Non-normality points and nice spaces

Sergei Logunov

Abstract. J. Terasawa in " $\beta X - \{p\}$ are non-normal for non-discrete spaces X" (2007) and the author in "On non-normality points and metrizable crowded spaces" (2007), independently showed for any metrizable crowded space X that each point p of its Čech–Stone remainder X^{*} is a non-normality point of βX . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.

Keywords: non-normality point; butterfly-point; nice family; nice space; metrizable crowded space; Sorgenfrey line

Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

A point p of a normal space X is called a non-normality point, if $X \setminus \{p\}$ is not normal. In a similar way, p is called a butterfly-point (b-point) of X, if $\{p\} = [F] \cap [G]$ for some subsets F and G of $X \setminus \{p\}$, see [7]. We modify this notion for Čech–Stone compactification βX as follows: a point p of remainder $X^* = \beta X \setminus X$ is called a butterfly-point (b-point) of βX , if $\{p\} = [F]_{\beta X} \cap [G]_{\beta X}$ for some subsets F and G of $X^* \setminus \{p\}$, which are closed in $\beta X \setminus \{p\}$. It implies, obviously, that $\beta X \setminus \{p\}$ is not normal.

Every point p of ω^* is a non-normality point of ω^* if [CH] holds, see [9]. But so far despite several efforts not much is known within ZFC (Zermelo–Fraenkel set theory). For example, p is called a Kunen point if there exists a discrete set Din ω^* such that $|D| = \omega_1$ and $D \setminus O$ is countable for each neighbourhood O of p. If p is either an accumulation point of some countable discrete subset of ω^* , see [1], or p is a Kunen point (E. K. van Douwen, unpublished), then p is a non-normality point of ω^* .

As for crowded spaces, J. Terasawa and the author independently obtained the following result.

Theorem 1 ([8], [5]). Let X be a non-compact metrizable crowded space. Then any point p of X^* is a butterfly-point in βX . Hence $\beta X \setminus \{p\}$ is not normal.

DOI 10.14712/1213-7243.2021.019

Some facts for Tychonoff products were obtained by the author.

Theorem 2 ([6]). Let τ be an arbitrary cardinal number and for every $k < \tau$ let \mathcal{F}_k be a family of metrizable spaces with the following properties: \mathcal{F}_k contains a crowded space and \mathcal{F}_k contains at most one non-compact space. Let a space S be a free union $\bigcup_{k < \tau} S_k$ of Tychonoff products $S_k = \prod \{X : X \in \mathcal{F}_k\}$. Then every point p of S^* is a butterfly-point in βS . Hence $\beta S \setminus \{p\}$ is not normal.

For instance, this is true if a space S is a free union of arbitrary powers of closed segments $\bigcup_{k<\tau} I^k$ or, in particular, $S = \omega \times I^c$. Some other relevant facts may be seen in [2], [3] and [4].

Now we define a new class of spaces, nice spaces (see the definitions below) so that Sorgenfrey line and all metrizable crowded spaces belong to this class and prove the following

Theorem 3. Let X be a non-compact nice space. Then every point p of X^* is a butterfly-point in βX . Hence $\beta X \setminus \{p\}$ is not normal.

Corollary 1. Let S be a Sorgenfrey line. Then every point p of S^* is a butterflypoint in βS . Hence $\beta S \setminus \{p\}$ is not normal.

We obtain also the following more technical result.

Theorem 4. Let a space X be p-nice for some point p of X^* . Then p is a butterfly-point in βX . Hence $\beta X \setminus \{p\}$ is not normal.

Theorems 3 and 4 follow from the last result of our paper, Theorem 5.

