2,5}; x_{2,2}, x_{2,3}, x_{4,5}, x_{6,5}), (x_{6,4}; x_{6,1}, x_{6,3}, x_{3,4}, x_{1,4}), \\ (x_{2,1}; x_{2,6}, x_{2,5}, x_{6,1}, x_{5,1}), (x_{5,5}; x_{3,5}, x_{2,5}, x_{5,2}, x_{5,3}), (x_{1,2}; x_{1,3}, x_{1,6}, x_{5,2}, x_{6,2}), \\ (x_{6,3}; x_{5,3}, x_{1,3}, x_{6,5}, x_{6,6}), (x_{3,5}; x_{3,1}, x_{3,6}, x_{4,5}, x_{6,5}), (x_{3,3}; x_{3,1}, x_{3,2}, x_{5,3}, x_{6,3}), \\ (x_{4,4}; x_{2,4}, x_{5,4}, x_{4,1}, x_{4,6}), (x_{1,4}; x_{1,2}, x_{1,5}, x_{2,4}, x_{5,4}), (x_{4,2}; x_{1,2}, x_{3,2}, x_{4,3}, x_{4,4}), \\ (x_{3,3}; x_{2,3}, x_{4,3}, x_{3,5}, x_{3,6}), (x_{1,5}; x_{1,2}, x_{3,5}, x_{4,5}, x_{6,5}), (x_{2,4}; x_{2,1}, x_{2,6}, x_{5,4}, x_{6,4}), \\ (x_{2,3}; x_{1,3}, x_{6,3}, x_{2,1}, x_{2,4}), (x_{3,6}; x_{3,2}, x_{4,6}, x_{5,6}, x_{6,6}), (x_{5,4}; x_{5,1}, x_{5,2}, x_{5,6}, x_{6,4}), \\ (x_{5,2}; x_{4,2}, x_{3,2}, x_{2,2}, x_{5,3}), (x_{4,3}; x_{4,1}, x_{4,5}, x_{2,3}, x_{6,3}), (x_{6,5}; x_{6,1}, x_{6,2}, x_{6,4}, x_{5,5}), \\ (x_{4,5}; x_{4,6}, x_{4,1}, x_{4,2}, x_{6,5}), (x_{5,3}; x_{4,3}, x_{1,3}, x_{2,3}, x_{5,4}), (x_{3,1}; x_{2,1}, x_{3,4}, x_{3,6}, x_{6,1}), \\ (x_{4,6}; x_{4,1}, x_{4,2}, x_{4,3}, x_{5,6}), (x_{4,3}; x_{4,1}, x_{4,5}, x_{2,6}), (x_{5,6}; x_{5,1}, x_{5,2}, x_{5,3}, x_{5,5}), \\ (x_{2,6}; x_{2,3}, x_{3,6}, x_{4,6}, x_{5,6}), (x_$

Lemma 2.10. There exists a (4; p, q)-decomposition of $K_5 \Box K_5$.

PROOF: Let $V(K_5 \Box K_5) = \{x_{i,j}: 1 \le i, j \le 5\}$. First we decompose $K_5 \Box K_5$ into $\{0P_5, 25S_5\}$ as follows:

$$\{ (x_{1,1}; x_{2,1}, x_{1,3}, x_{3,1}, x_{1,5}), (x_{1,4}; x_{1,3}, x_{3,4}, x_{1,5}, x_{5,4}) \}, \\ \{ (x_{1,1}; x_{1,2}, x_{1,4}, x_{4,1}, x_{5,1}), (x_{2,1}; x_{3,1}, x_{4,1}, x_{5,1}, x_{2,5}) \}, \\ \{ (x_{5,5}; x_{1,5}, x_{2,5}, x_{5,4}, x_{4,5}), (x_{3,5}; x_{2,5}, x_{4,5}, x_{3,4}, x_{3,1}) \},$$

