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On the probability that two elements of a finite

semigroup have the same right matrix

Attila Nagy, Csaba Tóth

Abstract. We study the probability that two elements which are selected at ran-
dom with replacement from a finite semigroup S have the same right matrix.
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1. Introduction and motivation

There are many papers in the mathematical literature which use probabilistic

methods to study special algebraic structures. Only the papers [1], [3]–[6] and [8]

are cited here, because we refer only to them. All of these papers deal with special

cases of the following problem. For a given finite algebraic structure A and a given

binary relation σ on A, find the probability Pσ(A) that (a, b) ∈ σ is satisfied for

two elements a and b of A which are selected at random with replacement. We

note that random elements are chosen independently with the uniform distribution

on A. Thus every couple (a, b) ∈ A×A has the same probability 1/|A|2 of being

chosen and so

Pσ(A) =
|{(a, b) ∈ A×A : (a, b) ∈ σ}|

|A|2
.

In [1], [6] and [8] the probability Pσ(A) is examined in the cases, when A is a fi-

nite noncommutative semigroup, a noncommutative group and a noncommutative

ring, respectively. In all three cases σ is defined by (x, y) ∈ σ for x, y ∈ A if and

only if xy = yx. In [4], the probability Pσ(A) is investigated in that case when A

is a finite simple group and σ is defined by (x, y) ∈ σ for x, y ∈ A if and only if

w(x, y) = e, where w is a given nontrivial element of the free group F2 and e is the

identity element of the group A. In both [3] and [5], the probability Pσ(A) is ex-

amined in that case when A is the symmetric group Sn of degree n. In [3], σ is

defined by (x, y) ∈ σ for x, y ∈ A if and only if x and y generate the group Sn.

DOI 10.14712/1213-7243.2022.008
This work was supported by the National Research, Development and Innovation Office –

NKFIH, 115288.



22 A. Nagy, C. Tóth

In [5], σ is defined by (x, y) ∈ σ for x, y ∈ A if and only if x and y generate the

alternating group An or the group Sn.

In the theory of semigroups the right regular matrix representation plays a very

important role. The above investigations motivate us to examine the probability

PθS (S), where S is a finite semigroup and θS is the kernel of the right regular

matrix representation of S. In other words, we examine the following problem.

Two elements a and b are selected at random with replacement from a finite

semigroup S. What is the probability that a and b have the same right matrix?

We show that PθS(S) ≥ 1/|S/θS| for every finite semigroup S, where S/θS denotes

the factor semigroup of S modulo θS . In the paper we also deal with the following

question. How does the structure of a finite semigroup S depend on the probability

PθS (S). This question is very general to answer. For example, if G is a group

of order 3 and S is a semigroup defined by the Cayley table then PθG(G) =

e a b x x2 x3

e e e e x x2 x3

a e e e x x2 x3

b e e e x x2 x3

x x x x x2 x3 e

x2 x2 x2 x2 x3 e x

x3 x3 x3 x3 e x x2

Table 1.

PθS (S) = 1/3, but the structures of G and S are very different. In this paper

we deal with a special case of the above question. Our main goal is to describe

the structure of a finite semigroup S if PθS (S) = 1/|S/θS|. In this paper we

give solutions in two cases. In the first case S is an arbitrary finite semigroup

with |S/θS | = 1; in the second case S is a finite commutative semigroup with

|S/θS | = 2.

2. Preliminaries

By a semigroup we mean a nonempty set together with an associative multipli-

cation. Let S be a semigroup and G0 be a semigroup arising from a one-element

groupG = {1} by the adjunction of a zero element 0. By an S×S matrix over G 0,

we mean a mapping of S × S into G0. Let A be an S × S matrix over G0. For

an element s ∈ S, the set {A(s, x) : x ∈ S} is called a row (the s-row) of A. An
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S×S matrix A over G0 is called strictly row-monomial if each row of A contains

exactly one nonzero element of G0.

For an element a of a semigroup S, let R(a) denote the strictly row-monomial

S-matrix over G0 defined by

R(a)((x, y)) =

{

1, if xa = y,

0, otherwise.

