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Preservation of properties of a map by forcing

Akira Iwasa

Abstract. Let f : X → Y be a continuous map such as an open map, a closed
map or a quotient map. We study under what circumstances f remains an open,
closed or quotient map in forcing extensions.
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1. Introduction

All spaces are T1 and all maps are surjective. Let V be a ground model and

let VP denote the extension of V by a forcing P. For a topological space (X, T )

in V, we define a topological space (X, T P) in VP such that T P is the topology

generated by T in VP. By definition T is a base for T P.

In [3] R. Grunberg, L.R. Junqueira, and F.D. Tall studied for a normal space

(X, T ) conditions under which (X, T P) remains a normal space with the Cohen

forcing P. In [4] we studied for a countably compact space or a pseudocompact

space (X, T ), conditions under which (X, T P) remains a countably compact space

or a pseudocompact space.

Consider a map

f : (X, TX) → (Y, TY ).

Suppose that f has property ϕ such as being a closed map. We say that a forcing P
preserves property ϕ if, in VP, the map

f : (X, T P

X ) → (Y, T P

Y )

still has property ϕ. In this note, we study under what circumstances various

properties of a map are preserved by forcing. We are interested in the following

maps. Here intA denotes the interior of a set A.

Definition 1.1. Let f : X → Y be a continuous map. Then f is called an open

map (or closed map) if for every open (or closed) subset S of X , f(S) is open

(closed, respectively) in Y .
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We call f a perfect map if it is a closed map and for every y ∈ Y , f−1(y) is

compact.

We call f a pseudo-open map if for every y ∈ Y and every open set U ⊆ X

with f−1(y) ⊆ U , it is true that y ∈ intf(U).

We call f a quotient map if for every U ⊆ Y , f−1(U) is open in X if and only

if U is open in Y ; equivalently, f is a quotient map if for every F ⊆ Y , f−1(F )

is closed in X if and only if F is closed in Y .

Let us look at some properties of a map that are preserved by forcing.

Theorem 1.2. Let f : (X, TX) → (Y, TY ) be a map. For any forcing P, the

following holds:

(1) If f is a continuous map, then f : (X, T P

X ) → (Y, T P

Y ) is a continuous

map.

(2) If f is an open map, then f : (X, T P

X ) → (Y, T P

Y ) is an open map.

(3) If f is a homeomorphism, then f : (X, T P

X ) → (Y, T P

Y ) is a homeomor-

phism.

Proof: (1) To show that f remains continuous in VP, take W ∈ T P

Y . We will

show that f−1(W ) ∈ T P

X . We can write W =
⋃

{Uξ ∈ TY : ξ ∈ Γ} for some index

set Γ. Then f−1(W ) =
⋃

{f−1(Uξ) : ξ ∈ Γ}. Since f−1(Uξ) ∈ TX for each ξ ∈ Γ,

we have f−1(W ) ∈ T P

X .

(2) By (1), f remains continuous in VP. To show that f is open in VP, take

W ∈ T P

X . Write W =
⋃

{Uξ ∈ TX : ξ ∈ Γ}. Then f(W ) =
⋃

{f(Uξ) : ξ ∈ Γ}.

Since f(Uξ) ∈ TY for each ξ ∈ Γ, we have f(W ) ∈ T P

Y .

(3) Being one-to-one and being onto are preserved by any forcing. Apply (1)

and (2). �

At the end of this section, let us look at a simple example where forcing destroys

a closed map. We introduce some notations. Let C be the Cohen forcing that

adds a Cohen real ([8, Definition 5.1], C = Fn(ω, 2)). Denote by [0, 1]V the closed

interval in V with the usual topology, and [0, 1]V
C

the closed interval in VC with

the usual topology. We have [0, 1]V $ [0, 1]V
C

.

Example 1.3. There is a closed map f : (X, TX) → (Y, TY ) such that f :

(X, T C

X ) → (Y, T C

Y ) is not a closed map.

Proof: Let
X = [0, 1]V × [0, 1]V, and Y = [0, 1]V.

Define f : (X, TX) → (Y, TY ) such that f((a, b)) = a for all (a, b) ∈ X . In V,

f is a closed map. In VC, pick r ∈ [0, 1]V
C

\ [0, 1]V. Let N be the set of all

natural numbers. Consider the decimal representation of r = 0.n1n2n3 . . . ni . . .,
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where ni ∈ {0, 1, . . . , 9} for each i ∈ N. For each k ∈ N, let qk = 0.n1n2 . . . nk.