$$\{ (x_{3,3}; \mathbf{x_{5,3}}, \mathbf{x_{3,2}}, x_{3,4}, x_{3,5}), (x_{3,1}; x_{4,1}, \mathbf{x_{5,1}}, \mathbf{x_{3,2}}, x_{3,4}) \}, \\ \{ (x_{2,2}; x_{2,1}, \mathbf{x_{2,3}}, \mathbf{x_{4,2}}, x_{5,2}), (x_{1,2}; x_{1,3}, \mathbf{x_{1,4}}, \mathbf{x_{4,2}}, x_{5,2}) \}, \\ \{ (x_{3,3}; x_{1,3}, \mathbf{x_{2,3}}, \mathbf{x_{4,3}}, x_{3,1}), (x_{5,3}; x_{5,1}, \mathbf{x_{5,4}}, \mathbf{x_{2,3}}, x_{1,3}) \}, \\ \{ (x_{2,2}; x_{1,2}, \mathbf{x_{3,2}}, \mathbf{x_{2,4}}, x_{2,5}), (x_{2,3}; x_{2,1}, \mathbf{x_{1,3}}, \mathbf{x_{2,4}}, x_{2,5}) \}, \\ \{ (x_{4,4}; x_{1,4}, \mathbf{x_{4,2}}, \mathbf{x_{3,4}}, x_{5,4}), (x_{2,4}; \mathbf{x_{2,5}}, \mathbf{x_{3,4}}, x_{1,4}, \mathbf{x_{2,1}}) \}, \\ \{ (x_{5,5}; x_{5,1}, \mathbf{x_{5,2}}, \mathbf{x_{5,3}}, x_{3,5}), (x_{5,4}; x_{2,4}, \mathbf{x_{3,4}}, \mathbf{x_{5,2}}, \mathbf{x_{5,1}}) \}, \\ \{ (x_{3,2}; x_{1,2}, \mathbf{x_{4,2}}, \mathbf{x_{3,4}}, \mathbf{x_{3,5}}), (x_{1,5}; x_{1,3}, x_{1,2}, \mathbf{x_{2,5}}, \mathbf{x_{3,5}}) \}, \\ \{ (x_{4,4}; x_{4,1}, \mathbf{x_{2,4}}, \mathbf{x_{4,3}}, \mathbf{x_{4,5}}), (x_{4,5}; \mathbf{x_{4,2}}, \mathbf{x_{4,3}}, \mathbf{x_{1,5}}, \mathbf{x_{5,3}}) \}, \\ (x_{4,4}; x_{4,1}, x_{2,4}, \mathbf{x_{4,3}}, \mathbf{x_{4,5}}), (x_{4,5}; \mathbf{x_{4,2}}, \mathbf{x_{4,3}}, \mathbf{x_{1,5}}, \mathbf{x_{5,5}}), (x_{4,1}; x_{4,2}, \mathbf{x_{4,3}}, \mathbf{x_{4,5}}, \mathbf{x_{5,1}}) . \end{cases}$$

Now, we decompose the last $3S_5$ into either $\{1P_5, 2S_5\}$, $\{2P_5, 1S_5\}$ or $\{3P_5\}$ as follows:

$$\begin{aligned} & \{x_{2,4}x_{4,4}x_{4,3}x_{4,5}x_{4,1}, (x_{4,5}; x_{4,2}, x_{4,4}, x_{1,5}, x_{2,5}), (x_{4,1}; x_{4,2}, x_{4,3}, x_{4,4}, x_{5,1})\}, \\ & \{x_{2,4}x_{4,4}x_{4,3}x_{4,1}x_{4,2}, x_{4,2}x_{4,5}x_{4,4}x_{4,1}x_{5,1}, (x_{4,5}; x_{4,1}, x_{4,3}, x_{1,5}, x_{2,5})\} \\ & \text{or} \quad \{x_{2,4}x_{4,4}x_{4,1}x_{4,5}x_{4,3}, x_{2,5}x_{4,5}x_{4,4}x_{4,3}x_{4,1}, x_{1,5}x_{4,5}x_{4,2}x_{4,1}x_{5,1}\}. \end{aligned}$$

Now, from $\{2P_5, 1S_5\}$ and the paired stars given above we can obtain an even number of paths and from $\{3P_5\}$ and the paired stars given above we can obtain an odd number of paths (see Remark 1.2).

Lemma 2.11. There exists a (4; p, q)-decomposition of $K_3 \Box K_7$.

PROOF: Let $V(K_3 \Box K_7) = \{x_{i,j}: 1 \le i \le 3, 1 \le j \le 7\}$ and K_7^i $(K_3^j, \text{ respectively})$ be a K_7 in the *i*th row $(K_3$ in the *j*th column, respectively) of $K_3 \Box K_7$. For i = 1, 2, 3, let $F_i = \{x_{i,1}x_{i+1,1}, \ldots, x_{i,7}x_{i+1,7}\}$, where the first coordinate of the subscripts of x are taken modulo 3 with residues 1, 2, 3. We can write $K_3 \Box K_7 = G_1 \oplus G_2 \oplus G_3$, where $G_i = F_i \oplus K_7^i$. Since $G_1 \cong G_2 \cong G_3$, it is enough to prove without loss of generality that G_1 has a (4; p, q)-decomposition. Now, G_1 has a (4; p, q)-decomposition as follows:

1. For p = 0, q = 7, the required stars are $(x_{1,1}; x_{2,1}, x_{1,2}, x_{1,3}, x_{1,4})$, $(x_{1,2}; x_{2,2}, x_{1,5}, x_{1,3}, x_{1,4})$, $(x_{1,3}; x_{2,3}, x_{1,4}, x_{1,5}, x_{1,6})$, $(x_{1,4}; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5})$, $(x_{1,5}; x_{2,5}, x_{1,1}, x_{1,6}, x_{1,7})$, $(x_{1,6}; x_{2,6}, x_{1,1}, x_{1,2}, x_{1,7})$, $(x_{1,7}; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2})$.