This matrix is called the right matrix over G0 defined by a. (The right matrices

were investigated, for example, in [11] and [14], in the case when 1 is the identity

element and 0 is the zero element of a field.) It is known that

a 7→ R(a)

is a homomorphism of a semigroup S into the multiplicative semigroup of all

strictly row-monomial S-matrices over G0, see [2, Exercise 4 (b) for Section 3.5].

This homomorphism is called the right regular matrix representation of the semi-

group S.

A semigroup S is said to be left reductive, see [10], if the following condition is

satisfied for arbitrary elements a and b of S: sa = sb for all s ∈ S implies a = b.

The right regular matrix representation of a semigroup S is faithful (injective) if

and only if S is left reductive.

Let θS denote the kernel of the right regular matrix representation of a semi-

group S. It is obvious that

θS = {(a, b) ∈ S × S : ∀x ∈ S xa = xb}.

In this paper, we investigate the probability

PθS (S) =
|{(a, b) ∈ S × S : (a, b) ∈ θS}|

|S|2
.

In our investigation, the following construction (which is a special case of the

construction defined in part (a) of [12, Theorem 2]) plays an important role.

Construction 2.1 ([13, Construction 1]). Let T be a left cancellative semigroup

(that is, a semigroup with the property that xa = xb implies a = b for every

x, a, b ∈ T ). For each t ∈ T , associate a nonempty set St such that Sx ∩ Sy = ∅

for all x, y ∈ T with x 6= y.

For an arbitrary couple (t, x) ∈ T × T , let (·)ϕt,tx be a mapping of St into Stx

acting on the right. For all t, x, y ∈ T , and a ∈ St, assume

(a)(ϕt,tx ◦ ϕtx,txy) = (a)ϕt,txy.
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On the set S =
⋃

t∈T St define an operation “⋆” as follows: for arbitrary a ∈ St

and b ∈ Sx let

a ⋆ b = (a)ϕt,tx.

As every left cancellative semigroup is left reductive, [12, Theorem 2] implies

that (S; ⋆) is a semigroup such that the sets St, t ∈ T , are the θS-classes of S.

3. Results

Let A be a nonempty set and σ be a binary relation on A. Let Pσ(A) denote

the probability that (a, b) ∈ σ, where a and b are selected at random with re-

placement from the set A.

Theorem 3.1. Let p be an arbitrary rational number with 0 ≤ p ≤ 1. Then the

following assertions are equivalent:

(i) There is a finite semigroup S such that PθS (S) = p.

(ii) There is a nonempty finite set A and an equivalence relation σ on A such

that Pσ(A) = p.

Proof: It is sufficient to show that (ii) implies (i). Assume (ii). We use Con-

struction 2.1. Let T be a commutative group of order |A/σ|. Such group always

exists. Let St, t ∈ T , denote the σ-classes of A. For every t ∈ T fix an element st
in St. For every t, x ∈ T let (·)ϕt,tx be the mapping of St into Stx which maps

the elements of St to stx. It is easy to see that the family {ϕt,tx : t, x ∈ T } of

mappings satisfies the following condition: for every t, x, y ∈ T and every a ∈ St

(a)(ϕt,tx ◦ ϕtx,txy) = (a)ϕt,txy.

Thus S =
⋃

t∈T St forms a semigroup under the operation “⋆” defined by the

following way: for every t, x ∈ T and a ∈ St, b ∈ Sx

a ⋆ b = (a)ϕt,tx = stx.

As T is left reductive, [12, Theorem 2] implies that the θS-classes of the semi-

group S are the sets St (t ∈ T ). Consequently PθS (S) = Pσ(A) = p. �

We note that the semigroup S defined in the proof of Theorem 3.1 is commu-

tative, because

a ⋆ b = (a)ϕt,tx = stx = sxt = (b)ϕx,xt = b ⋆ a

is satisfied for every t, x ∈ T and a ∈ St, b ∈ Sx.

