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On the probability that two elements of a finite

semigroup have the same right matrix
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Abstract. We study the probability that two elements which are selected at ran-
dom with replacement from a finite semigroup S have the same right matrix.
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1. Introduction and motivation

There are many papers in the mathematical literature which use probabilistic
methods to study special algebraic structures. Only the papers [1], [3]-]6] and [8]
are cited here, because we refer only to them. All of these papers deal with special
cases of the following problem. For a given finite algebraic structure A and a given
binary relation o on A, find the probability P,(A) that (a,b) € o is satisfied for
two elements a and b of A which are selected at random with replacement. We
note that random elements are chosen independently with the uniform distribution
on A. Thus every couple (a,b) € A x A has the same probability 1/|AJ? of being
chosen and so

€ Ax A: (a,b) € o}

| A2 '
In [1], [6] and [8] the probability P,(A) is examined in the cases, when A is a fi-
nite noncommutative semigroup, a noncommutative group and a noncommutative
ring, respectively. In all three cases o is defined by (x,y) € o for z,y € A if and

()

only if xy = yx. In [4], the probability P,(A) is investigated in that case when A
is a finite simple group and o is defined by (x,y) € o for z,y € A if and only if
w(z,y) = e, where w is a given nontrivial element of the free group Fs and e is the
identity element of the group A. In both [3] and [5], the probability P,(A) is ex-
amined in that case when A is the symmetric group S,, of degree n. In [3], o is
defined by (z,y) € o for z,y € A if and only if x and y generate the group S,.
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In [5], o is defined by (z,y) € o for z,y € A if and only if = and y generate the
alternating group A,, or the group S,.

In the theory of semigroups the right regular matrix representation plays a very
important role. The above investigations motivate us to examine the probability
Py, (S), where S is a finite semigroup and g is the kernel of the right regular
matrix representation of S. In other words, we examine the following problem.
Two elements a and b are selected at random with replacement from a finite
semigroup S. What is the probability that a and b have the same right matrix?
We show that Py, (S) > 1/|S/6s| for every finite semigroup S, where S/6s denotes
the factor semigroup of .S modulo fg. In the paper we also deal with the following
question. How does the structure of a finite semigroup S depend on the probability
Py, (S). This question is very general to answer. For example, if G is a group
of order 3 and S is a semigroup defined by the Cayley table then Py, (G) =

e a b ax 22 23
e le e e x 22 a3
a |le e e x 22 23
b le e e a 22 238
z |z = =z 22 2 e
22|22 2?2 2?2 3 e «x
223 3 2 e z 2P

TABLE 1.

Py, (S) = 1/3, but the structures of G and S are very different. In this paper
we deal with a special case of the above question. Our main goal is to describe
the structure of a finite semigroup S if Py (S) = 1/|S/0s|. In this paper we
give solutions in two cases. In the first case S is an arbitrary finite semigroup
with |S/68s| = 1; in the second case S is a finite commutative semigroup with
15/0s] = 2.

2. Preliminaries

By a semigroup we mean a nonempty set together with an associative multipli-
cation. Let S be a semigroup and G° be a semigroup arising from a one-element
group G' = {1} by the adjunction of a zero element 0. By an S x S matriz over G°,
we mean a mapping of S x S into GY. Let A be an S x S matrix over G°. For
an element s € S, the set {A(s,z): © € S} is called a row (the s-row) of A. An
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S x S matrix A over GV is called strictly row-monomial if each row of A contains
exactly one nonzero element of GV.

For an element a of a semigroup S, let R(*) denote the strictly row-monomial
S-matrix over G¥ defined by

1, if za=y,

R ((z,y)) = {

0, otherwise.

This matrix is called the right matriz over G° defined by a. (The right matrices
were investigated, for example, in [11] and [14], in the case when 1 is the identity
element and 0 is the zero element of a field.) It is known that

a— R@

is a homomorphism of a semigroup S into the multiplicative semigroup of all
strictly row-monomial S-matrices over G, see [2, Exercise 4 (b) for Section 3.5].
This homomorphism is called the right regular matriz representation of the semi-
group S.

A semigroup S is said to be left reductive, see [10], if the following condition is
satisfied for arbitrary elements a and b of S: sa = sb for all s € S implies a = b.
The right regular matrix representation of a semigroup S is faithful (injective) if
and only if S is left reductive.

Let 65 denote the kernel of the right regular matrix representation of a semi-
group S. It is obvious that

0s ={(a,b) € S x S: Vx € S xa = xb}.