2. For p = 1, q = 6, the required path and stars are $x_{2,1}x_{1,1}x_{1,4}x_{1,3}x_{1,2}$, $(x_{1,2}; x_{2,2}, x_{1,5}, x_{1,1}, x_{1,4})$, $(x_{1,3}; x_{2,3}, x_{1,1}, x_{1,5}, x_{1,6})$, $(x_{1,4}; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5})$, $(x_{1,5}; x_{2,5}, x_{1,1}, x_{1,6}, x_{1,7})$, $(x_{1,6}; x_{2,6}, x_{1,1}, x_{1,2}, x_{1,7})$, $(x_{1,7}; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2})$.

3. For p = 2, q = 5, the required paths and stars are $x_{2,1}x_{1,1}x_{1,4}x_{1,3}x_{1,2}$, $x_{2,3}x_{1,3}x_{1,1}x_{1,6}x_{1,5}$, $(x_{1,2}; x_{2,2}, x_{1,5}, x_{1,1}, x_{1,4})$, $(x_{1,4}; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5})$, $(x_{1,5}; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7})$, $(x_{1,6}; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7})$, $(x_{1,7}; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2})$.

4. For p = 3, q = 4, the required paths and stars are $x_{2,1}x_{1,1}x_{1,4}x_{1,3}x_{1,2}$, $x_{2,3}x_{1,3}x_{1,1}x_{1,2}x_{1,4}$, $x_{1,1}x_{1,6}x_{1,5}x_{1,2}x_{2,2}$, $(x_{1,4}; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5})$, $(x_{1,5}; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7})$, $(x_{1,6}; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7})$, $(x_{1,7}; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2})$. 5. For p = 4, q = 3, the required paths and stars are $x_{2,7}x_{1,7}x_{1,1}x_{1,4}x_{1,3}$, $x_{2,3}x_{1,3}x_{1,7}x_{1,2}x_{1,5}$, $x_{2,2}x_{1,2}x_{1,1}x_{1,6}x_{1,5}$, $x_{2,1}x_{1,1}x_{1,3}x_{1,2}x_{1,4}$, $(x_{1,4}; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5})$, $(x_{1,5}; x_{2,5}, x_{1,1}, x_{1,3}, x_{1,7})$, $(x_{1,6}; x_{2,6}, x_{1,3}, x_{1,2}, x_{1,7})$.

6. For p = 5, q = 2, the required paths and stars are $x_{2,1}x_{1,1}x_{1,4}x_{1,3}x_{1,2}$, $x_{2,3}x_{1,3}x_{1,1}x_{1,2}x_{1,4}$, $x_{1,1}x_{1,6}x_{1,5}x_{1,2}x_{2,2}$, $x_{2,5}x_{1,5}x_{1,7}x_{1,6}x_{1,2}$, $x_{2,6}x_{1,6}x_{1,3}x_{1,5}x_{1,1}$, $(x_{1,4}; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5})$, $(x_{1,7}; x_{2,7}, x_{1,1}, x_{1,3}, x_{1,2})$.

7. For p = 6, q = 1, the require paths and stars are $x_{2,7}x_{1,7}x_{1,1}x_{1,4}x_{1,3}$, $x_{2,3}x_{1,3}x_{1,7}x_{1,2}x_{1,5}$, $x_{2,2}x_{1,2}x_{1,1}x_{1,6}x_{1,5}$, $x_{2,1}x_{1,1}x_{1,3}x_{1,2}x_{1,4}$, $x_{2,5}x_{1,5}x_{1,7}x_{1,6}x_{1,2}$, $x_{2,6}x_{1,6}x_{1,3}x_{1,5}x_{1,1}$, $(x_{1,4}; x_{2,4}, x_{1,6}, x_{1,7}, x_{1,5})$.

8. For p = 7, q = 0, the required paths are $x_{2,1}x_{1,1}x_{1,2}x_{1,3}x_{1,4}$, $x_{2,2}x_{1,2}x_{1,4}x_{1,6}x_{1,7}$, $x_{2,3}x_{1,3}x_{1,1}x_{1,7}x_{1,5}$, $x_{2,4}x_{1,4}x_{1,1}x_{1,5}x_{1,3}$, $x_{2,5}x_{1,5}x_{1,2}x_{1,6}x_{1,1}$, $x_{2,6}x_{1,6}x_{1,3}x_{1,7}x_{1,2}$, $x_{2,7}x_{1,7}x_{1,4}x_{1,5}x_{1,6}$.