2. Preliminaries

In our article every space X is normal and crowded, i.e. X has no isolated points. By a neighbourhood of a point or a set we always mean an open neighbourhood. The closure of an open set is called a canonically closed set. By $X^* = \beta X \setminus X$ we denote a remainder of Čech–Stone compactification βX of X, by [] and [] $_{\beta X}$ – the closure operators in X and βX , respectively, $3 = \{0, 1, 2\}$ and $\omega = \{0, 1, 2, ...\}$. By O^{ε} we denote the biggest open in βX set, which trace on X equals open set $O \subset X$. A family of nonempty open sets \mathcal{B} is called a π -base \mathcal{B} is σ -locally finite, if it can be represented as $\mathcal{B} = \bigcup_{i \in \omega} \mathcal{B}_i$, where every \mathcal{B}_i is locally finite. A base \mathcal{B} is called a regular base of Arhangelskii, if for every neighbourhood O of any point x in X there is another or the same neighbourhood O' of x with the following properties: $O' \subset O$ and at most finitely many members of \mathcal{B} meet both O' and $X \setminus O$ simultaneously. Let π and σ be arbitrary families of sets. For any set A we put $\pi(A) = \{U \in \pi : U \cap A \neq \emptyset\}$. By $\operatorname{Exp}(\pi)$ we denote all subfamilies of π , i.e. $\operatorname{Exp}(\pi) = \{F : F \subset \pi\}$. We define a map $f_{\sigma}^{\pi} : \operatorname{Exp}(\pi) \to \operatorname{Exp}(\sigma)$ in every $F \in \operatorname{Exp}(\pi)$ as follows: $f_{\sigma}^{\pi}(F) = \{V \in \sigma : \bigcup F \cap V \neq \emptyset\}$. If members of π are mutually disjoint (with closure), then π is called (strongly) cellular. A set U is a proper subset of a set V, denoted $U \subsetneq V$, if both $U \subset V$ and $U \neq V$. A set U of π is a maximal member of π , if $U \subsetneq V$ for no $V \in \pi$. We say, that π (strongly) refines σ , denoted $(\pi \succ \sigma)$ $\pi \succeq \sigma$, if $U \in \pi$ is a (proper) subset of $V \in \sigma$ whenever they are not disjoint. The family

$$\operatorname{Cell}(\pi) = \left\{ U_{\varphi} = \bigcap \varphi \setminus \left[\bigcup (\pi \setminus \varphi) \right] \colon \varphi \subset \pi \text{ is nonempty} \right\}$$

is a cellular refinement of π .

Let π and σ be nice families, i.e. maximal locally finite cellular families of open in X sets and $p \in X^*$. A collection $\mathcal{F} \subset \operatorname{Exp}(\pi)$ is called a p-filter on π , see [5], if $p \in [\bigcup \bigcap_{i \leq n} F_i]_{\beta X}$ for any finite subcollection $\{F_1, \ldots, F_n\} \subset \mathcal{F}$. We write $\pi \succeq_{\mathcal{F}} \sigma$ ($\pi \succ_{\mathcal{F}} \sigma$), if there is $F \in \mathcal{F}$ with $F \succeq \sigma$ ($F \succ \sigma$). Obviously, the union of any increasing family of p-filters is also a p-filter. So by Kuratowski–Zorn lemma there are maximal p-filters or p-ultrafilters \mathcal{F} on π , that is $\mathcal{F} = \mathcal{G}$ whenever \mathcal{G} is a p-filter and $\mathcal{F} \subset \mathcal{G}$. Enriching any p-filter with new subfamilies of π , while possible, we can embed it into some p-ultrafilter. It may be not unique one, if a point p is not remote. But every p-ultrafilter contains $\pi(O)$ for any neighborhood O of p. We denote

$$\bigcap \mathcal{F}^* = \bigcap \left\{ \left[\bigcup F\right]_{\beta X} \colon F \in \mathcal{F} \right\}.$$

3. Nice spaces

Definition 1. A π -base \mathcal{B} of X is called a *nice* π -base, if \mathcal{B} is σ -locally finite and for every neighbourhood O of any closed set F there is a nice subfamily π of \mathcal{B} such that $\bigcup \pi(F) \subset O$.

Definition 2. A normal crowded space X is called *nice*, if for any point p of X^* there is a nice π -base \mathcal{B} of X with the following property: $p \notin [U]_{\beta X}$ for every $U \in \mathcal{B}$.

Definition 3. Let p be any point of βX . A π -base \mathcal{B} of X is called a p-nice π -base, if \mathcal{B} is σ -locally finite and for any neighbourhood O of p in βX there is a neighbourhood O' of p and a nice subfamily π of \mathcal{B} such that $\bigcup \pi(O') \subset O$.

Definition 4. Let $p \in X^*$. A normal crowded space X is called *p*-nice, if there is a *p*-nice π -base \mathcal{B} of X with the following property: $p \notin [U]_{\beta X}$ for every $U \in \mathcal{B}$.

Definition 5. Let π be any subfamily of a π -base \mathcal{B} . Then a *cap* of π in \mathcal{B} , denoted $\mathcal{B}'(\pi)$, are all the sets $U \in \mathcal{B}$ with the following property: if U meets some $V \in \pi$, then U is a proper subset of V, i.e.

$$\mathcal{B}'(\pi) = \{ U \in \mathcal{B} \colon \forall V \in \pi(U \cap V = \emptyset \lor U \subsetneq V) \}.$$

Definition 6. Let π be any subfamily of a π -base \mathcal{B} . Then a *little cap* of π in \mathcal{B} , denoted $\mathcal{B}(\pi)$, are all maximal sets of a cap $\mathcal{B}'(\pi)$, i.e.

$$\mathcal{B}(\pi) = \{ U \in \mathcal{B}'(\pi) \colon \forall V \in \mathcal{B}'(\pi) (\neg (U \subsetneq V)) \}.$$

Lemma 1. Let π be any family of open sets, $U_{\varphi} \in \text{Cell}(\pi)$ and $x \in U_{\varphi}$. Then for any $V \in \pi$ the following hold: $x \in V$ if and only if $V \in \varphi$.

