On non-normality points, Tychonoff products and Suslin number

Sergei Logunov

Abstract. Let a space X be Tychonoff product $\prod_{\alpha < \tau} X_{\alpha}$ of τ -many Tychonoff nonsingle point spaces X_{α} . Let Suslin number of X be strictly less than the cofinality of τ . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification βX . In particular, this is true if X is either R^{τ} or ω^{τ} and a cardinal τ is infinite and not countably cofinal.

Keywords: non-normality point; Čech–Stone compactification; Tychonoff product; Suslin number

Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

Let $X^* = \beta X \setminus X$ be a remainder of Čech–Stone compactification βX of Tychonoff space X. In 1960 L. Gillman [3] posed the following question for countable discrete space $\omega = \{0, 1, 2, ...\}$, despite great efforts so far having only very particular or conditional solutions, see, for example, [1], [2] or [7]:

Is $\omega^* \setminus \{p\}$ not normal for any point p of ω^* ?

But one turned to be more solvable for crowded spaces. Thus in 2007 the following result was obtained independently by J. Terasawa [6] and the author [4]:

Theorem A. Let X be a non-compact metrizable crowded space. Then any point p of X^* is a butterfly-point in βX . Hence $\beta X \setminus \{p\}$ is not normal.

In 2014 the following generalizations for Tychonoff products were obtained by the author [5]:

Theorem B. Let τ be an arbitrary cardinal number and for every $k < \tau$ let \mathcal{F}_k be a family of metrizable spaces with the following properties: \mathcal{F}_k contains a crowded space and \mathcal{F}_k contains at most one non-compact space. Let a space S be a free union $\bigcup_{k < \tau} S_k$ of Tychonoff products $S_k = \prod \{X : X \in \mathcal{F}_k\}$. Then every point pof S^* is a butterfly-point in βS . Hence $\beta S \setminus \{p\}$ is not normal.

DOI 10.14712/1213-7243.2022.004

S. Logunov

Corollary A. Let a space S be a free union of arbitrary powers of closed segment $\bigcup_{k < \tau} I^{\tau_k}$. Then every point p of S^{*} is a butterfly-point in βS . Hence $\beta S \setminus \{p\}$ is not normal.

Corollary B. Let $S = \omega \times I^C$. Then every point p of S^* is a butterfly-point in βS . Hence $\beta S \setminus \{p\}$ is not normal.

Now we obtain the next facts on Tychonoff products. By C(X) we denote Suslin number of a space X, i.e. the maximal size of cellular families of nonempty open sets. By d(X) we denote density of X, i.e. the minimal size of everywhere dense subset of X and by $cf(\tau)$ – cofinality of a cardinal τ , i.e. the minimal size of unbounded subset of τ . By the Hewitt–Marczewski–Pondiczery theorem on the density of products and its corollary on the Suslin number we have $C(X) < cf(\tau)$ under the conditions of Corollaries 1–3.

Theorem 1. Let a space $X = \prod_{\alpha < \tau} X_{\alpha}$ be Tychonoff product of τ -many nonsingle point Tychonoff spaces X_{α} . Let a point $p \in X^*$ be in the closure of some subset $G \subset X$ with $C(G) < cf(\tau)$. Then $\beta X \setminus \{p\}$ is not normal.

Corollary 1. The space $\beta(R^{\tau}) \setminus \{p\}$ is not normal if τ is not countably cofinal and $p \in (R^{\tau})^*$.

Corollary 2. The space $\beta(\omega^{\tau}) \setminus \{p\}$ is not normal, if infinite τ is not countably cofinal and $p \in (\omega^{\tau})^*$.

Corollary 3. The space $\beta(X^{\tau}) \setminus \{p\}$ is not normal if $d(X) < cf(\tau)$ and $p \in (X^{\tau})^*$.

2. Proofs

In our article all spaces are Tychonoff and R is a straight line. In what follows, we are in the conditions of Theorem 1. So by $X = \prod_{\alpha < \tau} X_{\alpha}$ we denote Tychonoff product of τ -many nonsingle point Tychonoff spaces X_{α} and by [] closure operator in its Čech–Stone compactification βX . We assume all the ordinals to be less than the number of factors τ . Our goal is to construct subsets F and G of $\beta X \setminus \{p\}$ so that $\{p\} = [F] \cap [G]$. This obviously implies the validity of Theorem 1.