Hence by Remark 1.1, $K_3 \Box K_7$ has a (4; p, q)-decomposition.

Lemma 2.12. There exists a (4; p, q)-decomposition of $K_3 \Box K_8$.

PROOF: Let $V(K_3 \Box K_8) = \{x_{i,j}: 1 \le i \le 3, 1 \le j \le 8\}$ and K_8^i (K_3^j) , respectively) be a K_8 in the *i*th row $(K_3$ in the *j*th column, respectively) of $K_3 \Box K_8$. For i = 1, 2, 3, let $F_i = \{x_{i,1}x_{i+1,1}, \ldots, x_{i,8}x_{i+1,8}\}$, where the first subscripts of x are taken modulo 3 with residues 1, 2, 3. We can write $K_3 \Box K_8 = G_1 \oplus G_2 \oplus G_3$, where $G_i = F_i \oplus K_8^i$. Since $G_1 \cong G_2 \cong G_3$, it is enough to prove without loss of generality that G_1 has a (4; p, q)-decomposition. Now,

$$G_1 = F_1' \oplus K_7^1 \oplus (x_{1,8}; x_{2,8}, x_{1,1}, x_{1,3}, x_{1,2}) \oplus (x_{1,8}; x_{1,4}, x_{1,5}, x_{1,6}, x_{1,7}),$$

where $F'_1 = \{x_{i,1}x_{i+1,1}, \ldots, x_{i,7}x_{i+1,7}\}$ and it has a (4; p, q)-decomposition except for the values p = 8 and 9 (see Lemma 2.11). For p = 8, 9, we have the following sets of paths and stars:

$$\begin{split} & \{x_{2,1}x_{1,1}x_{1,2}x_{1,3}x_{1,4}, x_{2,2}x_{1,2}x_{1,4}x_{1,6}x_{1,7}, x_{2,3}x_{1,3}x_{1,1}x_{1,7}x_{1,5}, \\ & x_{2,4}x_{1,4}x_{1,1}x_{1,5}x_{1,3}, x_{1,2}x_{1,6}x_{1,1}x_{1,8}x_{2,8}, x_{2,5}x_{1,5}x_{1,2}x_{1,8}x_{1,3}, \\ & x_{2,6}x_{1,6}x_{1,3}x_{1,7}x_{1,2}, x_{2,7}x_{1,7}x_{1,4}x_{1,5}x_{1,6}, (x_{1,8}; x_{1,4}, x_{1,5}, x_{1,6}, x_{1,7})\} \\ \text{and} \quad \{x_{2,1}x_{1,1}x_{1,2}x_{1,3}x_{1,4}, x_{2,3}x_{1,3}x_{1,1}x_{1,7}x_{1,5}, x_{2,4}x_{1,4}x_{1,1}x_{1,5}x_{1,3}, \\ & x_{1,2}x_{1,6}x_{1,1}x_{1,8}x_{2,8}, x_{2,5}x_{1,5}x_{1,2}x_{1,8}x_{1,3}, x_{2,6}x_{1,6}x_{1,3}x_{1,7}x_{1,2}, \\ & x_{1,5}x_{1,8}x_{1,6}x_{1,7}x_{2,7}, x_{1,4}x_{1,8}x_{1,7}x_{1,4}x_{1,5}, x_{2,2}x_{1,2}x_{1,4}x_{1,6}x_{1,5}\}. \end{split}$$

Hence by Remark 1.1, $K_3 \Box K_8$ has a (4; p, q)-decomposition.

Lemma 2.13. There exists a (4; p, q)-decomposition of $K_5 \Box K_8$.

