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Decomposition of Cartesian product of complete

graphs into paths and stars with four edges

AROCKIAJEYARAJ P. EZHILARASI, APPU MUTHUSAMY

Abstract. Let P, and Sy denote a path and a star, respectively, on k vertices. We
give necessary and sufficient conditions for the existence of a complete {Ps, S5 }-
decomposition of Cartesian product of complete graphs.
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1. Introduction

Unless stated otherwise, all graphs considered here are finite, simple, and undi-
rected. For the standard graph-theoretic terminology, the readers are referred to
J.A. Bondy and U.S.R. Murty, see [5]. Let Py, Sk, Ck, Ki denote a path, star,
cycle and complete graph, respectively, on k vertices, and let K, , denote the
complete bipartite graph containing m vertices in one partite set and n vertices
in the other partite set. A graph whose vertex set is partitioned into subsets
Vi,..., Vi with edge set U#]—e[t] Vi x V; is a complete t-partite graph, denoted by
Ky, .. .n,, when |V;| = n,; for all i. For G = Ky, or K, ,, the graph G — I denotes
G with a 1-factor I removed. For any integer A > 0, AG and G(\) respectively
denote the graph consisting of A edge-disjoint copies of G and a multigraph G
with uniform edge multiplicity A\. Moreover v(G) and &(G) denote the number of
vertices and number, respectively, of edges in G. The complement of the graph G
is denoted by G. For two graphs G' and H, we define their Cartesian product,
denoted by GO H, with vertex set V(GO H) = V(G) x V(H) and edge set

E(GOH)={(g,h)(¢',h): g=¢', hh € E(H), or g¢g' € E(G), h="h'}.
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It is well known that the Cartesian product is commutative and associative.
For a graph G, if E(G) can be partitioned into Ej,..., E; such that the sub-
graph of G induced by E; is H; for all 1 < i < k, then we say that Hy,..., Hg
decompose G, and we write G = H1®---® Hy, , since Hy, ..., Hy are edge-disjoint
subgraphs of G. If for 1 <i <k, H; = H, we say that G has a H-decomposition.
If G has a decomposition into p copies of H; and ¢ copies of Hs, then we say
that G has a {pH, qHs}-decomposition. If such a decomposition exists for all
values of p and ¢ satisfying trivial necessary conditions, then we say that G has
a {Hy, Hy}(p g1 -decomposition or has a complete {Hy, Hy}-decomposition.

Study on {Hy, Ha}(, q3-decomposition of graphs is not new. A.A. Abueida
et al. in [1], [3] completely determined the values of n for which K, (\) admits
a {pHi, gHs}-decomposition such that Hq U Hy = K, when A > 1 and |V (Hy)| =
|V(H3)| = t, where t € {4,5}. A.A. Abueida and M. Daven in [2] proved that
there exists a {pKx, ¢Sk+1 }-decomposition of K, for k > 3 andn =0,1 (mod k).
A.A. Abueida and T. O'Neil in [4] proved that for k € {3,4,5}, there exists
a {pCk, ¢Sk }-decomposition of K, (), whenever n > k+ 1 except for the ordered
triples (k,n,\) € {(3,4,1), (4,5,1), (5,6,1), (5,6,2), (5,6,4), (5,7,1), (5,8,1)}.
T.-W. Shyu in [9], [10] obtained a necessary and sufficient condition on (p,q)
for the existence of { Py, Si}(p q3-decomposition of K, and K, ,. H.M. Priyad-
harsini and A. Muthusamy in [8] established necessary and sufficient conditions
for the existence of the (G,,, Hy,)-multidecomposition of K, ()), where G, H,, €
{Cpn, Py—1,Sn—1}. A.P. Ezhilarasi and A. Muthusamy in [6] have obtained nec-
essary and sufficient conditions for the existence of a decomposition of product
graphs into paths and stars with three edges. S. Jeevadoss and A. Muthusamy
in [7] have obtained necessary and sufficient conditions for {Ps, C4}p 43-decom-
position of product graphs.

In this paper, we show that the necessary condition mn(m+n—2) = 0 (mod 8)
is sufficient for the existence of a complete {Ps, S5 }-decomposition of K,,00K,.

Notations. A star Sk;; with center at zy and end vertices x1,...,xx is de-
noted by (zg;z1,...,z) and a path on k + 1 vertices xg, x1, ..., 2 is denoted by
xox1 -+ - 2. We abbreviate the complete { Pyy1, Si+1 t-decomposition as (4; p, q)-
decomposition. In a (4;p, ¢)-decomposition of a graph G, we mean p and ¢ are
integers with 0 < p,q <e(G)/4 and p+ ¢ = e(G) /4.

To prove our results we state the following:

Theorem 1.1 ([10]). Let p,q > 0, m > k > 0, be integers. There exists a (k; p, q)-
decomposition of Ky, ., if and only if the following conditions are fulfilled:

L. k(p + Q) = E(Kk,nb);

2.p<[5]-1=(p=0 (mod 2) Am >k +p);

3. ([4]<p<k—1Ak=1 (mod2)Ap=1 (mod 2)) =m>k+1.
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Theorem 1.2 ([10]). Let p,q > 0, and m > k > 0, n > 2, be integers. There
exists a (k; p, q)-decomposition of K, ni if and only if k(p + q) = €(Kp nk)-

Theorem 1.3 ([10]). Let p,q > 0, and k > m > 0, n > 0, be integers. There
exists a (k;p, q)-decomposition of K, m if and only if the following conditions
are fulfilled:

1. k(p+q) = e(Knkm);
2. thereis at € {0,...,n} such that [£] < p < tm;
3. (k=1 (mod2)An=1)=p=0 (mod 2).

Theorem 1.4 ([10]). Let p,q > 0 and n > 4k > 0 be integers. There exists
a (k; p, q)-decomposition of K, if and only if k(p + q) = e(K,).

Remark 1.1. If G and H each have a (4;p, q)-decomposition, then G U H has
such a decomposition. In this paper, we denote GU H as G ® H.

Remark 1.2. If two stars S3 and S? with distinct centers share at least two pen-
dant vertices, then Si @ S2 can be decomposed into 2Ps. i.e. if S} = (x0;%0,y1,
y2,y3) and S? = (y4;%0,Y1,T1,T2) are two stars, then the 2Ps5 are Pl =
Y2ToY1Yax1, PZ = y3woyoysxa (one can easily understand that the edges of stars
with bold vertices and ordinary vertices give a required number of paths from
stars). We denote such a pair of star as {(zo; yo, Y1, Y2,¥3), (¥4;Y0, Y1, T1,%2)}.

Example 1.1. There exists a (4; p, g)-decomposition of Ks.