Let A be a nonempty finite set and σ be an equivalence relation on A. If m

denotes the cardinality of the factor set A/σ (which is called the index of σ) and
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t1, . . . , tm are the cardinalities of the σ-classes of A, then

Pσ(A) =
t21 + · · ·+ t2m

(t1 + · · ·+ tm)2
.

By the well known connection between the root mean square and the arithmetic

mean, we have
√

t21 + · · ·+ t2m
m

≥
t1 + · · ·+ tm

m
,

that is,

t21 + · · ·+ t2m
m

≥
(t1 + · · ·+ tm)2

m2

from which we get

Pσ(A) =
t21 + · · ·+ t2m

(t1 + · · ·+ tm)2
≥

1

m
=

1

|A/σ|
.

The equation Pσ(A) = 1/|A/σ| holds if and only if

t1 = · · · = tm.

In particular, PθS (S) ≥ 1/|S/θS| for every finite semigroup S. In addition,

PθS (S) = 1/|S/θS| if and only if each θS-class contains the same number of

elements.

In the next part of the paper, we deal with a special case of the following prob-

lem: How does the structure of a finite semigroup S depend on the probability

PθS (S)? Our question is the following: What can we say about the structure of

a finite semigroup S, if the index of θS is m and PθS (S) = 1/m?

We deal with this question for m = 1, 2. In the case of m = 1, we give a so-

lution to the question in the class of all semigroups. For m = 2, we answer the

question in the class of all commutative semigroups.

3.1 Case m = 1. For a finite semigroup S, the assumption PθS (S) = 1 is satisfied

if and only if the index of θS is 1, that is, θS is the universal relation on S. The

next theorem characterizes not necessarily finite semigroups S in which θS is the

universal relation on S. We shall use the following notions.

A homomorphism ϕ of a semigroup S onto an ideal I ⊆ S is called a retract

homomorphism [9, Definition 1.44] if ϕ leaves the elements of I fixed. An ideal I

of a semigroup S is called a retract ideal if there is a retract homomorphism of S

onto I. In this case, we say that S is a retract (ideal) extension of I by the Rees

factor semigroup S/I.

A semigroup satisfying the identity ab = a is called a left zero semigroup,

see [7]. A semigroup with a zero element 0 is called a zero semigroup if it satisfies

the identity ab = 0.
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Theorem 3.2. For a semigroup S, θS is the universal relation on S if and only

if S is a retract extension of a left zero semigroup by a zero semigroup.

Proof: Let S be a semigroup in which θS is the universal relation on S. Then

xa = xb holds for every x, a, b ∈ S. Let a ∈ S be an arbitrary element. Then

a2 = aa = aa2 = a3,

and so

(a2)2 = aa3 = aa2 = a3 = a2,

that is, a2 is an idempotent element. Let E(S) denote the set of all idempotent

elements of S. As ab = a2 ∈ E(S) for every a, b ∈ S, the set E(S) is an ideal of S,

and the Rees factor semigroup Q = S/E(S) is a zero semigroup. For arbitrary

e, f ∈ E(S),

ef = ee = e.

Hence E(S) is a left zero semigroup. For every a ∈ S, we have aS ⊆ E(S) and

|aS| = 1. For every a ∈ S, let (a)ϕ denote the element of aS. By the above,

(a)ϕ ∈ E(S)

for every a ∈ S. Moreover, (e)ϕ = e for every idempotent element e of S. Let

x∗ ∈ S be an arbitrary fixed element. Then, for every a, b ∈ S we have

(ab)ϕ = abx∗ = ax∗bx∗ = (a)ϕ(b)ϕ.

Hence ϕ is a homomorphism of S onto E(S). As ϕ leaves the elements of E(S)

fixed, it is a retract homomorphism of S onto E(S). Thus S is a retract extension

of the left zero semigroup E(S) by the zero semigroup Q = S/E(S).

Conversely, let S be a semigroup and I be an ideal of S such that I is a left

zero semigroup, the Rees factor semigroup S/I is a zero semigroup, and there is

a retract homomorphism ϕ of S onto I. Then, for arbitrary x, a, b ∈ S, we have

xa, xb ∈ I and so

xa = (xa)ϕ = (x)ϕ(a)ϕ = (x)ϕ = (x)ϕ(b)ϕ = (xb)ϕ = xb.