PROOF: Let $x \in V$ and $V \notin \varphi$. Then $U_{\varphi} \cap [V] = \emptyset$ implies $x \notin U_{\varphi}$. Let $x \notin V$ and $V \in \varphi$. Then $U_{\varphi} \subset V$ implies $x \notin U_{\varphi}$.

Lemma 2. Let π and σ be any families of open sets such that $\pi \subset \sigma$. Then $\operatorname{Cell}(\pi) \preceq \operatorname{Cell}(\sigma)$.

PROOF: Let $U_{\varphi} \cap U_{\varphi'} \neq \emptyset$ for some $\varphi \subset \pi$ and $\varphi' \subset \sigma$. For any point $x \in U_{\varphi} \cap U_{\varphi'}$ we have $\varphi = \{V \in \pi : x \in V\}$ and $\varphi' = \{V \in \sigma : x \in V\}$. Hence $\varphi \subset \varphi'$ implies $\bigcap \varphi' \subset \bigcap \varphi$. Moreover, $\pi \setminus \varphi = \{V \in \pi : x \notin V\}$ and $\sigma \setminus \varphi' = \{V \in \sigma : x \notin V\}$. Hence $\pi \setminus \varphi \subset \sigma \setminus \varphi'$ and $[\bigcup(\pi \setminus \varphi)] \subset [\bigcup(\sigma \setminus \varphi')]$. Finally, $U_{\varphi'} \subset U_{\varphi}$.

Lemma 3. Let a family π be open locally finite and everywhere dense in X. Then $\operatorname{Cell}(\pi)$ is a nice family, refining π .

PROOF: If $U_{\varphi} \neq \emptyset$ for some $\varphi \subset \pi$, then φ is finite and U_{φ} is open.

If $U \in \varphi \setminus \varphi'$, then $U_{\varphi} \subset U$ and $U_{\varphi'} \cap U = \emptyset$. So $\operatorname{Cell}(\pi)$ is cellular.

Let an open set O meet only finitely many sets of π , say U_0, \ldots, U_k . Then $O \cap U_{\varphi} \neq \emptyset$ implies $\varphi \subset \{U_0, \ldots, U_k\}$. So O meets at most 2^{k+1} members of Cell (π) , which is locally finite.

Let x not be a boundary point of any $U \in \pi$. Then $x \in U_{\varphi}$ for $\varphi = \{U \in \pi : x \in U\}$ and $\text{Cell}(\pi)$ is everywhere dense.

Let U_{φ} meet some $V \in \pi$. Then $V \in \varphi$ by our definition. Hence $U_{\varphi} \subset \bigcap \varphi$ implies $U_{\varphi} \subset V$, i.e., $\operatorname{Cell}(\pi)$ refines π .

Lemma 4. Sorgenfrey line S has a nice π -base.

PROOF: Every $\mathcal{B}_n = \{[z + k/2^n, z + k + 1/2^n): z \in \mathbb{Z} \text{ and } k = 0, \dots, 2^n - 1\}$ is a nice family and $\mathcal{B} = \bigcup_{n \in \omega} \mathcal{B}_n$ is a nice π -base. Indeed, let O be any neighbourhood of a closed set F. Define σ to be all maximal sets of the cover $\mathcal{A} = \{U \in \mathcal{B} : U \cap F = \emptyset \lor U \subset O\}$ of X. Since \mathcal{B} is embedded, σ is cellular. Any $x \in F$ belongs to some $U \in \mathcal{A}$. Let V be the maximal set of \mathcal{A} , containing U. Then $V \in \sigma$ and σ is a cover. Hence σ is nice and $\bigcup \sigma(F) \subset O$.

Lemma 5. Every metrizable crowded space X has a nice π -base.