SoLuTION: Let V(K3) = {1, 22,...,2zs}. First we decompose Kg into {2P5, 555}
as follows:

T7X1TTGT2, TaT7T8T4T3, (T5; T2, 21,27, T8), {(3;®1, T7, T35, T8),

(za;21, 75,6, T7) }, {(T2; 21, T3, T4, T8), (T3 T5, T3, T7, 1)}
Now, we decompose the first 2P5 and a Ss into 3P5 as follows:
{@oxs w721 28, 125862, ToT7TRT4T3 ]

Hence from the above decompositions and Remark 1.2 we have a (4;p, q)-
decomposition of Kg except for the values p = 0,1. For p = 0, 1, we have the fol-
lowing sets of paths and stars:  {(z1;25,%6,27,28), (22;21,x3,x4,Ts),
(z3; 21,70, 25,28), (Ta;21,%5,%6,78), (T5;T2,%6,77,78), (T6;T2,T3,77,78),
(z7; 22,23, 74,78)} and {w7w1787672, (w2;71,73,74,78), (T3;71,74,T5,78),
(:L‘4;£L‘1,:L‘5,l‘6,l‘8), (1‘5;392,1‘1,1‘7,398), (1‘6;395,393,1‘7,1'1), (3’)7;1‘2,1‘3,1‘4,1‘8)}. U

Example 1.2. There exists a (4;p, ¢)-decomposition of Kj.
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SoLuTION: Let V(K9) = {x1,29, -+ ,29} and G = Kyg. Then G = Kg &
(z9; 1,2, 23, 74) ® (¥9; ¥5, T6, T7,73) and by Example 1.1, Ko has a (4;p,q)-
decomposition except for the values p = 8 and 9. For p = 8,9, we have the follow-
ing sets of paths and stars: {z72128%6T2, ToT7T8T4T3, T4TIT1TeTs, T3L2TITHLT,
ToTsT7TET, T1XIT5TATE, T1T4TTLOLG, T5ToTX3Tr, (To;x1,xa,Ts,x4)} and
{@rw128T6T2, T2w7T824T3, T4X2X1T6Ts, T2T5TTTET3, T1LIT5T4T6, T1L4T7T9T6,
T5L9LIL3LT, L2XLY9X1X5TS, .1'8.1'21)3.1'9.1'4}. O

Example 1.3. There exists a (4; p, ¢)-decomposition of K e.

SoLUTION: Let V(Kg6) = {z1,22,...,26} U{y1,y2,...,ys}. First we decompose
K6 into {0P5,955} and {P5,9S55} as follows:

{(@1591, 92,93, y4), {(x2:91,Y2,Ys5,Y6), (T3;Ys5,Ya,Y3,Y6) }
{(y1;$3,m4,x5,$6)7 (ys;$2,ﬂ34,ﬂ35,$6)},
{(y2; 3, T4, 75, 76), (Y5521, T4, X5, 26)},
{(y4;$2,93473657366)a (y6§$171547$5;$6)}}
and {y1z19222ys5, {(22; Y1, Y3, Y1, Y6), (T3;Y3, Y4, Y5, Ys)}
{(y1;$3,m4,x5,$6)7 (ys;$1,ﬂ34,ﬂ35,$6)},
{(ya; 1, T4, 75, 76), (Y2323, T4, X5, T6) },
{(ys; 1, %4, 5, 6), (Y6; 71, T4, T5,76)}}-

By Remark 1.2, we obtain a required even number of paths from {0P5, 955}
and a required odd number of paths from {Ps,8S5}. O

2. (4;p,q)-decomposition of K,,[0K,

In this section we investigate the existence of (4; p, ¢)-decomposition of Carte-
sian product of complete graphs. To prove our results we need the following
lemmas.

Lemma 2.1. There exists a (4; p, q)-decomposition of K,O0K, with p > 2.

PrOOF: Let V(K,OK5) = {x;;: 1 <i <4, 1 <j <2} First we decompose
K,0K, into {2P5,2S55} as follows:

T2,104,123,123,222,2, £3,112,1L2,221,223,2,
{(z1,15%3,1, 241, 2,1, T1,2), (T42;%1,2, 2,2, 732, 741)}-

By Remark 1.2, we have a {4P5, 0S5 }-decomposition of K4O0K from {2P5,2S55}.
Now, the {3Ps, S5}-decomposition of K4OK5 is given by x1 2222221741231,

T1,20423 23,1221, 1,223,272,2T42T4 1, (361,1; L1,2,%3,1,T4,1, 362,1)- 0

Lemma 2.2. There exists a (4; p, q)-decomposition of Kg[1Ka, p # 0.
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PrOOF: Let V(KsOKs) = {x;;: 1 <i <6, 1 <j <2}, First we decompose
K¢OK, into {P5,855} and {2P5, 755} as follows:

{$5,1$2,1$4,1$4,2$3,2, {(ZE1,1;$2,17953,1,$4,1,3’31,2), ($2,2;$2,1,331,2,3’33,27%4,2)}7
{(303,1;363,27362,17$4,1,936,1)7 (-1'6,2§w6,1;$2,27$3,27$4,2)}7
(75,15%5,2, 71,1, 3,1, Z4,1), (T6,1;T2,1, 1,1, T4,1,75,1),

(71,25 73,2, Ta2, 52, T6,2), (T5,2; 722,732, T42,76,2)}
and {365,1302,1304,1364,2363,27 X1,123,124,15,1T5,2,
{(551,1;362,17364,17$5,1,931,2)7 (362,2;362,1,931,2,933,27364,2)}7
{(z3,1; 73,2, 22,1, ®5,1, T6,1), (T6,2;T6,1, T2,2, 73,2, T4,2) },
($6,1§$2,17$1,1,$4,1,$5,1)7 ($172§$3,2;$4,2;$5,27$6,2)7 (365,2;$2,2,$3,273€4,27366,2)}-

By Remark 1.2, we obtain a required even number of paths from {2Ps, 7S5}
except p = 8 and we obtain a required odd number of paths from {Ps, 855} except
p=71,9. Now,

{$5,2I4,212,2$1,2$3,2, T3,2%6,204,221,225,2, £3,2222L6,241,2L1,1,
T4,125,123,122,172,2, L6,1L2,1L5,1L1,1L3,1, L3,1L3,274,274,172,1,
T2,1T1,174,1L3,1T6,1, {($6,1§$6,27$1,17 L4,1, 935,1)7 (365,2; Ts5,1, 932,27363,27366,2)}}
and {15,1$2,1$4,1I4,2I3,2, T4,2222%1,201,123,1, £2,121,174,1L3,1L6,1,

X6,116,222,225,224,2, 3,271,204 226,2L5,2, 4,1L5,115,271,276,2,
T6,203,203,1L5,1L1,1, L5,223,222,2L21T3,1, (556,1;362,1,$1,1,$4,1,$5,1)}

gives the remaining number of paths and stars of Kg[dKo5. (I
Lemma 2.3. There exists a (4; p, q)-decomposition of Ks[OK>.