Hence θS is the universal relation on S. Thus the theorem is proved. �

In the next part of this subsection, we show how to construct semigroups S in

which θS is the universal relation.

Construction 3.3. Let S be a nonempty set and L be a nonempty subset

of S. Let (·)ϕ be an arbitrary mapping of S onto L which leaves the elements

of L fixed. Define an operation “⋆” on S as follows: for arbitrary a, b ∈ S, let
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a ⋆ b = (a)ϕ. For every a, b, c ∈ S,

a ⋆ (b ⋆ c) = a ⋆ (b)ϕ = (a)ϕ = ((a)ϕ)ϕ = (a ⋆ b)ϕ = (a ⋆ b) ⋆ c,

that is, S is a semigroup with the operation “⋆”. This semigroup is denoted by

(S,L, ϕ, ⋆).

Theorem 3.4. In the semigroup S = (S,L, ϕ, ⋆), the equation θS = ωS is satis-

fied. Conversely, every semigroup S in which θS = ωS is satisfied is isomorphic

to a semigroup defined in Construction 3.3.

Proof: For every a, b ∈ (S,L, ϕ, ⋆), we have a ⋆ b ∈ L. Thus L is an ideal of S

and the Rees factor semigroup S/L is a zero semigroup. For every a, b ∈ L, we

have

a ⋆ b = (a)ϕ = a.

Thus L is a left zero semigroup. As

(a ⋆ b)ϕ = ((a)ϕ)ϕ = (a)ϕ = ((a)ϕ)((b)ϕ),

ϕ is a retract homomorphism of S onto L. Thus S = (S,L, ϕ, ⋆) is a retract

extension of the left zero semigroup L by the zero semigroup S/L. Consequently

θS = ωS by Theorem 3.2.

Conversely, assume that S is a semigroup in which θS = ωS . By Theorem 3.2,

there is an ideal L of S such that L is a left zero semigroup, the Rees factor

semigroup S/L is a zero semigroup, and there is a retract homomorphism ϕ of S

onto L. Consider the semigroup (S,L, ϕ, ⋆) defined as in Construction 3.3. As

ab = (ab)ϕ = (a)ϕ(b)ϕ = (a)ϕ = a ⋆ b

for every a, b ∈ S, the semigroups S and (S,L, ϕ, ⋆) are isomorphic. �

3.2 Case m = 2. In our investigation, the following three examples play an

important role.

Example 3.5. Let A and B be zero semigroups such that A ∩ B = ∅. Let e

and f denote the zero elements of A and B, respectively. Let S = A ∪ B. We

define an operation on S as follows:

xy =

{

e, if x, y ∈ A;

f, otherwise.

It is easy to see that S is a commutative semigroup whose θS-classes are A

and B. The factor semigroup S/θS is a two-element semilattice, see [15], (that is,

a two-element commutative semigroup in which every element is an idempotent

element).



28 A. Nagy, C. Tóth

Example 3.6. Let A be a zero semigroup with a zero element e. Let B be

a nonempty set with A∩B = ∅. Let S = A∪B. We define an operation on S as

follows: fix an element b∗ in B, and let

xy =

{

e, if x, y ∈ A or x, y ∈ B;

b∗, otherwise.

It is a matter of checking to see that S is a commutative semigroup whose θS-

classes are A and B. The factor semigroup S/θS is a two-element group.

Example 3.7. Let A be a zero semigroup with a zero element e. Let B be

a nonempty set with A∩B = ∅. Let S = A∪B. We define an operation on S as

follows: fix an element a∗ ∈ A with e 6= a∗, and let

xy =

{

a∗, if x, y ∈ B;

e, otherwise.

It is a matter of checking to see that S is a commutative semigroup whose θS-

classes are A and B. The factor semigroup S/θS is a two-element zero semigroup.

Theorem 3.8. On an arbitrary semigroup S, the following conditions are equiv-

alent:

(1) S is a commutative semigroup such that the index of θS is 2.