The set A := {(1/k, qk) : k ∈ N} has no accumulation point in X because (0, r)

is not in X , so A is a closed subset of (X, T C

X ). But f(A) = {1/k : k ∈ N} is

not a closed subset of (Y, T C

Y ) because 0 is an accumulation point of f(A). Thus,

f : (X, T C

X ) → (Y, T C

Y ) is not a closed map. �

In this example, f is an open map because it is a projection. By Theo-

rem 1.2 (2), f remains open in VC. In the last section, we give an example where

f is a closed map in V, but in VC f is not even a quotient map (Example 3.6).

2. Preserving a closed map

In the diagram below, “ϕ → ψ ” means that if a map has property ϕ, then it

has property ψ. Properties preserved by any forcing are in boldface.

homeomorphic

��

��
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄

perfect

��

closed

��

open

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

pseudo-open

��

quotient

��

continuous

By Theorem 1.2, “homeomorphic”, “open” and “continuous” are preserved by

any forcing, but all other properties can be destroyed by forcing. In this section,

we study conditions under which the properties in the diagram are preserved.

The following lemma is useful for our purpose. A topological space is said to be

scattered if every nonempty subspace contains an isolated point.

Lemma 2.1 ([7, Lemma 7]). If (X, T ) is a compact scattered space, then (X, T P)

is a compact scattered space for any forcing P.

We use the following characterization of a closed map.
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Lemma 2.2 ([2, Theorem 1.4.13]). For a continuous map f : X → Y , the follow-

ing are equivalent:

(1) f is a closed map.

(2) For every y ∈ Y and every open set W ⊆ X with f−1(y) ⊆ W , there

exists an open set H ⊆ Y such that y ∈ H and f−1(H) ⊆W .

We show that if the boundary of each fiber is compact and scattered, then

a closed map remains closed in any forcing extension. Here ∂A denotes the

boundary of a set A.

Theorem 2.3. Suppose that f : (X, TX) → (Y, TY ) is a closed map such that

for every y ∈ Y , ∂f−1(y) is compact and scattered. Then for any forcing P,
f : (X, T P

X ) → (Y, T P

Y ) is a closed map.

Proof: The map f remains continuous in VP by Theorem 1.2 (1). We use

Lemma 2.2 to show that f remains closed in VP. Let y ∈ Y and take W ∈ T P

X

such that f−1(y) ⊆W . We will find H ∈ T P

Y such that y ∈ H and f−1(H) ⊆W .

We are assuming that all spaces are T1 in this paper, so {y} is a closed set.

Since f is continuous, f−1(y) is closed, and we have ∂f−1(y) ⊆ f−1(y). In VP,

for each x ∈ ∂f−1(y) choose Ux ∈ TX such that x ∈ Ux ⊆ W . Then {Ux :

x ∈ ∂f−1(y)} is an open cover of ∂f−1(y) in VP, and by Lemma 2.1, ∂f−1(y)

remains compact in VP, so we can choose a finite subcover, say {Uxi
: i < n}. We

have f−1(y) ∪
⋃

i<n Ui ∈ TX . Using Lemma 2.2 and the fact that f is a closed

map in V, we can find H ∈ TY such that y ∈ H and f−1(H) ⊆ f−1(y)∪
⋃

i<n Ui.

Since f−1(y) ∪
⋃

i<n Ui ⊆W , we have f−1(H) ⊆W . �

In a similar way, we can prove that being a pseudo-open map is preserved by

any forcing if the boundary of each fiber is compact and scattered.

Proposition 2.4. Suppose that f : (X, TX) → (Y, TY ) is a pseudo-open map such

that for each y ∈ Y , ∂f−1(y) is compact and scattered. Then for any forcing P,
f : (X, T P

X ) → (Y, T P

Y ) is a pseudo-open map.

Proof: By Theorem 1.2 (1), f is continuous in VP. To show that f is pseudo-

open in VP, let y ∈ Y and take W ∈ T P

X such that f−1(y) ⊆ W . We will show

that y ∈ intf(W ). Using the same argument in the proof of Theorem 2.3, we can

find a finite open cover {Ui : i < n} of ∂f−1(y) such that Ui ∈ TX and Ui ⊆ W

for each i < n, and so f−1(y) ∪
⋃

i<n Ui ∈ TX . By the fact that f is pseudo-open

in V, we have y ∈ intf(f−1(y)∪
⋃

i<n Ui). Since f
−1(y)∪

⋃

i<n Ui ⊆W , we have

y ∈ intf(W ). �

According to the example below, we cannot weaken the condition that the

boundary of each fiber is compact in Theorem 2.3 to the condition that it is

countably compact, even if the map is open.
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Example 2.5. There are a closed and open map f : (X, TX) → (Y, TY ) and a ccc

forcing P such that

(1) for each y ∈ Y , ∂f−1(y) is countably compact and scattered, and

(2) f : (X, T P

X ) → (Y, T P

Y ) is not a closed map.