PROOF: Let V(KgOKy) = {x;;: 1 <i <8, 1<j<2}and Kj (K}, respec-
tively) be Ky in the i*" row (Kg in the j*' column, respectively) of Kg(1Ks.
We can write Ks[(0Ky = G1 @ Ga, where G; = K} @ K} © K3 ® --- ® K] and
Go=K:OKZDK;® - @ KS§. Since G1 = Ga, it is enough to prove without
loss of generality that G has a (4; p, ¢)-decomposition. First decompose G7 into
{0P5,8S55} as follows:

{(£E1,1;931,2,$5,1,337,1,$8,1)7 (993,1;333,2;374,1;377,17338,1)}7
{($5,1;935,2,333,1,336,1,18,1), (937,1;937,2;375,1;376,17398,1)}7
($1,1;$2,17$3,1;$4,1;$6,1)7 ($4,1;$2,1,$5,1,$7,17$8,1)7
($2,1;$3,17$5,1,$7,1,$8,1)7 (-776,1;-772,1;$3,1;$4,17$8,1)-

Now, we decompose the last 4S5 into either {1Ps,3S5}, {2P5,2S5}, {3Ps, S5}
or {4Ps} as follows:

{$4,1I5,1$2,1$3,1991,1, (392,151'1,1;z6,17397,17398,1);
(-774,1§$1,1;$2,17$7,17$8,1)7 (366,1;I1,1,$3,17$4,17358,1)}
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{$3,1IE1,1$6,1$8,1$2,1, XT7122,123,1T6,1T4,1,
(352,1;$1,1,$4,1,$5,1,$6,1), ($4,1;$1,1,$5,1,$7,1,$8,1)},
{552,1361,1556,1304,1365,1, T7,1%4,128,1L6,1L3,1,
T3121,1%4,102,1%6,1, (2,1 73,1, 05,1, T7,1,28,1) }
or {$2,1$1,1$6,1$4,1$5,1, X3,121,174,172,1T8,1,
T6,1T2,1L7,1L4,1T8,1, 558,1366,1363,1152,1305,1}-

Now, from {4Ps} and the paired stars given above we can obtain an even number
of paths and from {3P5, S5} and the paired stars given above we can obtain an
odd number of paths (see Remark 1.2). O

Lemma 2.4. There exists a (4; p, q)-decomposition of K1oOKos.

PrROOF: Let V(K1oOK2) = {z;;:1 < i <10, 1 < j < 2}. We can write
K1 0OK, = (K¢OK3) @ (K4OK3) @ 2K 4. By Lemmas 2.1 and 2.2, K40K; has
a (4;p, q)-decomposition with p > 2 and Kg[K> has a (4;p, g)-decomposition
with p # 0. Also, by Theorem 1.1, K¢ 4 has a (4; p, ¢)-decomposition. Hence by
Remark 1.1, K7900K5 has a (4;p, ¢)-decomposition with p > 3. Now, the following
{2555} gives us the {0Ps, 2555} and {2Ps, 2355 }-decomposition of K;90OK> (use
Remark 1.2)

(938,1;$1,1,997,17999,1,x10,1)7 ($9,1;$2,1,$4,1,$7,1,x10,1), (2E10,1;$2,17994,17x5,1,x7,1),
{(1'2,1;335,17336,1;1‘4,1;1'2,2)7 (333,1;334,1;1‘5,1;376,17333,2)}7
(-1'1,1§1‘5,1;1‘6,17-1'9,171'1,2)7 (364,2;302,27363,27369,27364,1), (I5,2;JC1,27362,27363,2,$5,1),
(306,2;361,27362,27363,2,I6,1), (307,2;368,2,309,2,3010,27367,1), ($8,2§-1'1,27-1'9,27-1'10,27-1'8,1)7
(IE9,2;=’E1,2,$2,2,ZE10,2,2E9,1), ($10,2;$2,2,$4,2,$5,2,x10,1)7
(T1,55 23,55 Ta,5> T7,5, 10,5), (T3,55 7,5, 8,55 T9.5, T10,5), (2,4 T1,5, T35, T8 5, T7,5)5
(4,53 5,5, T6,55 7,5, T8,5), (5,53 6,5, 07,55 T8,55 T9,5), (6,53 7,5, 8,5, T9,55 T10,5)

j=1,2. For p = 1, decompose the first 355 into {Ps, 2S5} as follows:

{561,1368,1367,13010,1365,1, (369,1; T2,15,%4,1, 27,1, 368,1), (5510,1; T2,1,%4,1,%8,1, 369,1)}-

This {P5,2S55} together with the remaining stars in the above {2555} will give
a required decomposition of Kiol1K5. O

Lemma 2.5. There exists a (4; p, q)-decomposition of K130K>.

PRrROOF: Let V(K120OKs) = {z;;: 1 < i <12, 1 < j < 2}. We can write
K12|:|K2 =G D (KgDKQ), where G = (K12DK2)\E(K8DK2) and G = (K4|:|
K3) ®2Ks 4. By Theorem 1.1 and Lemma 2.1, Kg 4 has a (4; p, ¢)-decomposition
and K4OK5 has a (4;p, q)-decomposition with p > 2. Hence by Remark 1.1,
G has a (4; p, q)-decomposition with p > 2. Now, for p = 0 we have the following
2055 of G
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(ZE1,1;$2,17$11,1,$12,1,$1,2), ($2,1;353,1,$4,1,$11,1,$12,1)a
(ZE3,1;331,17334,1,$11,1,9512,1), (954,1;$4,2,$1,1,$11,1,$12,1)a
(551,2;362,27363,2,1511,273612,2)7 (362,2;362,1,553,2,1511,2,3012,2)7
(ZE3,2;353,17334,2,$11,2,$12,2), ($4,2;$1,2,$2,2,$11,2,$12,2)a

(Ti,j3 1,5, T2,5, 3,5, Ta,5)

for 5 <i <10 and j =1,2. For p =1, decompose the first 455 into {Ps,3S55} as
follows:
{5511,1302,13612,1151,1151,2, (301,1;362,17363,17364,1,3011,1)7
(363,1;552,1,554,173611,1,3012,1), (304,1;364,27362,173611,1,3612,1)}-

This {Ps,3S55} together with the remaining stars in the above stars will give
a required decomposition of G. Now, by Remark 1.1, K12[0K5 has a (4;p, q)-
decomposition. O

Lemma 2.6. There exists a (4; p, q)-decomposition of K1,0K>.