PROOF: For every $i \in \omega$ let \mathcal{P}_i be a locally finite open cover of X, consisting of sets with diameter at most 1/(i+1). Obviously, $\mathcal{P} = \bigcup_{i \in \omega} \mathcal{P}_i$ is a regular base of Arhangelskii. Every $\mathcal{B}_i = \operatorname{Cell}(\bigcup_{j \leq i} \mathcal{P}_i)$ is nice and $\mathcal{B}_i \succeq \mathcal{P}_i$ by Lemma 3, $\mathcal{B}_{i+1} \succeq \mathcal{B}_i$ by Lemma 2. Then $\mathcal{B} = \bigcup_{i \in \omega} \mathcal{B}_i$ is a nice π -base. Indeed, let O be any neighbourhood of a closed set F. Assume π to be all maximal sets of the cover $\{U \in \mathcal{P} : U \cap F = \emptyset \lor U \subset O\}$. It is easy to see that π is a locally finite cover of X and $\bigcup \pi(F) \subset O$. For any $U \in \pi$ we fix unique $i_0 \in \omega$ so that $U \in \mathcal{P}_{i_0}$. If U meets some $V \in \mathcal{B}_{i_0}$, where the index i_0 is one and the same, then $V \subset U$. Hence $\mathcal{B}_U = \{V \in \mathcal{B}_{i_0} : V \subset U\}$ is nice in U. Let \mathcal{B}_{π} be all maximal members of $\bigcup_{U \in \pi} \mathcal{B}_U$. Since \mathcal{B} is embedded, \mathcal{B}_{π} is nice. Let $V \in \mathcal{B}_{\pi}$ intersect F. Then $V \in \mathcal{B}_U$ for some $U \in \pi$ by our construction. It implies $V \subset U$ and $U \cap F \neq \emptyset$. But then $U \subset O$ implies $V \subset O$ and $\bigcup \mathcal{B}_{\pi}(F) \subset O$.

Lemma 6. Let \mathcal{B} be a σ -locally finite π -base. Then \mathcal{B} is nice if and only if for any two closed disjoint subsets F and G of X there is a nice subfamily σ of \mathcal{B} such that $\bigcup \sigma(F) \cap (\bigcup \sigma(G)) = \emptyset$.

PROOF: Let \mathcal{B} be nice and let F and G be closed and disjoint. Then there is a nice subfamily σ of \mathcal{B} such that $\bigcup \sigma(F) \subset X \setminus G$. Since σ is cellular, $\sigma(F) \cap \sigma(G) = \emptyset$ implies $\bigcup \sigma(F) \cap (\bigcup \sigma(G)) = \emptyset$.

Vice versa. Let O and O' be any neighbourhoods of a closed set F such that $[O'] \subset O$. Then every nice subfamily σ of \mathcal{B} is everywhere dense in canonically closed $G = [X \setminus [O']]$. Hence $\bigcup \sigma(F) \cap (\bigcup \sigma(G)) = \emptyset$ implies $\bigcup \sigma(F) \subset O$. \Box

Lemma 7. Let there be a nice π -base \mathcal{A} with the following properties: $\mathcal{A} = \bigcup_{i \in \omega} \mathcal{A}_i$ and every \mathcal{A}_i is locally finite. Then there is a nice π -base \mathcal{B} such that $\mathcal{B} = \bigcup_{i \in \omega} \mathcal{B}_i$ and for every $i \in \omega$ the following hold:

- 1) \mathcal{B}_i is a nice family;
- 2) $\mathcal{A}_i \prec \mathcal{B}_i;$
- 3) $\mathcal{B}_i \prec \mathcal{B}_{i+1};$
- 4) there is a strongly cellular family $\{U(\nu) : U \in \mathcal{B}_i \text{ and } \nu \in 3\}$ of sets $U(\nu) \in \mathcal{B}_{i+1}$ with $[U(\nu)] \subset U$.

PROOF: Every

$$\mathcal{D}_i = \operatorname{Cell}\left(\bigcup_{j\leq i} \mathcal{A}_j \cup \{X\}\right)$$

S. Logunov

is nice and $\mathcal{A}_i \leq \mathcal{D}_i$ by Lemma 3, $\mathcal{D}_i \leq \mathcal{D}_{i+1}$ by Lemma 2. To provide (4) we put $\mathcal{B}_0 = \mathcal{D}_0$ and assume \mathcal{B}_i to be constructed for some $i \in \omega$. There is a strongly cellular family of nonempty open sets

$$\mathcal{W}_i = \{ U(\nu) \colon U \in \mathcal{B}_i \text{ and } \nu \in 3 \}$$

with $[U(\nu)] \subset U$. If $\mathcal{B}_{i+1} = \operatorname{Cell}(\mathcal{B}_i \cup \mathcal{W}_i \cup \mathcal{D}_{i+1})$, then $\mathcal{B} = \bigcup_{i \in \omega} \mathcal{B}_i$ is as required.