Proof: In [2, Problem 3.12.17 (d)], γ′N is a compactification of N whose remain-

der coincides with an ordinal δ + 1. Let Z = γ′N \ {δ}. Then Z is a separable,

scattered, non-compact, countably compact, locally compact space. Let

X = (ω + 1)× Z, and Y = ω + 1,

where ω+1 is equipped with the usual order topology. Define a map f : (X, TX) →

(Y, TY ) such that f((a, b)) = a for all (a, b) ∈ X . By [2, Theorem 3.10.7], f is

a closed map. Moreover, f is an open map because it is a projection. For each

n ∈ ω, ∂f−1(n) = ∂({n} × Z) = ∅, and ∂f−1(ω) = ∂({ω} × Z) = {ω} × Z,

which is homeomorphic to Z, so ∂f−1(y) is countably compact and scattered for

each y ∈ Y . Let P = B(F) be the forcing in [4, Lemma 2.7], where F is a free

filter on a countable dense subset of Z. Then P is ccc and, in VP, Z contains

an infinite closed discrete subset, say {ai : i ∈ ω}. The set {(i, ai) : i ∈ ω} has

no accumulation point in (X, T P

X ), and so it is a closed subset of (X, T P

X ). But

f({(i, ai) : i ∈ ω}) = ω, which is not closed in (Y, T P

Y ). Thus, f : (X, T P

X ) →

(Y, T P

Y ) is not a closed map. �

If we assume that a space X is separable and regular, then we can obtain

a partial converse of Theorem 2.3.

Theorem 2.6. Let X be a separable regular space. Suppose that f : X → Y is

a closed map. If f remains a closed map in any ccc forcing extension, then for

each y ∈ Y , ∂f−1(y) is countably compact and scattered.

Proof: We prove by contrapositive. Assume that there is a point y ∈ Y such

that ∂f−1(y) is non-countably compact or non-scattered. Since X is separable,

X \ f−1(y) is separable. Let C be a countable dense subset of X \ f−1(y). For

each x ∈ ∂f−1(y), we have x ∈ C. Using the notation in [5, Definition 2.3],

we have bd∗c(f
−1(y)) = ∂f−1(y). Since bd∗c(f

−1(y)) is non-countably compact

or non-scattered, by [5, Theorem 2.4], there is a ccc forcing P which destroys

a neighborhood base of f−1(y); that is, there is W ∈ T P

X with f−1(y) ⊆ W such

that for all U ∈ TX with f−1(y) ⊆ U , we have U * W . We use Lemma 2.2 to

show that f : (X, T P

X ) → (Y, T P

Y ) is not a closed map. Take H ∈ T P

Y such that

y ∈ H ; we will show that f−1(H) * W . Choose H ′ ∈ TY such that y ∈ H ′ ⊆ H .

Since f−1(H ′) ∈ TX and f−1(y) ⊆ f−1(H ′), we have f−1(H ′) * W . Thus,

f−1(H) *W . �
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Perfect maps are preserved by forcing if each fiber is scattered.

Proposition 2.7. Suppose that f : (X, TX) → (Y, TY ) is a perfect map such that

for each y ∈ Y , f−1(y) is scattered. Then for any forcing P, f : (X, T P

X ) → (Y, T P

Y )

is a perfect map.

Proof: For each y ∈ Y , f−1(y) is compact and scattered, and so it remains

compact in any forcing extension by Lemma 2.1. Since ∂f−1(y) is a closed subset

of f−1(y), it is compact and scattered. By Theorem 2.3, f remains a closed map

in any forcing extension. �

Combining previous results, we can show that if X is a compact scattered

space, then all maps in Definition 1.1 are preserved.

Proposition 2.8. Let (X, TX) be a compact scattered space and let f : (X, TX) →

(Y, TY ) be a map. For any forcing P, the following hold:

(1) If f is a perfect map, then f : (X, T P

X ) → (Y, T P

Y ) is a perfect map.

(2) If f is a closed map, then f : (X, T P

X ) → (Y, T P

Y ) is a closed map.

(3) If f is a pseudo-open map, then f : (X, T P

X ) → (Y, T P

Y ) is a pseudo-open

map.