PrOOF: Let V(K14OK3) = {z;;:1 < i < 14, 1 < j < 2}, We can write
K,0OK,; = (KsOK,) @ (KgOK3) @ 2Kg 6. By Theorem 1.2 and Lemmas 2.3
and 2.2, Kg¢ and Kg[OK, each have a (4;p, ¢)-decomposition and Kg[OK, has
a (4;p, g¢)-decomposition with p # 0. Hence by Remark 1.1, K1,0K5 has a (4; p, q)-
decomposition with p # 0. Now, consider K14[0Ks as K10OOKs @ G, where
G = (K14OK3)\E(K1900K>). Since K190OK> has a (4;p, ¢)-decomposition (by
Lemma 2.4), it is enough to prove that G has a {2455}-decomposition and the
required {2455 }-decomposition is as follows:

(551,1;362,1,3613,1,3614,1,301,2)7 (362,1;363,1,554,1,1513,1,3014,1)7

(303,1;361,1,364,1,1513,1,3614,1)7 (364,1;364,2,551,1,1513,1,3014,1)7

($1,2;352,2,$3,2,2E13,273514,2)7 (352,2;352,1,$3,2,$13,2,$14,2)7
($3,2;$3,1,$4,2,$13,2,$14,2), (954,2;$1,2,$2,2,$13,2,$14,2), (l'i,j;331,]'7352,]'7353,]'7354,]')

for 5 <i<12 and j =1,2. Hence K14,0K> has a (4; p, ¢)-decomposition. (I
Lemma 2.7. There exists a (4; p, q)-decomposition of K4OKj.

PrOOF: Let V(K4OKy4) = {x;;: 1 <4i,j <4}. First we decompose K4[JK, into
{0P5,12S5} and {Ps, 1155} as follows:

{(362,3;302,1,302,2,363,3,364,3), (364,4;304,1,364,3,363,4,361,4);
{(ZE1,1;$3,1,$2,1,$1,2,$1,4), (IE2,4;IE1,4,332,1,332,3,$4,4)}
{(ZELQ;$3,2,IE2,2,$1,3,331,4), ($3,4;ﬂ31,4,3’32,4,333,3,333,2)},
{(551,3;$1,4,$1,1,ZE2,3,$4,3)7 (364,1;$1,1,932,1,364,2,364,3)}7
{( ) ( )}
{ )}

?

T2,25%2,1,L2,4,L3,2,T4,2), (L3,15L2,1,7L4,1,L3,2,T3,4

b
(733,731,732, 21,3, T4,3), (T4,2;71,2, 732, Ta,3, Ta,4)} }
and {22,122,3%4 34 44,2,

279
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{(ZE1,1;$3,1,$2,1,$1,2,$1,4), ($2,4;351,4,3’32,1,3’32,3,332,2)}7
{(ZE1,2;$3,2,$2,2,ﬂ?1,3,331,4), ($3,4;f'31,4,3’32,4,333,3,333,2)}7
{(301,3;$1,47$1,1,$2,3,I4,3)7 (364,1;$1,1,932,17363,17364,3)}7
{($2,2;$2,1,ﬂ?2,3,333,2,$4,2), ($3,1;$2,1,$3,3,3’33,2,ﬂ33,4)}7
{(ZE3,3;932,3,933,2,$1,3,m4,3), ($4,2;931,2,ZE3,2,3’34,3,$4,1)}

(364,4; X4,1,%1,4,22,4, 353,4)}-

i

By Remark 1.2, we obtain a required even number of paths from {0Ps, 1255}
except p = 12 and we obtain a required odd number of paths from {Ps, 11S55}.
For p = 12, the required paths are

T1,404,404123,1L3,2y L4,4L42L3 2L3 4T2 4, L4 4T2 4T21L2 3T2 2, T2 2L24T23T33L1,3,
L2,471,4L1,123,13,4, L1,4L1,223,2L3,3L3,1, L3,1L2,1L1,1L1,2L1,3, L2,1L4,1L1,1L1,3L2 3,
T2374,3%1,301,423,4, L2112,2042L43%4.4, L3 2L22L1,2L42L41, £4,1T43L3,3L3,4T44.

(|
Lemma 2.8. There exists a (4; p, q)-decomposition of K4OKg.

PrOOF: Let V(K,0Kg) = {x;;: 1 <i <4, 1<j<6}. First we decompose
K4OKg into {0Ps,24S5} as follows:

{(£E3,2;331,27334,2@3,1@3,4 ; (£4,1572,1,23,1,%4,2,T4,3
{ T2,25%2,3,L2,4,L2,5,24,2), (L2,65L1,6,L2,1,L2,4,7L2,3

?

)

)

( )
{($3,1; x2,1,L3,4, L35, $3,6)7
{(£E4,4; X4,2,%4,3, 4,1, 3’32,4)7
{(£E1,1; T1,3,L1,4,T4,1, z1,2)7
{($3,3; L1,3,L3,4,7T4,3, 553,1)7
{($2,4; x2,1,%2,5,T1,4, $3,4)a
{(zz,z; x1,2,%3,2,T2,6, $2,1)a
{(564,4; X1,4,%4,5,%4,6, 553,4)7
{(561,1; x2,1,L3,1,L1,5, $1,6)7
{(£E4,2; x1,2,%4,3,T4,5, z4,6)7
(£E1,6; x1,2,21,5,13,6, z4,6)7

x3,3,23,2,%2,3,23,5,13,6

)

X4,5;22,5,L3,5,L4,1,L4,3),

x1,5;21,2,%1,3,L3,5,T4,5),

)

x2,5;21,5,22,1,L2,3,T2,6),

x3,6522,6,L3,2,L4,6,L3,4

)

)

Z1,45%1,2,21,6,L3,4,L1,5

)}
)}
)}
)}
)}
€2,3;22,1,L2,4,L1,3, 304,3)}7
)}
)}
)}
)}
)}

(
(
(
(
(
(
(933,5; x3,2,T3,4, 3,6, L2,5
(
(
(
(
(

x1,3;71,2,71,4,%1,6,4,3)y,

L4,65L2,65L4,1, 24,3, 394,5)-

By Remark 1.2, we obtain a required even number of paths from the paired
stars except p = 24. For p = 24, the 18P5 can be obtained from the first nine
paired stars (see Remark 1.2) and the remaining paths can be obtained from the
last 655 as follows:

{333,1301,1301,6301,4331,57 L2,101,1%1,501,623,6, £4,304,204,5L4,6L4,1,
T2,674,62L1,671,301,4, £3,4L1,401,241,3%4,3, 934,3$4,6I4,2I1,2391,6}~

To get an odd number of paths we decompose the last 655 into either { P5, 555},
{3P5,355} or {5P5, S5} as follows:
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{1'1,5951,6951,21'1,31'4,3; ($1,6;$1,4,$1,3,$3,6,$4,6), (954,6;$2,6,$4,1,$4,3,$4,5)7
(1'4,2;951,27954,3;1'4,5;1'4,6)7 (351,4;$1,2,$1,3,$3,4,$1,5), (351,151'2,1;1'3,17951,57951,6)}7
{552,1361,1361,6301,3304,3, L4,3%4,224,524,6X4,1, £3,121,1L1,521,6L3,6,
(1'1,2;954,27951,37951,4,1'1,6), (1'1,4;951,67951,3;1'3,4;1'1,5)7 (x4,6;x2,6;1'4,2;1'4,37951,6)}
or {$3,4$1,4$1,2$1,3$4,3, T4,2201,221,621,371,4, £3,121,171,62L1,4%1,5,
22,1%1,121,521,6X3,65, £4,3L4,224,5T4,6L4,1, (364,6;302,6,554,2,364,3,361,6)}-

Now, the remaining number of paths can be obtained from the first nine paired
stars (see Remark 1.2). Hence K4[0Kj§ has a (4; p, ¢)-decomposition. O

Lemma 2.9. There exists a (4; p, q)-decomposition of Kg[Kg.