Considering pairwise products, if necessary, we can assume that every factor X_{α} consists of at least three points. Therefore, there are points $a = (a_{\alpha})_{\alpha < \tau}$, $b = (b_{\alpha})_{\alpha < \tau}$ and $c = (c_{\alpha})_{\alpha < \tau}$ in X, all coordinates of which a_{α} , b_{α} and c_{α} are pairwise different. For an arbitrary bases \mathcal{B}_{α} of X_{α} we define \mathcal{B} to be a base of X, consisting of all products of the form $U = \prod_{\alpha < \tau} U_{\alpha}$, where $U_{\alpha} \in \mathcal{B}_{\alpha}$ for some finite $K \subset \tau$ and every $\alpha \in K$ and $U_{\alpha} = X_{\alpha}$ otherwise. For any $U \in \mathcal{B}$ we

put $\lambda(U) = \max\{\alpha < \tau \colon U_{\alpha} \neq X_{\alpha}\}$ and

$$U(\alpha, a) = \prod_{\gamma \le \alpha} U_{\gamma} \times \prod_{\gamma > \alpha} \{a_{\gamma}\}$$

for each $\alpha < \tau$. In other words, $(x_{\gamma})_{\gamma < \tau} \in U(\alpha, a)$ if and only if $x_{\gamma} \in U_{\gamma}$ for every $\gamma \leq \alpha$ and $x_{\gamma} = a_{\gamma}$ otherwise. Let \mathcal{O} be all open neighbourhoods of p in βX . For any $O \in \mathcal{O}$ define $\mathcal{F}(O)$ to be the family

$$\left\{F \subset \mathcal{B} \colon \bigcup F \subset O, \ O \cap G \subset \left[\bigcup F \cap G\right] \text{ and } |F| \leq C(G)\right\},\right\}$$

which is, obviously, nonempty. Let $\mathcal{F} = \bigcup_{O \in \mathcal{O}} \mathcal{F}(O)$. For every $F \in \mathcal{F}$ denote $\lambda(F) = \sup\{\lambda(U) : U \in F\}$ and

$$F(\alpha, a) = \{U(\alpha, a) \colon U \in F\}$$

for each $\alpha < \tau$. Then the condition $C(G) < cf(\tau)$ implies $\lambda(F) < \tau$.

Lemma 1. If $U \in \mathcal{B}$ and $\alpha \geq \lambda(U)$, then $U(\alpha, a) \subset U$. If $F \in \mathcal{F}$ and $\alpha \geq \lambda(F)$, then $\bigcup F(\alpha, a) \subset \bigcup F$.

PROOF: If $U(\alpha, a)_{\gamma} \neq U_{\gamma}$, then $\gamma > \alpha$. But then $U_{\gamma} = X_{\gamma}$ implies Lemma 1. \Box

Lemma 2. The family $\{\bigcup F(\alpha, a) \colon F \in \mathcal{F}\}$ is centred for every $\alpha < \tau$.

PROOF: Let $F_0 \in \mathcal{F}(O_0)$, ..., $F_n \in \mathcal{F}(O_n)$ for some $n < \omega$ and $O_0, \ldots, O_n \in \mathcal{O}$. Let $O = \bigcap_{i \leq n} O_i$. Then every $V_i = \bigcup F_i \cap G \cap O$ is open and everywhere dense subset of nonempty $O \cap G$. There is a point $x = (x_\gamma)_{\gamma < \tau}$ of X with $x \in \bigcap_{i \leq n} V_i$. Then $x \in U_i$ for some $U_i \in F_i$. Define $y = (y_\gamma)_{\gamma < \tau}$ as follows: $y_\gamma = x_\gamma$ if $\gamma \leq \alpha$ and $y_\gamma = a_\gamma$ otherwise. Then $y \in \bigcap_{i \leq n} U_i(\alpha, a)$.