(2) S is isomorphic to one of the semigroups defined in Example 3.5, Exam-

ple 3.6, and Example 3.7.

Proof: As the semigroups S defined in Example 3.5, Example 3.6 and Exam-

ple 3.7 are commutative such that the index of θS is 2, it is sufficient to show that

(1) implies (2). Let S be a commutative semigroup such that the index of θS is 2.

Then the factor semigroup S/θS is a two-element commutative semigroup. Thus

S/θS is either a two-element semilattice or a two-element group or a two-element

zero semigroup. Let A and B denote the θS-classes of S.

First we consider the case when S/θS is a two-element semilattice. Then A

and B are subsemigroups of S such that one of A and B, say B, is an ideal of S.

It is easy to see that θA = ωA and θB = ωB. Then, by Theorem 3.2, A and B are

zero semigroups. Let e and f denote the zero element of A and B, respectively.

For every x, y ∈ A, we have xy = e. For every x, y ∈ B, we have xy = f . For

every x ∈ A and y ∈ B, we have

yx = xy = xf = xff = f,

because (y, f) ∈ θS , xf ∈ B and f is the zero element of B.
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Summarizing our results, we have

xy =

{

e, if x, y ∈ A;

f, otherwise.

Thus S is isomorphic to a semigroup defined in Example 3.5.

In the next part of the proof, we consider the case when S/θS is a two-element

group. Let A be the θS-class corresponding to the identity element of S/θS. Then

A is a subsemigroup of S. Since θA = ωA, Theorem 3.2 implies that A is a zero

semigroup. Let e denote the zero element of A. As B is a θS-class, we have that

eB ⊆ B is a singleton. Let b∗ denote the element of eB. Then, for every x ∈ A

and y ∈ B, we have

xy = yx = ye = ey = b∗,

because (x, e) ∈ θS . For every x, y ∈ B, we get ex ∈ B and x2 ∈ A, hence

xy = xex = x2e = e.

Summarizing our results, we have

xy =

{

e, if x, y ∈ A or x, y ∈ B;

b∗, otherwise.

Thus S is isomorphic to a semigroup defined in Example 3.6.

Consider the case when S/θS is a two-element zero semigroup. Let A be the

θS-class corresponding to the zero element of S/θS. Then, by Theorem 3.2, A is

a zero semigroup. Let e denote the zero element of A. Then xy = e for every

x, y ∈ A. For an arbitrary y ∈ B,

ey = eey = e,

because ey ∈ A and e is the zero element of A. Thus, for every x ∈ A and y ∈ B,

we have

xy = yx = ye = ey = e,

because (x, e) ∈ θS . Let x0, y0 ∈ B be fixed arbitrary elements, and let

a∗ = x0y0 = y0x0.

Then, for every x, y ∈ B, we have

xy = xy0 = y0x = y0x0 = a∗,

because B is a θS-class.
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Summarizing our results, we have

xy =

{

a∗, if x, y ∈ B;

e, otherwise.

If a∗ was the zero element of A, then we would have

xa = xb = e

for every a ∈ A, b ∈ B and x ∈ S, which would imply that θS = ωS . It would be

a contradiction. Hence a∗ 6= e. Thus S is isomorphic to a semigroup defined in

Example 3.7.

In a finite semigroup S, both of the conditions that the index of θS is m and

PθS (S) = 1/m are satisfied if and only if each θS-class contains the same number

of elements. Thus the following result is a consequence of Theorem 3.8. �

Theorem 3.9. On an arbitrary semigroup S, the following conditions are equiv-

alent:

(1) S is a finite commutative semigroup such that the index of θS is 2 and

PθS (S) = 1/2.

(2) S is isomorphic to one of the semigroups defined in Example 3.5, Exam-

ple 3.6 and Example 3.7 in which |A| = |B| < ∞.

Remark 3.10. Commutative semigroups defined in Example 3.5, Example 3.6,

and Example 3.7 can also be obtained by using the construction defined in part (a)

of [12, Theorem 2]. It seems to be that this construction would also be a useful

tool to investigate our problem in other cases.
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