ProOOF: Let V(KsOKg) = {z;;: 1 <1, j < 6}. Now, we can write KsOKg =
(K40Kg) & (K20OKg) @ 6K42. By Lemma 2.8 and Theorem 1.3, K40Kg and
K, 2 each have a (4;p, ¢)-decomposition. Also, KoK (= K¢UK3) has a (4;p, q)-
decomposition with p # 0, by Lemma 2.2. Hence K¢ K¢ has a (4; p, ¢)-decompo-
sition with p # 0. For p = 0, we have the following {4555}.

r1,1;21,2,%1,3,22,1,23,1), (351,1;$1,47$1,5,$4,1,$6,1), L6,15L5,1,L4,1,26,2,26,3),
26,6, 25,6, 24,6, 26,4, L6,5
L4,4524,3,24,5,L6,4, 1,4

X3,4,23,3,13,5,L2,4,%4,4), x2,2,22,1,22,3,21,2,23,2),

)

21,6521,5521,4,22,6,L3,6), 26,2,25,2,24,2,26,3,16,4),

)

26,65 16,15 26,2, 21,6, 22,6), (£2,5;22,4,%26,L1,5,235), (£34;T3,2,L36,L1,4,%54),

L1,65L1,1,21,3,24,6,25,6), \L2,25L24,T26,L4,2,T6,2 X5,5,25,1,25,4,24,5,T1,5),

)

21,3, 21,4, 21,5,233,24,3), \T255L22,T23,T4,5,L6,5 T6,45L6,1,26,3,L3,4,T1,4),

)
T2,1522,6,22,5,2L6,1,L51), \T5,5;2L3,5,L25,L52,L53
T3,55L3,1,23,6,L4,5,L6,5

(
(
(
(
(
(
(
(361,4; 21,2,L1,5, 22,4, 5,4
(
(
(
(
(
(

( )
( )
( )
( )
( )
( )
) ($1,2;$1,3,$1,6,$5,2,ZE6,2),
) ($3,3;$3,1,$3,2,$5,3,ZEG,B),
, ( )
( )
( )
( )
( )
( )
( )

L4,4522,4,25,4,L4,1,L4,6), L4,25%1,2,%3,2,24,3,T4,4),

x3,3,72,3,24,3,235,236), \T1,55L1,2,L3,5,L4,5,L6,5 T2,45%2,1,22,6,25,4,26,4),

b
x2,3;%1,3,26,3,L2,1,224), \T3,65L3,2,L4,6,L5,6,L6,6
X4,3;%4,1,24,5,22,3,L6,3

x5,3,24,3,%1,3,22,3,T5,4

T5,4;25,1,25,2,%5,65L6,4),
Z6,5,26,1,L6,2, L6,4,L5,5),
T3,15%2,1,X3,4,L3,6,L6,1),

Y

X5,2,24,2,13,2,22,2,%5,3),

)

X4,5,24,6,T4,1,24,2,26,5),

)

T4,6;T4,15T4,2,24,3,T56), (T3,2;L3,1,L35,T1,2,L6,2),

T4,1522,1,23,1,L5,1,L4,2

T5,65L5,1,L5,2,25,3,L5,5),
T5,15%3,1,%1,1,25,2,T5,3)-

( )
( )
( )
( )
( )
( )
( )
(956,3; T5,3,21,3,L6,5, 1156,6)7
( )
( )
( )
( )
( )
( )
( )

— O O e N S

22,65 22,3, 13,6, L4,6,L5,6), )

O
Lemma 2.10. There exists a (4; p, q)-decomposition of K5[Ks.

PRrROOF: Let V(KsOK5) = {x;;: 1 <1i,j <5}. First we decompose K5[1K5 into
{0P5,2555} as follows:

{(561,1;332,1,5131,3,303,1,131,5), (961,4;5131,3,5'33,4,961,5,905,4)},
{(1'1,1;351,275131,4;334,1;1'5,1)7 (352,1;ﬂ33,1,3’34,17$5,1,$2,5)}7
{(555,5;961,5,962,5,5135,4,934,5), (963,5;962,5,934,5,503,4,903,1)},

281
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r3,3;5,3,L3,2,T3,4,L35), \L3,1;T4,1,L5,1,L3,2,T3,4),

{( ), ( )
{($2,2;$2,1,$2,3,334,2,zs,z), (IE1,2;$1,3,m1,4,$4,2,$5,2) >
{(303,3;361,37$2,3,934,3,$3,1)7 (365,3;365,1,935,4,932,37361,3)
{($2,2;11,2,$3,2,332,4,$2,5), ($2,3;12,1,3’31,3,332,4,I2,5)
{( ), ( )
{( ) ( )
{( ) ( )

)

T4,45%1,4,24,2,23,4,T54), (L24;%2,5,L3,4,L1,4,T2,1)f,

}

}

2

}

}

T55; 05,1, 25,2, T5,3, £3,5), }
x3,2;21,2,%4,2,23,4,23,5), (T1,5;21,3,%1,2,L2,5,L3,5 }7
{(zs,z;934,2,933,27335,1,335,3), (14,3;994,2,$2,3,3’31,3,ﬂ35,3)}7

(4,45 04,1, 22,4, 24,3, %a,5), (Ta,55 242,243, 01,5, T2,5), (T4,1:T4,2, T4,3,Ta5,T5,1).

T5,4522,4,X3,4,L5,2,T51

Now, we decompose the last 355 into either {1Ps, 2S5}, {2P5,155} or {3Ps} as
follows:

{72,424 474 374 5741, (Ta55 742, 44,215, 25), (T4,13T42,743,T44,751)},
{392,4$4,4$4,3934,1I4,2, L4,204,5L4,4T4 15,1, (934,5;$4,1,$4,3,I1,5,932,5)}
or {302,4364,4554,1304,5364,3, L2,5L4,5L4,4T4 3T4.1, $1,5364,5364,2$4,1$5,1}-

Now, from {2Ps,1S5} and the paired stars given above we can obtain an even
number of paths and from {3P;} and the paired stars given above we can obtain
an odd number of paths (see Remark 1.2). O

Lemma 2.11. There exists a (4; p, q)-decomposition of K3[K7.