Indeed, leaving the conditions 1)-4) to the reader we will show only that \mathcal{B} is nice. Let O be any neighbourhood of a closed set F in X. There is nice $\sigma \subset \mathcal{A}$ such that $\bigcup \sigma(F) \subset O$. For any $U \in \sigma$ we choose unique $i_0 \in \omega$ so that $U \in \mathcal{A}_{i_0}$. By our construction, $\mathcal{A}_{i_0} \preceq \mathcal{D}_{i_0} \preceq \mathcal{B}_{i_0}$, where the index i_0 is one and the same. So $V \cap U \neq \emptyset$ implies $V \subset U$ for every $V \in \mathcal{B}_{i_0}$. Hence $\mathcal{B}_U = \{V \in \mathcal{B}_{i_0} \colon V \subset U\}$ is nice in U. Since σ is nice, $\mathcal{B}_{\sigma} = \bigcup_{U \in \sigma} \mathcal{B}_U$ is also nice. Let $V \cap F \neq \emptyset$ for some $V \in \mathcal{B}_{\sigma}$. Then $V \in \mathcal{B}_U$ implies $V \subset U$ for unique $U \in \sigma$ and $U \cap F \neq \emptyset$ implies $U \subset O$. Hence $V \subset O$ implies $\bigcup \mathcal{B}_{\sigma}(F) \subset O$ and our proof is complete. \Box

From now on we may assume that every nice π -base \mathcal{B} satisfies the conditions 1)-4). Then \mathcal{B} is embedded and $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$ if $i \neq j$. So for each $U \in \mathcal{B}$ we can put n(U) = i if $U \in \mathcal{B}_i$.

Lemma 8. If $\mathcal{A} \subset \mathcal{B}$ is locally finite, then "little cap" $\mathcal{B}(\mathcal{A})$ is nice.

PROOF: Since $\mathcal{B}(\mathcal{A}) \subset \mathcal{B}$, it is a family of open sets.

Since $\mathcal{B}(\mathcal{A})$ is the family of maximal sets of $\mathcal{B}'(\mathcal{A})$, which is embedded, then $\mathcal{B}(\mathcal{A})$ is cellular.

Let an open O intersect at most finitely many sets of \mathcal{A} and let $x \in O$ not be in the boundary of any of them. There is a neighbourhood O_0 of x such that $O_0 \subset O$ and for any $U \in \mathcal{A}$ the following hold: either $O_0 \cap U = \emptyset$ or $O_0 \subsetneq U$. If $V \in \mathcal{B}$ and $V \subset O_0$, then $V \in \mathcal{B}'(\mathcal{A})$. Let W be the maximal set of $\mathcal{B}'(\mathcal{A})$, containing V. Then $W \cap O \neq \emptyset$ and $W \in \mathcal{B}(\mathcal{A})$, which is maximal.

Now we have to show only that $\mathcal{B}(\mathcal{A})$ is locally finite. Let a neighbourhood O of a point x intersect at most finitely many sets of \mathcal{A} . We put either $k_0 = \max\{n(U): O \text{ meets } U \in \mathcal{A}\}$, if the last set is not empty, or $k_0 = 1$ otherwise. For any neighbourhood O_0 of x with $[O_0] \subset O$ there is a nice subfamily σ of \mathcal{B} such that $\bigcup \sigma(O_0) \subset O$. Let a neighbourhood O_1 of x satisfy both $O_1 \subset O_0$ and O_1 meets at most finitely many members of σ . We set $k_1 = \max\{n(U): O_1 \text{ meets } U \in \sigma\}$ and $k = k_0 + k_1$.

Let $U \in \mathcal{B}$ intersect O_1 and n(U) > k. Since σ is nice, $U \cap O_1$ meets some $V \in \sigma$. Then $k_1 \ge n(V)$ implies $U \subset V \subset O_0$. Let U intersect some $V \in \mathcal{A}$. Then $k_0 \ge n(V)$ implies $U \subsetneq V$ and $U \in \mathcal{B}'(\mathcal{A})$.

Let $U \in \mathcal{B}$ intersect O_1 and n(U) > k + 1. By our construction, U is a proper subset of unique $V \in \mathcal{B}_{k+1}$. Since $V \in B'(\mathcal{A})$, then $U \notin \mathcal{B}(\mathcal{A})$.

388

Finally, let a neighbourhood O_2 satisfy both $O_2 \subset O_1$ and O_2 intersects at most finitely many members of $\bigcup_{i \leq k+1} \mathcal{B}_i$. Then O_2 intersects at most finitely many members of $\mathcal{B}(\mathcal{A})$.