(4) If f is a quotient map, then f : (X, T P

X ) → (Y, T P

Y ) is a quotient map,

assuming that (Y, TY ) is Hausdorff.

Proof: (1) is by Proposition 2.7. (2) is by Theorem 2.3. (3) is by Proposi-

tion 2.4. To prove (4), let E ⊆ Y in VP and suppose that f−1(E) is a closed

subset of (X, T P

X ). We want to show that E is closed in (Y, T P

Y ). Since (X, T P

X )

is compact by Lemma 2.1, f−1(E) is compact in (X, T P

X ). Since f : (X, T P

X ) →

(Y, T P

Y ) is continuous by Theorem 1.2(1), f(f−1(E)) = E is compact in (Y, T P

Y ).

Forcing preserves Hausdorffness, so (Y, T P

Y ) is Hausdorff. Thus, E is a closed

subset of (Y, T P

Y ). �

3. Preserving a quotient map

In order for a quotient map to be preserved by forcing, in addition to ∂f−1(y)

being compact and scattered, {f−1(y) : y ∈ Y, |f−1(y)| > 1} needs to be a dis-

crete family.

Theorem 3.1. Let f : (X, TX) → (Y, TY ) be a quotient map. Suppose that

∂f−1(y) is compact and scattered for each y ∈ Y . Further, suppose that {f−1(y):

y ∈ Y and |f−1(y)| > 1} is a discrete family. Then for any forcing P, f : (X, T P

X )→

(Y, T P

Y ) is a quotient map.
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Proof: Let P be a forcing. By Theorem 1.2 (1), f is continuous in VP. Suppose

that f−1(E) is an open subset of (X, T P

X ) for some E ⊆ Y . We will show that

E is an open subset of (Y, T P

Y ). Fix y ∈ E. We will find H ∈ TY such that

y ∈ H ⊆ E. If ∂f−1(y) = ∅, then f−1(y) is open. Since f is a quotient map,

y is an isolated point, and y ∈ {y} ⊆ E. So suppose that ∂f−1(y) 6= ∅. For each

x ∈ ∂f−1(y), we can pick U ∈ TX such that x ∈ U ⊆ f−1(E) and U ∩f−1(w) 6= ∅

for at most one w ∈ Y with |f−1(w)| > 1. If w = y, then let Ux = U . If w 6= y,

then let Ux = U \ f−1(w). Since Y is T1, {w} is closed so f−1(w) is closed, and

so Ux is open. In either case, we have

(∗) (∀x ∈ ∂f−1(y)) [f−1f(Ux) ⊆ Ux ∪ f−1(y)].

We have that {Ux : x ∈ ∂f−1(y)} is an open cover of ∂f−1(y) in VP and ∂f−1(y)

remains compact in VP by Lemma 2.1, so there is a finite subcover, say {Uxi
:

i < n}. Let V = f−1(y) ∪
⋃

i<n Uxi
. Then V ∈ TX and V ⊆ f−1(E).

Claim 3.2. It holds that V = f−1(f(V )).

Proof: We have f(V ) = {y} ∪
⋃

i<n f(Uxi
). By (∗), f−1(f(V )) = f−1(y) ∪

⋃

i<n f
−1(f(Uxi

)) ⊆ f−1(y) ∪
⋃

i<n Uxi
= V . �

By the claim and the fact that f is a quotient map in V, we have f(V ) ∈ TY .

We also have y ∈ f(V ) ⊆ E. �

We give an example of a quotient map such that each fiber is compact and

scattered, but after adding a Cohen real, it becomes a non-quotient map.

Example 3.3. There is a quotient map f : (X, TX) → (Y, TY ) such that

(1) for each y ∈ Y , ∂f−1(y) is compact and scattered, and

(2) f : (X, T C

X ) → (Y, T C

Y ) is not a quotient map.

Proof: For each n ∈ ω, let 〈an(i) : i < ω〉 be a sequence of distinct points

converging to an. Let 〈bn : n < ω〉 be a sequence of distinct points converging

to p. Let (X, TX) be the topological sum of these convergent sequences, each of

which is homeomorphic to ω+1 with the usual order topology. Let (Y, TY ) be the

quotient space of (X, TX), where an and bn are identified for each n ∈ ω. ((Y, TY )

is called Arens’ space, see [1].) Let ãn ∈ Y denote the point where an and bn are

identified. We have

X = {p} ∪ {bn : n ∈ ω} ∪ {an : n ∈ ω} ∪
⋃

n∈ω

{an(i) : i ∈ ω};

Y = {p} ∪ {ãn : n ∈ ω} ∪
⋃

n∈ω

{an(i) : i ∈ ω}.
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Let f : (X, TX) → (Y, TY ) be the induced quotient map. For each y ∈ Y , we

have |f−1(y)| ≤ 2, so ∂f−1(y) is compact and scattered. A neighborhood of p in

(Y, TY ) has the form

(∗∗) {p} ∪ {ãn : n > k} ∪ {an(i) : n > k and i > h(n)}

for some k ∈ ω and h ∈ ωω ∩V.