PrOOF: Let V(K30K7) = {x;;: 1 <i<3,1<j<7}and K} (Ké, respec-
tively) be a K7 in the i*" row (K3 in the j*" column, respectively) of K3O1K7.
For i = 1,2,3, let F; = {®i1®it11,.-.,%i7%i+1,7}, where the first coordinate
of the subscripts of = are taken modulo 3 with residues 1,2,3. We can write
K3OK7 = G1 ® Ga ® G3, where G; = F; @ K&. Since G; = Gy & (3, it is enough
to prove without loss of generality that Gy has a (4;p, ¢)-decomposition. Now,
G1 has a (4;p, ¢)-decomposition as follows:

1. For p = 0, ¢ = 7, the required stars are (x11;%21,%1,2,%1,3,%1.4),
(I1,2;362,27361,5,I1,3,I1,4)7 (361,3;$2,37$1,47361,57361,6), ($174;$274;$1,6;$1,77$175)7
(I1,5;$2,57361,1,I1,6,I1,7)7 ($1,6§$2,67$1,17$1727$1,7); (361,7;362,7,I1,1,I1,37JC1,2)-

2. For p =1, g = 6, the required path and stars are x121,121,4%1,3%1,2,
($1,2;992,2,991,5,ZE1,1,£E1,4), (931,3;$2,3,931,1,931,5,991,6), (931,4;992,4,$1,6,ZE1,7,991,5),
(I1,5;$2,57361,1,I1,6,I1,7)7 ($1,6§$2,67$1,17$1727$1,7); (361,7;362,7,I1,1,I1,37JC1,2)-

3. For p = 2, ¢ = 5, the required paths and stars are xo121,121,4%1,321,2,
T2,3%1,3201,1%1,6%1,5, (391,2;$2,27931,5,931,1,931,4), (991,4;992,4;1'1,6;1'1,77391,5)7
(I1,5;$2,57361,1,I1,3,I1,7)7 ($1,6§$2,67$1,37$1727$1,7); (361,7;362,7,I1,1,I1,37JC1,2)-

4. For p = 3, ¢ = 4, the required paths and stars are xo121,171,4%1,3%1,2,
T2,3201,301,171,271 4, 21,121,621,521,222,2, (5731,4;332,4;1‘1,6;1'1,775731,5)7
(I1,5;$2,57361,1,301,3,301,7)7 ($1,6§$2,67$1,37$1727$1,7); (361,7;362,7,I1,1,$1,37JC1,2)-
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5. For p = 4, ¢ = 3, the required paths and stars are xo721,721,1%1,421,3,
T2,3201,3201,771,271,5, X2,221,221,171,671,5, 22,121,121,371,2T1 4,
(1‘1,4;-1'2,4,1'1,6;1‘1,7;1‘1,5)7 (361,5;302,5,361,1,361,3,361,7), (361,6;362,6,301,3,301,2,361,7)-

6. For p = 5, ¢ = 2, the required paths and stars are xo121,121,4%1,321,2,
T2,371,3201,11,2%1,4, £1,11,621,521,222,2, £2,5L1,5L1,771,671,2, 2,621,671,371,5%1,1,
(1‘1,4;-1'2,4,1'1,6;1‘1,7;1‘1,5)7 (361,7;362,7,301,1,301,3,361,2)-

7. For p = 6, ¢ = 1, the require paths and stars are xo 7x1,721,11,421,3,
T2,371,3%01,701,221,5, £2,221,221,121,62L1,5, £2,1L1,121,3L1,2XL1,4, L25L1,501,7L1,6L1,2,
Z2,621,6L1,321,5%1,1, (301,4;362,4,301,6,301,7,301,5)-

8 For p = 7, ¢ = 0, the required paths are 91%1,121,2%1,3%1,4,
T2,2%1,2X1,421,621,7, £2,301,3L1,1L1,7L1,5, £2,4L1,421,121,521,3, L2,5L1,501,2L1,6L1,1,
Z2,621,62L1,301,701,2, L2,7L1,721,421,521,6-

Hence by Remark 1.1, K30OK7 has a (4; p, ¢)-decomposition. O

Lemma 2.12. There exists a (4; p, q)-decomposition of K3[Ks.

PROOF: Let V(K30Kg) = {z;;: 1 <i <3, 1<j <8} and Ki (K}, respec-
tively) be a Kg in the i*® row (K3 in the j'" column, respectively) of K3(1Ks.
Fori=1,2,3,let F; = {;1%i+1.1,---,%i8Tit1,8}, where the first subscripts of
are taken modulo 3 with residues 1,2,3. We can write K3(Kg = G, ® G2 @ G3,
where G; = F; @ Kg. Since G1 & G4 = (3, it is enough to prove without loss of
generality that G; has a (4; p, ¢)-decomposition. Now,

/ 1 . .
G1=F ®K; ®(r18;%2,8,T1,1,%1,3,%1,2) D (T1,8; 1,4, 1,5, T1,6, L1,7)5

where F| = {®; 12411, ..,Ti72iy1,7; and it has a (4; p, ¢)-decomposition except
for the values p = 8 and 9 (see Lemma 2.11). For p = 8,9, we have the following
sets of paths and stars:

{$2,1$1,1$1,2$1,3$1,4, X22%1,221,421,671,7, £2,301,301,121,721,5,
£2,4%1,421,121,5%1,3, £1,221,621,121,812,8, L2,5L1,521,2L1,871,3,
22,6%1,621,321,7201,2, £2,7L1,7L1,421,5L1,6, (301,8;301,4,361,57361,6,301,7)}
and {$2,1$1,1$1,2$1,3$1,4, T2,321,301,121,71,5, L2,4L1,421,121,5%1,3,
x1,221,621,121,872,8, £2,501,501,221,871,3, L2,6X1,621,321,771,2,
T1,501,8701,6X1,722,7, £1,421,8C1,7L1,4%1,5, 362,2551,2551,4301,6361,5}-

Hence by Remark 1.1, K3OKjg has a (4;p, ¢)-decomposition. O
Lemma 2.13. There exists a (4; p, q)-decomposition of K;Kg.