Corollary 2. For any locally finite subfamily π of \mathcal{B} there is a nice subfamily σ of \mathcal{B} such that $\sigma \succ \pi$.

Lemma 9. Let \mathcal{B} be a σ -locally finite π -base. Then \mathcal{B} is nice if and only if \mathcal{B} is *p*-nice for any point *p* of βX .

PROOF: Let \mathcal{B} be nice and assume O and O' to be any neighbourhoods of p in βX with $[O']_{\beta X} \subset O$. Then $U = O \cap X$ is an open neighbourhood of $F = [O']_{\beta X} \cap X$. There is a nice subfamily σ of \mathcal{B} such that $\bigcup \sigma(F) \subset U$. But then O contains $\bigcup \sigma(O') = \bigcup \sigma(F)$.

Vice versa. Let O be any neighbourhood of a closed set F in X. Then O^{ε} is an open neighbourhood of $G = [F]_{\beta X}$ in βX . For any point x of G there is a neighbourhood Ox in βX and a nice subfamily σ_x of \mathcal{B} such that $\sigma_x(Ox) \subset O^{\varepsilon}$. The open cover $\{Ox : x \in G\}$ of G contains a finite subcover $\{Ox_1, \ldots, Ox_n\}$. The family $\mathcal{A} = \bigcup_{i \leq n} \sigma_i$, where $\sigma_i = \sigma_{x_i}$, is locally finite in X. Hence $\sigma = \mathcal{B}(\mathcal{A})$ is nice by Lemma 8 and $\bigcup \sigma(F) \subset O$. Indeed, every $U \in \sigma(F)$ intersects some Ox_i . Since σ_i is nice, U meets some $V \in \sigma_i$. Then $U \subset V$ by the definition of σ and $V \cap Ox_i \neq \emptyset$. Hence $V \subset O^{\varepsilon}$ and our proof is complete.

4. Butterfly-point

From now on a space X has a nice π -base \mathcal{B} , satisfying the conditions 1)–4) of Lemma 7. By $\Sigma = \Sigma(\mathcal{B})$ we denote all nice subfamilies of \mathcal{B} , i.e. $\Sigma = \{\sigma \subset \mathcal{B}: \sigma \text{ is nice}\}$. For any $\sigma \in \Sigma$ and $\nu \in 3$ we put $\sigma(\nu) = \{U(\nu): U \in \sigma\}$.

Lemma 10. Let a paracompact space X has a nice π -base. Then X is nice.

PROOF: For any point p of X^* there is an open locally finite cover \mathcal{P} of X with the following property: $p \notin [U]_{\beta X}$ for every $U \in \mathcal{P}$. Let $\mathcal{B} = \bigcup_{i \in \omega} \mathcal{B}_i$ be a nice π -base, where every \mathcal{B}_i is locally finite. Then each

$$\mathcal{B}'_i = \{ U \cap V \colon U \in \mathcal{B}_i \text{ and } V \in \operatorname{Cell}(\mathcal{P}) \}$$

is locally finite and $\mathcal{B}' = \bigcup_{i \in \omega} \mathcal{B}'_i$ is as required. Indeed, for any open neighbourhood O of a closed set F there is a nice subfamily σ of \mathcal{B} such that $\bigcup \sigma(F) \subset O$. But then $\sigma' = \{U \cap V : U \in \sigma \text{ and } V \in \text{Cell}(\mathcal{P})\}$ is a nice subfamily of \mathcal{B}' , having the same property. \Box **Lemma 11.** Let \mathcal{B} be a nice π -base of X and $p \in X^*$. If there is a zero-set Z in βX with $p \in Z \subset X^*$, then there is $\sigma \in \Sigma$ with the following property: $p \notin [U]_{\beta X}$ for any $U \in \sigma$.

PROOF: Let $Z = \bigcap_{i \in \omega} O_i$, where O_i is open in βX and $[O_{i+1}]_{\beta X} \subset O_i$ for each $i \in N$. We put $F_0 = [X \setminus [O_2]]$ and $F_i = [O_i \setminus [O_{i+2}]]$. We set $W_0 = X \setminus [O_3]$ and $W_i = O_{i-1} \setminus [O_{i+3}]$. Then every F_i is a canonically closed subset of open W_i and $\bigcup_{i \in \omega} F_i = X$. If $\sigma_i \subset \mathcal{B}$ is nice and $\bigcup \sigma_i(F_i) \subset W_i$, then $\mathcal{A} = \bigcup_{i \in \omega} \sigma_i(F_i)$ is locally finite. Hence "little cap" $\sigma = \mathcal{B}(\mathcal{A})$ is nice by Lemma 8 and $\sigma \succ \mathcal{A}$. If $U \in \sigma$ meets any F_i , then U meets some $V \in \sigma_i(F_i)$. It implies $U \subset V \subset W_i$ and our proof is complete.