PROOF: Let $V(K_5 \Box K_8) = \{x_{i,j}: 1 \le i \le 5, 1 \le j \le 8\}$. We can write $K_5 \Box K_8 = (K_5 \Box K_8 \setminus E(K_3 \Box K_8)) \oplus (K_3 \Box K_8)$. First we decompose $(K_5 \Box K_8) \setminus E(K_3 \Box K_8)$ into $\{0P_5, 28S_5\}$ as follows:

```
 \{ (x_{1,1}; x_{3,1}, x_{4,1}, x_{5,1}, x_{1,2}), (x_{2,1}; x_{3,1}, x_{4,1}, x_{5,1}, x_{2,8}) \}, \\ \{ (x_{1,2}; x_{3,2}, x_{4,2}, x_{5,2}, x_{1,3}), (x_{2,2}; x_{3,2}, x_{4,2}, x_{5,2}, x_{2,3}) \}, \\ \{ (x_{1,3}; x_{3,3}, x_{4,3}, x_{5,3}, x_{1,4}), (x_{2,3}; x_{3,3}, x_{4,3}, x_{5,3}, x_{2,4}) \}, \\ \{ (x_{1,4}; x_{3,4}, x_{4,4}, x_{5,4}, x_{1,5}), (x_{2,4}; x_{3,4}, x_{4,4}, x_{5,4}, x_{2,5}) \}, \\ \{ (x_{1,5}; x_{3,5}, x_{4,5}, x_{5,5}, x_{1,6}), (x_{2,5}; x_{3,5}, x_{4,5}, x_{5,6}, x_{2,7}) \}, \\ \{ (x_{1,6}; x_{3,6}, x_{4,6}, x_{5,6}, x_{1,7}), (x_{2,6}; x_{3,6}, x_{4,6}, x_{5,6}, x_{2,7}) \}, \\ \{ (x_{1,7}; x_{3,7}, x_{4,7}, x_{5,7}, x_{1,8}), (x_{2,7}; x_{3,7}, x_{4,7}, x_{5,7}, x_{2,6}) \}, \\ \{ (x_{1,8}; x_{3,8}, x_{4,8}, x_{5,8}, x_{1,1}), (x_{2,8}; x_{3,8}, x_{4,8}, x_{5,8}, x_{2,2}) \}, \\ \{ (x_{1,7}; x_{1,2}, x_{1,3}, x_{1,4}, x_{1,5}), (x_{1,8}; x_{1,2}, x_{1,3}, x_{1,4}, x_{1,5}) \}, \\ \{ (x_{1,2}; x_{1,5}, x_{1,4}, x_{1,6}, x_{2,2}), (x_{1,3}; x_{1,1}, x_{1,5}, x_{1,6}, x_{2,3}) \}, \\ \{ (x_{1,6}; x_{1,1}, x_{1,4}, x_{1,6}, x_{2,6}), (x_{2,8}; x_{2,3}, x_{2,6}, x_{1,8}, x_{2,4}) \}, \\ \{ (x_{2,4}; x_{2,1}, x_{2,2}, x_{2,6}, x_{1,4}), (x_{2,5}; x_{2,1}, x_{2,8}, x_{2,6}, x_{1,5}) \}, \\ \{ (x_{2,2}; x_{2,1}, x_{2,5}, x_{2,6}, x_{2,7}), (x_{2,3}; x_{2,1}, x_{2,5}, x_{2,6}, x_{2,7}) \}.
```

By Remark 1.2, we obtain a required even number of paths and stars from the paired stars given above. To obtain an odd number of paths consider the last $4S_5$ and decompose it into either $\{1P_5, 3S_5\}$ or $\{3P_5, 1S_5\}$ as follows:

$$\begin{array}{l} \left\{ x_{1,4}x_{2,4}x_{2,2}x_{2,7}x_{2,3}, \, (x_{2,1};x_{2,4},x_{2,2},x_{2,3},x_{2,5}), \\ (x_{2,6};x_{2,2},x_{2,3},x_{2,4},x_{2,5}), \, (x_{2,5};x_{2,2},x_{2,3},x_{2,8},x_{1,5}) \right\} \\ \text{or} \quad \left\{ x_{1,4}x_{2,4}x_{2,2}x_{2,7}x_{2,3}, \, x_{2,3}x_{2,6}x_{2,2}x_{2,1}x_{2,4}, \\ x_{2,3}x_{2,1}x_{2,5}x_{2,6}x_{2,4}, \, (x_{2,5};x_{2,2},x_{2,3},x_{2,8},x_{1,5}) \right\}. \end{array}$$

The remaining choices for odd number of paths can be obtained from the remaining paired stars (see Remark 1.2). Also, by Lemma 2.12, $K_3 \Box K_8$ has a (4; p, q)decomposition. Hence by Remark 1.1, $K_5 \Box K_8$ has a (4; p, q)-decomposition. \Box

Lemma 2.14. There exists a (4; p, q)-decomposition of $K_7 \Box K_8$.