Now we work in VC. Cohen reals are unbounded in ωω ∩V; that is, there is

a function g ∈ ωω ∩VC such that for every h ∈ ωω ∩V, {n ∈ ω : h(n) < g(n)}

is infinite ([6, Lemma 15.30 (ii)]). Let E = {an(g(n)) : n ∈ ω}. Then E is

a closed subset of (X, T C

X ), and f(E) = E meets every set of the form (∗∗), so

p ∈ E, and thus f(E) = E is not closed in (Y, T C

Y ). Since E = f−1(f(E)),

f : (X, T C

X ) → (Y, T C

Y ) is not a quotient map. �

Remark 3.4. The quotient map f in the proof of Example 3.3 cannot satisfy the

hypothesis of Theorem 3.1. Indeed, for each n ∈ ω, we have f−1(ãn) = {an, bn},

and p is an accumulation point of the family {{an, bn} : n ∈ ω}.

Remark 3.5. By Proposition 2.4, the quotient map f in the proof of Example 3.3

cannot be a pseudo-open map. Indeed, U := {p} ∪ {bn : n ∈ ω} is an open subset

of X which contains {p} = f−1(p), but p /∈ intf(U) because intf(U) = ∅.

Before concluding this note, we give an example where a perfect map becomes

a non-quotient map by adding a Cohen real. For the definition of [0, 1]V and

[0, 1]V
C

, see the paragraph before Example 1.3.

Example 3.6. There is a perfect map f : (X, TX) → (Y, TY ) such that f :

(X, T C

X ) → (Y, T C

Y ) is not a quotient map.

Proof: Let

X = [0, 1]V × [0, 1]V, and Y = {0∗} ∪ ([0, 1]V × (0, 1]V),

where X is equipped with the usual Euclidean topology and Y is the quotient

space of X where points in [0, 1]V × {0} are identified as 0∗. Let f : (X, TX) →

(Y, TY ) be the induced quotient map, so f((x, 0)) = 0∗ for all x ∈ [0, 1]V. Clearly,

f is a perfect map. Let N be the set of all natural numbers. For each n ∈ N,
let Un = {0∗} ∪ ([0, 1]V × (0, 1/n)V). Then {Un : n ∈ N} is a neighborhood base

of 0∗ in (Y, TY ).

Now we work in VC and prove that f : (X, T C

X ) → (Y, T C

Y ) is not a quotient

map. Pick r ∈ [0, 1]V
C

\ [0, 1]V and define T1 and T2 such that

T1 =
{

(x, y) ∈ X : 0 ≤ x < r and y < −
x

r
+ 1

}

;

T2 =
{

(x, y) ∈ X : r < x ≤ 1 and y <
x

1− r
−

r

1− r

}

.



Preservation of properties of a map by forcing 129

The sets T1 and T2 are open subsets of (X, T C

X ) which form right triangles with

vertices (r, 0), (0, 0) and (0, 1) for T1 and (r, 0), (1, 0) and (1, 1) for T2. Let

T = T1∪T2. The set T is an open subset of (X, T C

X ) which contains [0, 1]V×{0}.

Claim 3.7. The set f(T ) is not an open subset of (Y, T C

Y ); that is, f(T ) /∈ T C

Y .

Proof: In the space [0, 1]V
C

× [0, 1]V
C

, we can choose rationals qn such that

(qn, 1/n) /∈ T and 〈(qn, 1/n) : n < ω〉 converges to (r, 0). In (Y, T C

Y ), {Un : n ∈ N}
is still a neighborhood base of 0∗ because forcing preserves a neighborhood base

of a point, see [5, Proposition 1.5]. So the sequence 〈(qn, 1/n) : n < ω〉 converges

to 0∗ in (Y, T C

Y ). Since (qn, 1/n) /∈ f(T ) for all n ∈ N and 0∗ ∈ f(T ), we conclude

that f(T ) is not an open subset of (Y, T C

Y ). �

Since T = f−1(f(T )) and T is open in (X, T C

X ), f : (X, T C

X ) → (Y, T C

Y ) is not

a quotient map. �
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