PRrROOF: Let V(K50Kg) = {z;,;: 1 <i<5,1<j <8} Wecan write KsOKg =
(K5DK8\E(K3DK8)) D (KgDKg) First we decompose (K5DK8)\E(K3DK8)
into {0P5, 2855} as follows:

283
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T1,15 23,1, L4,1,L5,1,%1,2),
T1,2;23,2, 4,2, L5,2,21,3),
21,3;23,3,24,3,L5,3,21,4),
T1,4;23,4,%4,4,%5,4,%15),
T1,55%3,5, 24,5, L5,5,L1,6),
Z1,6523,6,L4,6,L5,6,L1,7),

71,85%3,8,%4,8,L5,8,L1,1),
Z1,7;21,2,21,3,L1,4,T1,5),
Z1,2;21,5,21,4,L1,6,22,2),
r1,1;%1,4,%1,5,21,7,12,1),

A. Muthusamy

r21;23,1,%4,1,%5,1,L2,8)f,
r22;23,2,%42,%5,2,%2,3)f,
X2,3;3,3,%4,3,L5,3,L2,4)f,

22,45 %3,4,24,4,%5,4,22,5
22,55 %3,5,24,5,%5,5,L2,7

k)
K
22,65L3,6, 24,6, L5,6,L2,1)f,
)
T2,85X3,8, 14,8, 5,8, L2,2
x1,8;21,2,21,3,L1,4,L1,5)f,
21,3;21,1, 21,5, L1,6,L2,3

)

x2,7,22,1,22,4,%1,7,T2,8)f,

(£E1,6;I1,1,-’L'1,4,$1,8,932,6, T2,8;%2,3,%2,6,L1,89 L2,4)f,

T2,45%2,1,L2,2,L2,6,L1,4), (T2,5;L2,1,7L2,8,L2,6,L1,5)

{( ), ( )}
{( ), ( )}
{( ), ( )}
{( ), ( )}
{( ), ( )}
{( ) ( )}
{(@1,7; 23,7, Ta,7, 5,7, 21 8), (T2,7; 3,7, Ta,7, T5,7,T2,6) }
{( ), ( )}
{( ) ( )}
{( ) ( )}
{( ), ( )}
{ ), ( )}
{( ), ( )}
( ), ( )}

{$2,2;932,1,$2,5,332,6,$2,7 , (£2,3;72,1,%2,5,X2,6,L2,7)f-

By Remark 1.2, we obtain a required even number of paths and stars from the
paired stars given above. To obtain an odd number of paths consider the last 455
and decompose it into either {1P5,3S5} or {3Ps, 155} as follows:

{301,4302,4552,2302,7302,3, (302,1;302,4,302,27302,37302,5);
(932,6;£E2,2,2E2,3,932,4,932,5)a (932,5;$2,27932,3,932,8,931,5)}
or {991,4$2,4$2,2992,7932,3, X2,3202,6L2,272,1L2 .4,
22,372,1L2,522,6%2,4, (302,5;302,27302,37302,8,301,5)}-

The remaining choices for odd number of paths can be obtained from the remain-
ing paired stars (see Remark 1.2). Also, by Lemma 2.12, K3[Ks has a (4;p, q)-
decomposition. Hence by Remark 1.1, K5OKg has a (4; p, ¢)-decomposition. [

Lemma 2.14. There exists a (4; p, q)-decomposition of K7[OKs.

PrOOF: Let V(K;0OKg) = {x;;: 1 <i<7, 1<j <8} We can write K;0Kg =
(K7DK8\E(K2DK8)) (&) (KQDKg) and (K7DK8)\E(K2DK8) = 8(K7\E(K2)) (&)
5Ks. By Lemma 2.3 and Example 1.1, K3OKs (= KgK>) and Kg have a (4; p, q)-
decomposition. So, it is enough to prove that K7\ F(K>) has a (4; p, ¢)-decomposi-
tion Let V(K7) = {z;: 1 <4 < 7}. Now, K7\E(K3) has a (4;p, ¢)-decomposition
as follows:

1. For p =0, ¢ = 5, the required stars are (x1; x4, x5, ¢, v7), (x2; 21, T5, T6, T7),
(w3321, 2, 6, T7), (43 X2, X3, T, T7), (T55 T3, T4, Te, T7)-

2. For p =1, ¢ = 4, the required paths and stars are zgxiz720522,
(w2521, 24, 6, 27), (L3521, %2, %6, T7), (Ta; 21,73, T6, T7), (T5; T3, T4, Te, T1).

3. For p = 2, ¢ = 3, the required paths and stars are r1x427T5%2, £3T4T6T127,

(x2; 21, 24, 6, T7), (T35 21, T2, T6, T7), (X5; T3, T4, T, T1).
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4. For p = 3, ¢ = 2, the required paths and stars are r¢x127T5%2, T3T5T4T2%6,
TeT5T1T27, (T35 21, T2, T6, T7), (T4 21,23, T6, T7).

5. For p =4, ¢ = 1, the required paths and stars are x1x4272522, £3T4X6T127,
T3T5T4T2L6, TeTsT1 T2, (T332, T2, T, T7).

6. For p = 5, ¢ = 0, the required paths are xox3r1T427, TeT3T7T5T2,
T3TaTeL1L7, L3XL5X4X2X6, LeLEL1L2TT7. O

Lemma 2.15. There exists a (4;p, q)-decomposition of K,\FE(K;), when n =
i (mod 8), i € {3,5,7}.

PROOF: Let n = ¢ (mod 8) and n = 8k + i, where k is a positive integer
and ¢ € {3,5,7}. The graph K,\E(K;) can be viewed as edge-disjoint union
of Kgr and Kgy,;. By Theorems 1.2 to 1.4, both the graphs Kg; and Kgy
have a (4;p, q)-decomposition. Hence by Remark 1.1, the graph K,\F(K;) has
a (4;p, q)-decomposition. O

Theorem 2.1. K,,0K, has a (4;p,q)-decomposition if and only if mn(m +
n—2)=0 (mod 8).

PROOF: Necessity. Since K,,,[0K,, is (m + n — 2)-regular and has mn vertices,
K,,OK, has mn(m+n —2)/2 edges. Now, assume that K,,,0K,, has a (4;p, q)-
decomposition. Then the number of edges in the graph must be divisible by 4, i.e.,
8|mn(m+n—2) and hence mn(m+n—2) = 0 (mod 8), this condition is satisfied
precisely when one of the following holds: (i) m,n = 0 (mod 2), (ii) m,n =
1 (mod 8), (ili) m,n =5 (mod 8), (iv)m =3 (mod 8),n =7 (mod 8), (v) m =
0 (mod 8),n=1 (mod 2).

Sufficiency. We construct the required decomposition in five cases.

Case 1. Let myn =0 (mod 2). We construct the required decomposition in
three subcases separately.

(a) Let m,n =0 (mod 4). Let m = 4k and n = 41, k,l € Z*. We can write
K, 0K, = kl(K,0K,) ® 2kl(l + k — 2)K4,4. By Lemma 2.7 and Theorem 1.1,
K,0K, and K44 each have a (4;p,q)-decomposition. Hence by Remark 1.1,
K,,0K, has a (4;p, q)-decomposition.