We omit the proofs of Lemmas 12–15, since they coincide with the proofs of Lemmas 2–5 in [5].

Lemma 12. Let for a point p of X^* there be $\sigma_p \in \Sigma$ such that $p \notin [U]_{\beta X}$ for any $U \in \sigma$. Then there is a well-ordered chain $\{\sigma_{\alpha} : \alpha < \lambda\} \subset \Sigma$ and a p-ultrafilter \mathcal{F}_{α} on every σ_{α} , with the following properties for all $\alpha < \beta < \lambda$ and $f_{\beta}^{\alpha} = f_{\sigma\beta}^{\sigma_{\alpha}}$:

- 1) $p \notin [U]_{\beta X}$ for every $U \in \sigma_0$;
- 2) $f^{\alpha}_{\beta}(\mathcal{F}_{\alpha}) \subset \mathcal{F}_{\beta};$
- 3) $\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma_{\beta};$
- 4) for any $\sigma \in \Sigma \setminus \{\sigma_{\alpha} : \alpha < \lambda\}$ there is $\alpha < \lambda$ with $\neg(\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma)$.

Lemma 13. We have $\bigcap \mathcal{F}_0^* \subset X^*$.

Lemma 14. If $\alpha < \beta < \lambda$, then $\bigcap \mathcal{F}^*_{\beta} \subset \bigcap \mathcal{F}^*_{\alpha}$.

Lemma 15. For any neighbourhood O of p in βX there is $\alpha < \lambda$ with $\bigcap \mathcal{F}^*_{\alpha} \subset O$.

Lemma 16 coincides with Proposition 6 in [5]. Now we present a new proof, probably clearer and easier to understand.

Lemma 16. The set

$$B_{\alpha}(\nu) = \bigcap \mathcal{F}_{\alpha}^{*} \cap \left(\bigcap_{\beta \in \lambda \setminus \alpha} \left[\bigcup \sigma_{\beta}(\nu)\right]_{\beta X}\right)$$

is not empty for any $\alpha < \lambda$ and $\nu \in 3$.

PROOF: Let $F \in \mathcal{F}_{\alpha}$ and let $\alpha < \beta_0 < \cdots < \beta_i < \cdots < \beta_n < \lambda$ be any finite sequence of indexes. Our goal is to find by induction $U \in \mathcal{B}$ so that $U \subset \bigcup F$ and $U \subset V(\nu)$ for any $i \leq n$ and some $V \in \sigma(\beta_i)$. We can assume $F \prec \sigma_{\beta_0}$ and choose $G_i \in \mathcal{F}_{\beta_i}$ so that $G_i \prec \sigma_{\beta_{i+1}}$ for any i < n and $G_n = \sigma_{\beta_n}$. For $F_0 = f_{\beta_0}^{\alpha} F \cap G_0$ and $F_{i+1} = f_{\beta_{i+1}}^{\beta_i} F_i \cap G_{i+1}$ we get $F_i \in \mathcal{F}_{\beta_i}$, $F_i \prec F_{i+1}$ and $\bigcup F_{i+1} \subset \bigcup F_i$. For

any $U_n \in F_n$ and $U_i \in F_i$ with $U_n \subset U_i$ we obtain

(1)
$$U_n \subsetneq \cdots \subsetneq U_i \subsetneq \cdots \subsetneq U_1 \subsetneq U_0 \subsetneq \bigcup F.$$

Only in order to simplify the notation assume, that the order of the embedding does not change.

To insert the set $U_0(\nu)$ into the sequence (1), we note the following points.

1) Since every σ_{β_i} is nice and unique, U_i of σ_{β_i} can be replaced with another or the same set U'_i of σ_{β_i} so that

$$\bigcap_{i=1}^{n} U_{i}' \cap U_{0}(\nu) \neq \emptyset.$$

2) Since $U_i \subsetneq U_0$, then $U'_i \subset U_0(\nu)$ by the definition of \mathcal{B} .