PROOF: Let $V(K_7 \Box K_8) = \{x_{i,j} : 1 \le i \le 7, 1 \le j \le 8\}$. We can write $K_7 \Box K_8 = (K_7 \Box K_8 \setminus E(K_2 \Box K_8)) \oplus (K_2 \Box K_8)$ and $(K_7 \Box K_8) \setminus E(K_2 \Box K_8) = 8(K_7 \setminus E(K_2)) \oplus 5K_8$. By Lemma 2.3 and Example 1.1, $K_2 \Box K_8 \cong K_8 \Box K_2$) and K_8 have a (4; p, q)-decomposition. So, it is enough to prove that $K_7 \setminus E(K_2)$ has a (4; p, q)-decomposition Let $V(K_7) = \{x_i : 1 \le i \le 7\}$. Now, $K_7 \setminus E(K_2)$ has a (4; p, q)-decomposition as follows:

1. For p = 0, q = 5, the required stars are $(x_1; x_4, x_5, x_6, x_7)$, $(x_2; x_1, x_5, x_6, x_7)$, $(x_3; x_1, x_2, x_6, x_7)$, $(x_4; x_2, x_3, x_6, x_7)$, $(x_5; x_3, x_4, x_6, x_7)$.

2. For p = 1, q = 4, the required paths and stars are $x_6 x_1 x_7 x_5 x_2$,

 $(x_2; x_1, x_4, x_6, x_7), (x_3; x_1, x_2, x_6, x_7), (x_4; x_1, x_3, x_6, x_7), (x_5; x_3, x_4, x_6, x_1).$

3. For p = 2, q = 3, the required paths and stars are $x_1x_4x_7x_5x_2$, $x_3x_4x_6x_1x_7$, $(x_2; x_1, x_4, x_6, x_7)$, $(x_3; x_1, x_2, x_6, x_7)$, $(x_5; x_3, x_4, x_6, x_1)$.

4. For p = 3, q = 2, the required paths and stars are $x_6x_1x_7x_5x_2$, $x_3x_5x_4x_2x_6$, $x_6x_5x_1x_2x_7$, $(x_3; x_1, x_2, x_6, x_7)$, $(x_4; x_1, x_3, x_6, x_7)$.

5. For p = 4, q = 1, the required paths and stars are $x_1x_4x_7x_5x_2$, $x_3x_4x_6x_1x_7$, $x_3x_5x_4x_2x_6$, $x_6x_5x_1x_2x_7$, $(x_3; x_1, x_2, x_6, x_7)$.

6. For p = 5, q = 0, the required paths are $x_2x_3x_1x_4x_7$, $x_6x_3x_7x_5x_2$, $x_3x_4x_6x_1x_7$, $x_3x_5x_4x_2x_6$, $x_6x_5x_1x_2x_7$.

Lemma 2.15. There exists a (4; p, q)-decomposition of $K_n \setminus E(K_i)$, when $n \equiv i \pmod{8}$, $i \in \{3, 5, 7\}$.

PROOF: Let $n \equiv i \pmod{8}$ and n = 8k + i, where k is a positive integer and $i \in \{3, 5, 7\}$. The graph $K_n \setminus E(K_i)$ can be viewed as edge-disjoint union of K_{8k} and $K_{8k,i}$. By Theorems 1.2 to 1.4, both the graphs K_{8k} and $K_{8k,i}$ have a (4; p, q)-decomposition. Hence by Remark 1.1, the graph $K_n \setminus E(K_i)$ has a (4; p, q)-decomposition.

Theorem 2.1. $K_m \Box K_n$ has a (4; p, q)-decomposition if and only if $mn(m + n-2) \equiv 0 \pmod{8}$.

PROOF: Necessity. Since $K_m \Box K_n$ is (m + n - 2)-regular and has mn vertices, $K_m \Box K_n$ has mn(m + n - 2)/2 edges. Now, assume that $K_m \Box K_n$ has a (4; p, q)-decomposition. Then the number of edges in the graph must be divisible by 4, i.e., $8|mn(m+n-2)| = 0 \pmod{8}$, this condition is satisfied precisely when one of the following holds: (i) $m, n \equiv 0 \pmod{2}$, (ii) $m, n \equiv 1 \pmod{8}$, (iii) $m, n \equiv 5 \pmod{8}$, (iv) $m \equiv 3 \pmod{8}$, $n \equiv 7 \pmod{8}$, (v) $m \equiv 0 \pmod{2}$.

Sufficiency. We construct the required decomposition in five cases.

Case 1. Let $m, n \equiv 0 \pmod{2}$. We construct the required decomposition in three subcases separately.