In this paper, we investigate the probability

a,b) € S x S: (a,b) € s}
|52 '

Pru(5) = 1

In our investigation, the following construction (which is a special case of the
construction defined in part (a) of [12, Theorem 2]) plays an important role.

Construction 2.1 ([13, Construction 1]). Let T be a left cancellative semigroup
(that is, a semigroup with the property that xa = zb implies a = b for every
z,a,b € T). For each t € T, associate a nonempty set S; such that S, NS, = 0
for all z,y € T with = # y.

For an arbitrary couple (t,z) € T x T, let (-)p¢.x be & mapping of S; into Sy
acting on the right. For all ¢t,x,y € T, and a € S, assume

(a)(@t,tw © ‘th,twy) = (a)@t,twy-
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On the set S =, St define an operation “x” as follows: for arbitrary a € S;
and b € S, let

axb= (a)tpt’m.

As every left cancellative semigroup is left reductive, [12, Theorem 2] implies
that (S;*) is a semigroup such that the sets Sy, t € T, are the fg-classes of S.

3. Results

Let A be a nonempty set and o be a binary relation on A. Let P,(A) denote
the probability that (a,b) € o, where a and b are selected at random with re-
placement from the set A.

Theorem 3.1. Let p be an arbitrary rational number with 0 < p < 1. Then the
following assertions are equivalent:
(i) There is a finite semigroup S such that Py, (S) = p.

(ii) There is a nonempty finite set A and an equivalence relation o on A such
that P,(A) = p.

PRrROOF: It is sufficient to show that (ii) implies (i). Assume (ii). We use Con-
struction 2.1. Let T' be a commutative group of order |A/o|. Such group always
exists. Let Sy, t € T, denote the o-classes of A. For every t € T' fix an element s,
in S;. For every t,x € T let (-)¢t 1 be the mapping of S; into Sy, which maps
the elements of Sy to ;5. It is easy to see that the family {¢; : t,x € T} of
mappings satisfies the following condition: for every ¢,z,y € T and every a € S;

(@)(Pt.te © Pratey) = (a)Pr tay-
Thus S = UteT S; forms a semigroup under the operation “x” defined by the
following way: for every t,x € T and a € S;, b € S,
axb=(a)pLte = Stz

As T is left reductive, [12, Theorem 2] implies that the fg-classes of the semi-
group S are the sets S; (t € T'). Consequently Py, (S) = P,(A) = p. O

We note that the semigroup S defined in the proof of Theorem 3.1 is commu-
tative, because
axb=(a)pt iz = Stz = Sut = (0)Pz,at =bxa
is satisfied for every ¢,z € T and a € S, b € S,.

Let A be a nonempty finite set and o be an equivalence relation on A. If m
denotes the cardinality of the factor set A/o (which is called the index of o) and
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t1,...,tm, are the cardinalities of the o-classes of A, then
4+t
(tl + -+ t7n)2

By the well known connection between the root mean square and the arithmetic

Py (4) =

mean, we have
4 +12 T )

- ?

m m
that is,
Bt ttn o (it ttn)?
m - m2
from which we get
R 1 1
PO_(A) — 1 + + m >

(it +tm)2 —m  [Afo]
The equation P,(A) = 1/|A/c| holds if and only if

tlz"':tnb-

Py (S) = 1/|5/0s| if and only if each Og-class contains the same number of

In particular, Py (S) > 1/|5/0s| for every finite semigroup S. In addition,

elements.

In the next part of the paper, we deal with a special case of the following prob-
lem: How does the structure of a finite semigroup S depend on the probability
Py, (S)? Our question is the following: What can we say about the structure of
a finite semigroup S, if the index of g is m and Ppg(S) = 1/m?

We deal with this question for m = 1,2. In the case of m = 1, we give a so-
lution to the question in the class of all semigroups. For m = 2, we answer the
question in the class of all commutative semigroups.

3.1 Case m = 1. For a finite semigroup S, the assumption Py, (S) = 1 is satisfied
if and only if the index of g is 1, that is, 65 is the universal relation on S. The
next theorem characterizes not necessarily finite semigroups S in which 6g is the
universal relation on .S. We shall use the following notions.

A homomorphism ¢ of a semigroup S onto an ideal I C S is called a retract
homomorphism [9, Definition 1.44] if ¢ leaves the elements of T fixed. An ideal I
of a semigroup S is called a retract ideal if there is a retract homomorphism of S
onto I. In this case, we say that S is a retract (ideal) extension of I by the Rees
factor semigroup S/I.