(b) Let m = 0 (mod 4), n = 2 (mod 4). When n = 2, by Lemmas 2.1,
2.3 and 2.5, K,,,00K>5 has a (4;p, q)-decomposition for m = 4,8 12. If m > 12,
and m = 0 (mod 8), let m = 8k, k¥ > 1, be an integer. Then K,,0K, =
k(KsOK,) ® k(k — 1)Kgs. By Lemma 2.3 and Theorem 1.2, Ks[OK5 and Kgg
each have a (4;p, g)-decomposition. Hence by Remark 1.1, K,,,0K,, has a (4;p, q)-
decomposition. If m =4 (mod 8), let m = 8k + 12, k € Z". Then K,,0Ks =
(ngDKQ) D (K12|:|K2) D 2K8k,12~ By Lemma 2.5 and Theorem 12, K12|:|K2
and Kgg 12 each have a (4;p, ¢)-decomposition. Also, we proved that Kgi[OK,
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Ficure 1. K,,L0K,.

has a (4;p, q)-decomposition in this case. Hence by Remark 1.1, K,,[0K,, has
a (4;p, q)-decomposition.

When n = 6, let m = 4k, k € Z*. Then K, 0K, = k(K;0Kg) @
3k(k — 1)Ky 4. By Lemma 2.8 and Theorem 1.1, K4OK¢ and K44 each have
a (4; p, q)-decomposition. Hence by Remark 1.1, K,,,[JK,, has a (4; p, ¢)-decompo-
sition.

When n > 6, let m = 4k and n = 4l + 2, k,l € Z*. Then K,,0K, =
(K4k|:|K4(l_1)) D (K4k|:’K6) D 4kK4(l—1),6- By Case 1 (a), K4k|:’K4(l_1) has
a (4; p, q)-decomposition. Also, we proved that K4,0K¢ has a (4; p, ¢)-decomposi-
tion in this case. Hence by Remark 1.1, K,,,[1K,, has a (4;p, ¢)-decomposition.

(c) Let myn = 2 (mod 4). When n = 2, clearly there is no (4;p, q)-decom-
position for K3llKs and hence m > 2. By Lemmas 2.2, 2.4 and 2.6, KgUKo5,
K1oOK3 and K140K> each have a (4; p, ¢)-decomposition.
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For m > 14, let m = 4k + 2, k > 3, be an integer. Then K,,00Ky; =
(Ky(k—2)0K2) @ (K100K2) © Ky(k—2),10- By Lemma 2.4, Case 1 (b) and Theo-
rem 1.2, K100K>, Ky,—2)0K> and K4(,_2),10 each have a (4; p, ¢)-decomposition.
Hence by Remark 1.1, K,,0K,, has a (4;p, ¢)-decomposition.

When n = 6, since KoK (&2 KgOK>) and Kg[Kj (by Lemmas 2.2, 2.9) each
have a (4; p, ¢)-decomposition, m > 6. Let m = 4k + 2, k > 1, be an integer, then
KOKg = (Ky1y0K) & (KeOKg) B6 Ky 1) 6. By Lemma 2.9, Case 1 (b) and
Theorems 1.1 and 1.2, K¢OKg, Kyx—1)0Ke and Kyx_1),6 each have a (4;p, q)-
decomposition. Hence by Remark 1.1, K,,00K,, has a (4;p, ¢)-decomposition.

When m,n > 6, let m = 4k + 2 and n = 4l 4+ 2, k,l > 1 are integers. We
can write K,,00K, = (K4k+2|:|K4(l_1)) P (K4k+2DK6) b (4k + 2)K4(l—1),6 =
(K4k+2|:|K4(l_1))@(k’*1)(K4DK6)@(K6DK6)@3(]€*1)([&'72)}{4,4@6(]{371)K476€B
(4k + 2)K4(—1),6- By Lemmas 2.8 and 2.9 and Theorems 1.1 and 1.2, K4;00K,
KeOKe, K6, K40-1),6 and K44 each have a (4;p, g)-decomposition. Also by
Case 1 (b), Kary20Ky-1) has a (4; p, g)-decomposition. Hence by Remark 1.1,
K,,OK, has a (4; p, ¢)-decomposition.
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Case 2. Let m,n =1 (mod 8). We can write K,,0K,, = nK,, ® mK,. By
Theorem 1.4, K, and K, each have a (4; p, ¢)-decomposition whenever m,n > 16.
Hence by Example 1.2 and Remark 1.1, K,,[0K,, has a (4;p, ¢)-decomposition.

Case 3. Let myn =5 (mod 8). Let m = 8k+5 and n = 81+5, k,l > 0, be inte-
gers. We can write K,,,0K,, = nK,, 8mK, = 8[(K,,\E(Ks))®8k(K,\E(K5))®
k(KsOK5) @ I(KsOKs) © 3(k(k — 1) +1(1 — 1)K s ® (KsOKs) @ 5(k + 1) Ks 5
(see Figure 1 with ¢ = j = 5). By Theorem 1.2 and Lemmas 2.10, 2.13 and 2.15,
Kg’g, K875, Km\E(K5), Kn\E(Kg,), K5|:|K8 and K5|:|K5 each have a (4,]),(])—
decomposition. Hence by Remark 1.1, K,,,[JK,, has a (4;p, ¢)-decomposition.

Case 4. Let m =3 (mod 8), n =7 (mod 8). Let m =8k +3, n=8l+7,
k,l1 > 0, are integers. We can write K,,,0K,, = nK,, @ mK,, = 8k(K,\E(K7)) ®
SUKm\E(K3)) @ I(K3;0Ks) @ k(K;OKs) @ ((31(1— 1) + 7k(k —1))/2)Kss @
(KsOK7) @ TkKg 3 ® 31Ky 7 (vefer Figure 1 with ¢ = 3, j = 7). By Lemmas 2.11,
2.12 and 2.14 and Theorems 1.2 and 1.3, K3UKg, K;OKg, K3OK7, Kgs, Kgr
and Kgg each have a (4;p, g)-decomposition. Also by Lemma 2.15, K,,\E(K3)
and K,,)\ E(K7) each have a (4; p, ¢)-decomposition. Hence by Remark 1.1, K,,,[ 1K,
has a (4; p, ¢)-decomposition.

Case 5. Let m =0 (mod 8), n =1 (mod 2). If n =1 (mod 8), then K,,
and K, each have a (4;p, ¢)-decomposition, by Theorem 1.4 and Examples 1.1
and 1.2. Hence by Remark 1.1, K,,00K,, has a (4; p, ¢)-decomposition.

When n = i (mod 8) with i = 3,5,7, let m = 8k, k € Z*. We can write
K,OK, = nK, & mK, = (n — )K,, ® k(KsOK;) ® i(k(k—1)/2)Kgs @
m(K,\E(K;)), i € {3,5,7} (see Figure 2). By Lemmas 2.12 to 2.15, Theorem 1.2
and Remark 1.1, K,,,00K,, has a (4; p, ¢)-decomposition. O
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