(a) Let $m, n \equiv 0 \pmod{4}$. Let m = 4k and $n = 4l, k, l \in \mathbb{Z}^+$. We can write $K_m \Box K_n = kl(K_4 \Box K_4) \oplus 2kl(l+k-2)K_{4,4}$. By Lemma 2.7 and Theorem 1.1, $K_4 \Box K_4$ and $K_{4,4}$ each have a (4; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

(b) Let $m \equiv 0 \pmod{4}$, $n \equiv 2 \pmod{4}$. When n = 2, by Lemmas 2.1, 2.3 and 2.5, $K_m \Box K_2$ has a (4; p, q)-decomposition for m = 4, 8, 12. If m > 12, and $m \equiv 0 \pmod{8}$, let m = 8k, k > 1, be an integer. Then $K_m \Box K_2 = k(K_8 \Box K_2) \oplus k(k-1)K_{8,8}$. By Lemma 2.3 and Theorem 1.2, $K_8 \Box K_2$ and $K_{8,8}$ each have a (4; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)decomposition. If $m \equiv 4 \pmod{8}$, let m = 8k + 12, $k \in \mathbb{Z}^+$. Then $K_m \Box K_2 = (K_{8k} \Box K_2) \oplus (K_{12} \Box K_2) \oplus 2K_{8k,12}$. By Lemma 2.5 and Theorem 1.2, $K_{12} \Box K_2$ and $K_{8k,12}$ each have a (4; p, q)-decomposition. Also, we proved that $K_{8k} \Box K_2$

FIGURE 1. $K_m \Box K_n$.

has a (4; p, q)-decomposition in this case. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

When n = 6, let m = 4k, $k \in \mathbb{Z}^+$. Then $K_m \Box K_n = k(K_4 \Box K_6) \oplus 3k(k-1)K_{4,4}$. By Lemma 2.8 and Theorem 1.1, $K_4 \Box K_6$ and $K_{4,4}$ each have a (4; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

When n > 6, let m = 4k and n = 4l + 2, $k, l \in \mathbb{Z}^+$. Then $K_m \Box K_n = (K_{4k} \Box K_{4(l-1)}) \oplus (K_{4k} \Box K_6) \oplus 4k K_{4(l-1),6}$. By Case 1 (a), $K_{4k} \Box K_{4(l-1)}$ has a (4; p, q)-decomposition. Also, we proved that $K_{4k} \Box K_6$ has a (4; p, q)-decomposition in this case. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

(c) Let $m, n \equiv 2 \pmod{4}$. When n = 2, clearly there is no (4; p, q)-decomposition for $K_2 \Box K_2$ and hence m > 2. By Lemmas 2.2, 2.4 and 2.6, $K_6 \Box K_2$, $K_{10} \Box K_2$ and $K_{14} \Box K_2$ each have a (4; p, q)-decomposition.

FIGURE 2. $K_m \Box K_n$.

For m > 14, let m = 4k + 2, k > 3, be an integer. Then $K_m \Box K_2 = (K_{4(k-2)} \Box K_2) \oplus (K_{10} \Box K_2) \oplus K_{4(k-2),10}$. By Lemma 2.4, Case 1 (b) and Theorem 1.2, $K_{10} \Box K_2$, $K_{4(k-2)} \Box K_2$ and $K_{4(k-2),10}$ each have a (4; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

When n = 6, since $K_2 \Box K_6 \ (\cong K_6 \Box K_2)$ and $K_6 \Box K_6$ (by Lemmas 2.2, 2.9) each have a (4; p, q)-decomposition, m > 6. Let m = 4k + 2, k > 1, be an integer, then $K_m \Box K_6 = (K_{4(k-1)} \Box K_6) \oplus (K_6 \Box K_6) \oplus 6K_{4(k-1),6}$. By Lemma 2.9, Case 1 (b) and Theorems 1.1 and 1.2, $K_6 \Box K_6$, $K_{4(k-1)} \Box K_6$ and $K_{4(k-1),6}$ each have a (4; p, q)decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

When m, n > 6, let m = 4k + 2 and n = 4l + 2, k, l > 1 are integers. We can write $K_m \Box K_n = (K_{4k+2} \Box K_{4(l-1)}) \oplus (K_{4k+2} \Box K_6) \oplus (4k + 2)K_{4(l-1),6} = (K_{4k+2} \Box K_{4(l-1)}) \oplus (k-1)(K_4 \Box K_6) \oplus (K_6 \Box K_6) \oplus 3(k-1)(k-2)K_{4,4} \oplus 6(k-1)K_{4,6} \oplus (4k+2)K_{4(l-1),6}$. By Lemmas 2.8 and 2.9 and Theorems 1.1 and 1.2, $K_4 \Box K_6$, $K_6 \Box K_6$, $K_{4,6}$, $K_{4(l-1),6}$ and $K_{4,4}$ each have a (4; p, q)-decomposition. Also by Case 1 (b), $K_{4k+2} \Box K_{4(l-1)}$ has a (4; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

Case 2. Let $m, n \equiv 1 \pmod{8}$. We can write $K_m \Box K_n = nK_m \oplus mK_n$. By Theorem 1.4, K_m and K_n each have a (4; p, q)-decomposition whenever $m, n \geq 16$. Hence by Example 1.2 and Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