A semigroup satisfying the identity ab = a is called a left zero semigroup,
see [7]. A semigroup with a zero element 0 is called a zero semigroup if it satisfies
the identity ab = 0.
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Theorem 3.2. For a semigroup S, 0g is the universal relation on S if and only
if S is a retract extension of a left zero semigroup by a zero semigroup.

PROOF: Let S be a semigroup in which fg is the universal relation on S. Then
xa = xb holds for every x,a,b € S. Let a € S be an arbitrary element. Then

a’? = aa = aa® = da®,

and so

((12)2 = aa® = ad® = a® = d?,

that is, a? is an idempotent element. Let E(S) denote the set of all idempotent
elements of S. As ab = a? € E(S) for every a,b € S, the set E(S) is an ideal of S,
and the Rees factor semigroup Q = S/E(S) is a zero semigroup. For arbitrary
e, f € E(S),

ef =ee=ce.

Hence E(S) is a left zero semigroup. For every a € S, we have aS C E(S) and
|aS| = 1. For every a € S, let (a)p denote the element of aS. By the above,

(a)p € E(S)

for every a € S. Moreover, (e)¢ = e for every idempotent element e of S. Let
x* € S be an arbitrary fixed element. Then, for every a,b € S we have

*

(ab)p = abx™ = ax™bx* = (a)p(b)e.

Hence ¢ is a homomorphism of S onto E(S). As ¢ leaves the elements of E(S)
fixed, it is a retract homomorphism of S onto E(S). Thus S is a retract extension
of the left zero semigroup E(S) by the zero semigroup @ = S/E(S).

Conversely, let S be a semigroup and I be an ideal of S such that I is a left
zero semigroup, the Rees factor semigroup S/ is a zero semigroup, and there is
a retract homomorphism ¢ of S onto I. Then, for arbitrary z,a,b € S, we have
za,xb € I and so

za = (za)p = (z)p(a)p = () = (x)p(b)p = (xb)p = xb.
Hence g is the universal relation on S. Thus the theorem is proved. O

In the next part of this subsection, we show how to construct semigroups .S in
which g is the universal relation.

Construction 3.3. Let S be a nonempty set and L be a nonempty subset
of S. Let (:)¢ be an arbitrary mapping of S onto L which leaves the elements
of L fixed. Define an operation “x” on S as follows: for arbitrary a,b € S, let
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axb= (a)p. For every a,b,c € S,

ax(bxc)=ax*(b)p=(a)p=((a)p)p=(axb)p=(axb)xc,

that is, S is a semigroup with the operation

(S, L, p,%).

*”. This semigroup is denoted by

Theorem 3.4. In the semigroup S = (S, L, p, ), the equation g = wg is satis-
fied. Conversely, every semigroup S in which s = wg is satisfied is isomorphic
to a semigroup defined in Construction 3.3.

ProoFr: For every a,b € (S, L, p,*), we have axb € L. Thus L is an ideal of S
and the Rees factor semigroup S/L is a zero semigroup. For every a,b € L, we
have

axb=(a)p =a.

Thus L is a left zero semigroup. As

(axb)p = ((a)p)p = (a)p = ((a)p)((b)¢),

@ is a retract homomorphism of S onto L. Thus S = (S5, L, p,*) is a retract
extension of the left zero semigroup L by the zero semigroup S/L. Consequently
0s = wg by Theorem 3.2.

Conversely, assume that S is a semigroup in which g = wg. By Theorem 3.2,
there is an ideal L of S such that L is a left zero semigroup, the Rees factor
semigroup S/L is a zero semigroup, and there is a retract homomorphism ¢ of S
onto L. Consider the semigroup (5, L, ¢, x) defined as in Construction 3.3. As

ab = (ab)e = (a)p(b)y = (a)p = axb
for every a,b € S, the semigroups S and (S, L, ¢, *) are isomorphic. O

3.2 Case m = 2. In our investigation, the following three examples play an
important role.

Example 3.5. Let A and B be zero semigroups such that AN B = (). Let e
and f denote the zero elements of A and B, respectively. Let S = AU B. We
define an operation on S as follows:

e, if z,y € A;
Ty =
f, otherwise.

It is easy to see that S is a commutative semigroup whose 6g-classes are A
and B. The factor semigroup S/6fs is a two-element semilattice, see [15], (that is,
a two-element commutative semigroup in which every element is an idempotent
element).
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Example 3.6. Let A be a zero semigroup with a zero element e. Let B be
a nonempty set with AN B = (. Let S = AU B. We define an operation on S as
follows: fix an element b* in B, and let

{e, if z,y€ A or x,y € B;
Ty =

b*, otherwise.