For every $\alpha < \tau$ define $\xi_{\alpha}(a) \in \beta X$ to be an arbitrary point of $\bigcap_{F \in \mathcal{F}} \left[\bigcup F(\alpha, a)\right]$. Similarly, *b* and *c* generate the points $\xi_{\alpha}(b) \in \bigcap_{F \in \mathcal{F}} \left[\bigcup F(\alpha, b)\right]$ and $\xi_{\alpha}(c) \in \bigcap_{F \in \mathcal{F}} \left[\bigcup F(\alpha, c)\right]$, respectively. Denote $A = \{\xi_{\alpha}(a) : \alpha < \tau\}, B = \{\xi_{\alpha}(b) : \alpha < \tau\}$ and $C = \{\xi_{\alpha}(c) : \alpha < \tau\}$

Lemma 3. The space $\beta X \setminus \{p\}$ is not normal.

PROOF: Let $O \in \mathcal{O}$, $F \in \mathcal{F}(O)$ and $\alpha \geq \lambda(F)$. Then

$$\xi_{\alpha}(a) \in \left[\bigcup F(\alpha, a)\right] \subset \left[\bigcup F\right] \subset [O]$$

by Lemma 1. Therefore $\{\xi_{\alpha}(a): \alpha \geq \lambda(F)\}$ and, quite similarly, $\{\xi_{\alpha}(b): \alpha \geq \lambda(F)\}$ and $\{\xi_{\alpha}(c): \alpha \geq \lambda(F)\}$ are subsets of [O].

For any $\lambda < \tau$ let a continuous map $f_{\lambda} \colon X_{\lambda} \to [0, 2]$ satisfies $f_{\lambda}(a_{\lambda}) = 0$, $f_{\lambda}(b_{\lambda}) = 1$ and $f_{\lambda}(c_{\lambda}) = 2$. Denote its composition with the orthogonal projection

S. Logunov

 $\pi_{\lambda} \colon X \to X_{\lambda}$ by $f \colon X \to [0, 2]$, i.e. put $f(x) = f_{\lambda}(x_{\lambda})$ for each $x \in X$. There is a continuous extension $\tilde{f} \colon \beta X \to [0, 2]$.

If $\alpha < \lambda$ and $F \in \mathcal{F}$ is arbitrary, then

$$f\Big(\bigcup F(\alpha, a)\Big) = \bigcup_{U \in F} f(U(\alpha, a)) = \bigcup_{U \in F} f_{\lambda}\{a_{\lambda}\} = \{0\}$$

implies

$$\xi_{\alpha}(a) \in \left[\bigcup F(\alpha, a)\right] \subset \tilde{f}^{-1}(0).$$

Therefore $\{\xi_{\alpha}(a): \alpha < \lambda\} \subset \tilde{f}^{-1}(0)$ and, quite similarly, $\{\xi_{\alpha}(b): \alpha < \lambda\} \subset \tilde{f}^{-1}(1)$ and $\{\xi_{\alpha}(c): \alpha < \lambda\} \subset \tilde{f}^{-1}(2)$. Hence the closures of these sets are pairwise disjoint.

It implies that A, B and C are also pairwise disjoint and at most one of them contain p. For any $O \in \mathcal{O}$, $F \in \mathcal{F}(O)$ and $\lambda > \lambda(F)$ we can argue as above to show that A, B and C have pairwise disjoint closures outside [O] and, therefore, outside $\{p\}$. Two of them not containing $\{p\}$ show that p is a non-normality point. \Box

References

- Blaszczyk A., Szymański A., Some non-normal subspaces of the Čech-Stone compactification of a discrete space, Abstracta, Eighth Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
- [2] Bešlagić A., van Douwen E. K., Spaces of nonuniform ultrafilters in space of uniform ultrafilters, Topology Appl. 35 (1990), no. 2–3, 253–260.
- [3] Fine N. J., Gillman L., Extensions of continuous functions in βN, Bull. Amer. Math. Soc. 66 (1960), 376–381.
- [4] Logunov S., On non-normality points and metrizable crowded spaces, Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527.
- [5] Logunov S., Non-normality points and big products of metrizable spaces, Topology Proc. 46 (2015), 73–85.
- [6] Terasawa J., βX {p} are non-normal for non-discrete spaces X, Topology Proc. 31 (2007), no. 1, 309–317.
- [7] Warren N. M., Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer. Math. Soc. 33 (1972), 599–606.

S. Logunov:

Department for Algebra and Topology, Udmurt State University, Universitetskaya 1, Izhevsk 426034, Russia

E-mail: olla209@yandex.ru

(Received November 25, 2020, revised March 13, 2021)