3) Perhaps $U'_1 \neq U_0(\nu)$:

(2)
$$U'_n \subset \cdots \subset U'_i \subset \cdots \subset U'_1 \subsetneq U_0(\nu) \subset U_0 \subset \bigcup F.$$

4) Perhaps some sets of U'_i are equal to $U_0(\nu)$:

(3)
$$U'_n \subset \cdots \subset U'_i \subset \cdots \subset U'_{i_0} \subsetneq U'_{i_0-1} = \cdots = U'_1 = U_0(\nu) \subset U_0 \subset \bigcup F.$$

To insert the set $U'_1(\nu)$ in sequence (2) we can repeat points 1)-4) to get either

(4)
$$U''_n \subset \cdots \subset U''_i \subset \cdots \subset U''_2 \subsetneq U'_1(\nu) \subset U'_1 \subsetneq U_0(\nu) \subset U_0 \subset \bigcup F$$

or

(5)
$$U''_n \subset \cdots \subset U''_i \subset \cdots \subset U''_{i_1} \subsetneq U''_{i_1-1} = \cdots = U'_2$$
$$= U'_1(\nu) \subset U'_1 \subsetneq U_0(\nu) \subset U_0 \subset \bigcup F.$$

To insert the set $U'_1(\nu)$ in sequence (3) we can repeat points 1)-4) to get either

(6)
$$U_n'' \subset \cdots \subset U_i'' \subset \cdots \subset U_{i_0}'' \subsetneq U_1'(\nu)$$
$$\subset U_{i_0-1}' = \cdots = U_1' = U_0(\nu) \subset U_0 \subset \bigcup F$$

or

(7)
$$U_n'' \subset \cdots \subset U_i'' \subset \cdots \subset U_{i_1}'' \subsetneq U_{i_1-1}'' = \cdots = U_{i_0}'' = U_1'(\nu)$$
$$\subset U_{i_0-1}' = \cdots = U_1' = U_0(\nu) \subset U_0 \subset \bigcup F.$$

Now we can insert $U_2''(\nu)$ into the sequences (4) and (5). We can insert $U_{i_0}''(\nu)$ into the sequences (6) and (7) and so on. After each "stroke by the tail in front of the set $U_i(\nu)$ " it becomes shorter by at least one set. So, after a finite number $k \leq n$ of "strokes" it will be empty. Then $U_k(\nu)$ is as required.

Theorem 5. Let for a point p of X^* there be $\sigma_p \in \Sigma$ such that $p \notin [U]_{\beta X}$ for any $U \in \sigma$. Then p is a butterfly-point of βX .

PROOF: For any $\nu \in 3$ denote $F_{\nu} = \{p_{\alpha}(\nu) : \alpha < \lambda\}$, where $p_{\alpha}(\nu)$ is any point of the set $B_{\alpha}(\nu)$ in the previous lemma. By Lemmas 13–15, $F_{\nu} \subset B_0 \subset X^*$ and for any neighbourhood O of p there is $\alpha < \lambda$ with $\{p_{\beta}(\nu) : \beta \in \lambda \setminus \alpha\} \subset B_{\alpha} \subset O$. Then the condition $\{p_{\beta}(\nu) : \beta < \alpha\} \subset [\bigcup \sigma_{\alpha}(\nu)]_{\beta X}$ implies both that the sets $[F_{\nu}]_{\beta X} \setminus \{p\}$ are pairwise disjoint and $p \in F_{\nu}$ for no more than one unique F_{ν} . The other two ensure that p is a b-point in βX . Our proof is complete.

References

- Błaszczyk A., Szymański A., Some non-normal subspaces of the Čech-Stone compactification of a discrete space, in Abstracta, 8th Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
- [2] Logunov S., On hereditary normality of compactifications, Topology Appl. 73 (1996), no. 3, 213–216.
- [3] Logunov S., On hereditary normality of zero-dimensional spaces, Topology Appl. 102 (2000), no. 1, 53–58.
- [4] Logunov S., On remote points, non-normality and π-weight ω₁, Comment. Math. Univ. Carolin. 42 (2001), no. 2, 379–384.
- [5] Logunov S., On non-normality points and metrizable crowded spaces, Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527.
- [6] Logunov S., Non-normality points and big products of metrizable spaces, Topology Proc. 46 (2015), 73–85.
- [7] Šapirovskiĭ B.È., The embedding of extremely disconnected spaces in bicompacta. b-points and weight of point-wise normal spaces, Dokl. Akad. Nauk SSSR 223 (1975), no. 5, 1083–1086 (Russian).
- [8] Terasawa J., βX {p} are non-normal for non-discrete spaces X, Topology Proc. 31 (2007), no. 1, 309–317.
- Warren N. M., Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer. Math. Soc. 33 (1972), 599–606.

S. Logunov:

Department for Algebra and Topology, Udmurt State University, Universitetskaya 1, Izhevsk 426034, Russia

E-mail: olla209@yandex.ru

(Received October 27, 2019, revised September 7, 2020)