It is a matter of checking to see that S is a commutative semigroup whose 6g-
classes are A and B. The factor semigroup S/fs is a two-element group.

Example 3.7. Let A be a zero semigroup with a zero element e. Let B be
a nonempty set with AN B = 0. Let S = AU B. We define an operation on S as
follows: fix an element a* € A with e # a*, and let

a*, if z,y € B;
Ty =
e, otherwise.

It is a matter of checking to see that S is a commutative semigroup whose 6g-
classes are A and B. The factor semigroup S/fg is a two-element zero semigroup.

Theorem 3.8. On an arbitrary semigroup S, the following conditions are equiv-
alent:

(1) S is a commutative semigroup such that the index of fg is 2.
(2) S is isomorphic to one of the semigroups defined in Example 3.5, Exam-
ple 3.6, and Example 3.7.

PRrROOF: As the semigroups S defined in Example 3.5, Example 3.6 and Exam-
ple 3.7 are commutative such that the index of g is 2, it is sufficient to show that
(1) implies (2). Let S be a commutative semigroup such that the index of g is 2.
Then the factor semigroup S/6s is a two-element commutative semigroup. Thus
S/0s is either a two-element semilattice or a two-element group or a two-element
zero semigroup. Let A and B denote the fg-classes of S.

First we consider the case when S/fg is a two-element semilattice. Then A
and B are subsemigroups of S such that one of A and B, say B, is an ideal of S.
It is easy to see that 84 = wy and 0 = wp. Then, by Theorem 3.2, A and B are
zero semigroups. Let e and f denote the zero element of A and B, respectively.
For every =,y € A, we have xy = e. For every z,y € B, we have zy = f. For
every x € A and y € B, we have

yr=wy=uaf =xff=f

because (y, ) € s, xf € B and f is the zero element of B.
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Summarizing our results, we have

e, if z,y € A;
Ty =
f, otherwise.

Thus S is isomorphic to a semigroup defined in Example 3.5.

In the next part of the proof, we consider the case when S/6g is a two-element
group. Let A be the fg-class corresponding to the identity element of S/6g. Then
A is a subsemigroup of S. Since 4 = w4, Theorem 3.2 implies that A is a zero
semigroup. Let e denote the zero element of A. As B is a fg-class, we have that
eB C B is a singleton. Let b* denote the element of eB. Then, for every x € A
and y € B, we have

Ty = yr = ye = ey = b,

because (x,¢e) € fg. For every x,y € B, we get ex € B and 22 € A, hence

TY = rexr = ZL‘2€: €.

Summarizing our results, we have

{e, if z,y€ A or z,y € B;
Ty =

b*, otherwise.

Thus S is isomorphic to a semigroup defined in Example 3.6.

Consider the case when S/0g is a two-element zero semigroup. Let A be the
Os-class corresponding to the zero element of S/0g. Then, by Theorem 3.2, A is
a zero semigroup. Let e denote the zero element of A. Then zy = e for every
x,y € A. For an arbitrary y € B,

ey = eey = e,

because ey € A and e is the zero element of A. Thus, for every x € A and y € B,
we have

TY = Yr =ye =€y = e,

because (z,¢e) € 0s. Let g, yo € B be fixed arbitrary elements, and let
a® = 2oYo = YoTo-
Then, for every z,y € B, we have
TY = TYo = YoT = YoTo = a’,

because B is a fg-class.
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Summarizing our results, we have

a*, if x,y € B;
Ty =
e, otherwise.

If a* was the zero element of A, then we would have
ra=zb=e

for every a € A, b € B and x € S, which would imply that 0 = wg. It would be
a contradiction. Hence a* # e. Thus S is isomorphic to a semigroup defined in
Example 3.7.

In a finite semigroup S, both of the conditions that the index of 6g is m and
Py, (S) = 1/m are satisfied if and only if each 8g-class contains the same number
of elements. Thus the following result is a consequence of Theorem 3.8. O

Theorem 3.9. On an arbitrary semigroup S, the following conditions are equiv-
alent:

(1) S is a finite commutative semigroup such that the index of 0g is 2 and
Py (S)=1/2.

(2) S is isomorphic to one of the semigroups defined in Example 3.5, Exam-
ple 3.6 and Example 3.7 in which |A| = |B| < .

Remark 3.10. Commutative semigroups defined in Example 3.5, Example 3.6,
and Example 3.7 can also be obtained by using the construction defined in part (a)
of [12, Theorem 2]. It seems to be that this construction would also be a useful
tool to investigate our problem in other cases.
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