Case 3. Let $m, n \equiv 5 \pmod{8}$. Let m = 8k+5 and $n = 8l+5, k, l \geq 0$, be integers. We can write $K_m \Box K_n = nK_m \oplus mK_n = 8l(K_m \setminus E(K_5)) \oplus 8k(K_n \setminus E(K_5)) \oplus k(K_8 \Box K_5) \oplus l(K_5 \Box K_8) \oplus \frac{5}{2}(k(k-1)+l(l-1))K_{8,8} \oplus (K_5 \Box K_5) \oplus 5(k+l)K_{8,5}$ (see Figure 1 with i = j = 5). By Theorem 1.2 and Lemmas 2.10, 2.13 and 2.15, $K_{8,8}, K_{8,5}, K_m \setminus E(K_5), K_n \setminus E(K_5), K_5 \Box K_8$ and $K_5 \Box K_5$ each have a (4; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

Case 4. Let $m \equiv 3 \pmod{8}$, $n \equiv 7 \pmod{8}$. Let m = 8k + 3, n = 8l + 7, $k, l \geq 0$, are integers. We can write $K_m \Box K_n = nK_m \oplus mK_n = 8k(K_n \setminus E(K_7)) \oplus 8l(K_m \setminus E(K_3)) \oplus l(K_3 \Box K_8) \oplus k(K_7 \Box K_8) \oplus ((3l(l-1) + 7k(k-1))/2)K_{8,8} \oplus (K_3 \Box K_7) \oplus 7kK_{8,3} \oplus 3lK_{8,7}$ (refer Figure 1 with i = 3, j = 7). By Lemmas 2.11, 2.12 and 2.14 and Theorems 1.2 and 1.3, $K_3 \Box K_8$, $K_7 \Box K_8$, $K_3 \Box K_7$, $K_{8,3}$, $K_{8,7}$ and $K_{8,8}$ each have a (4; p, q)-decomposition. Also by Lemma 2.15, $K_m \setminus E(K_3)$ and $K_n \setminus E(K_7)$ each have a (4; p, q)-decomposition. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

Case 5. Let $m \equiv 0 \pmod{8}$, $n \equiv 1 \pmod{2}$. If $n \equiv 1 \pmod{8}$, then K_m and K_n each have a (4; p, q)-decomposition, by Theorem 1.4 and Examples 1.1 and 1.2. Hence by Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

When $n \equiv i \pmod{8}$ with i = 3, 5, 7, let $m = 8k, k \in \mathbb{Z}^+$. We can write $K_m \Box K_n = nK_m \oplus mK_n = (n - i)K_m \oplus k(K_8 \Box K_i) \oplus i(k(k-1)/2)K_{8,8} \oplus m(K_n \setminus E(K_i)), i \in \{3, 5, 7\}$ (see Figure 2). By Lemmas 2.12 to 2.15, Theorem 1.2 and Remark 1.1, $K_m \Box K_n$ has a (4; p, q)-decomposition.

References

- Abueida A. A., Daven M., Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003), no. 4, 433–447.
- [2] Abueida A.A., Daven M., Multidecompositions of the complete graph, Ars Combin. 72 (2004), 17–22.
- [3] Abueida A. A., Daven M., Roblee K. J., Multidesigns of the λ-fold complete graph for graphpairs of orders 4 and 5, Australas. J. Combin. 32 (2005), 125–136.
- [4] Abueida A.A., O'Neil T., Multidecomposition of λK_m into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007), 32–40.
- [5] Bondy J. A., Murty U. S. R., Graph Theory with Applications, American Elsevier Publishing, New York, 1976.
- [6] Ezhilarasi A. P., Muthusamy A., Decomposition of product graphs into paths and stars with three edges, Bull. Inst. Combin. Appl. 87 (2019), 47–74.
- [7] Jeevadoss S., Muthusamy A., Decomposition of product graphs into paths and cycles of length four, Graphs Combin. 32 (2016), 199–223.
- [8] Priyadharsini H. M., Muthusamy A., (G_m, H_m)-multidecomposition of K_{m,m}(λ), Bull. Inst. Combin. Appl. 66 (2012), 42–48.

- [9] Shyu T.-W., Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010), no. 15–16, 2164–2169.
- [10] Shyu T.-W., Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013), no. 7, 865–871.

A.P. Ezhilarasi, A. Muthusamy:

Department of Mathematics, Periyar University, Salem-11, Tamil Nadu 636011, India

E-mail: post2pauline@gmail.com

E-mail: appumuthusamy@gmail.com

(Received February 24, 2020, revised January 8, 2021)