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Totally Brown subsets of the Golomb

space and the Kirch space
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Gerardo Acosta, Gerardo Delgadillo-Piñón

Abstract. A topological space X is totally Brown if for each n ∈ N\{1} and every
nonempty open subsets U1, U2, . . . , Un of X we have clX(U1) ∩ clX(U2) ∩ · · · ∩
clX(Un) 6= ∅. Totally Brown spaces are connected. In this paper we consider
the Golomb topology τG on the set N of natural numbers, as well as the Kirch
topology τK on N. Then we examine subsets of these spaces which are totally
Brown. Among other results, we characterize the arithmetic progressions which
are either totally Brown or totally separated in (N, τG). We also show that
(N, τG) and (N, τK) are aposyndetic. Our results generalize properties obtained
by A.M. Kirch in 1969 and by P. Szczuka in 2010, 2013 and 2015.
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1. Introduction

We denote by Z and N the sets of integers and of natural numbers, respectively.

We define N0 = N ∪ {0} and Nb = {n ∈ N : n ≥ b} for each b ∈ N. In this paper

we consider arithmetic progressions in both N and Z. Namely, for each a, b ∈ N

we define

(1) P (a, b) = {b+ an : n ∈ N0} = b+ aN0.

If a ∈ N and b ∈ Z we also define

(2) PF (a, b) = {b+ az : z ∈ Z} = b+ aZ and M(a) = {an : n ∈ N}.

In [9] H. Furstenberg consider the family

(3) BF = {PF (a, b) : (a, b) ∈ N× Z}
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which is a base of a topology τF in Z. The topological space (Z, τF ), known as

the Furstenberg space, is metrizable and each member of BF is open and closed

in (Z, τF ), so this space is zero-dimensional and then hereditarily disconnected.

The purpose of this paper is to consider in N both the Golomb topology τG as

well as the Kirch topology τK , and present new properties of these spaces. We

characterize the arithmetic progressions which are totally Brown in (N, τG), and

show that the basic members of (N, τK) are totally Brown. We also consider other

totally Brown subsets of either (N, τG) or (N, τK) as well as properties that involve

the closure of a set with respect to these spaces. We characterize the arithmetic

progressions which are totally separated in (N, τG).

The paper is organized in six sections. After this Introduction we consider in

Section 2 some notions and results from number theory and from general topology

that we use in the paper. In Section 3 we define both Brown and totally Brown

spaces. We note that totally Brown spaces are Brown spaces and that Brown

spaces are connected. We also give an example of a Brown space which is not

totally Brown, and present new properties of Brown and totally Brown spaces.

Some of these are similar to known properties of connected spaces. In Theorem 3.6

we show that totally Brown T2 spaces are aposyndetic.

In Section 4 we present a study of arithmetic progressions in both N and Z.

We focus on the problem of characterizing the intersection of finitely many arith-

metic progressions, and on decomposing an arithmetic progression in N as the

union of other arithmetic progressions which are mutually disjoint. Our principal

results from this section are Theorems 4.10, 4.12, 4.14 and the ones presented in

Subsection 4.3.

In Section 5 we consider the Golomb space (N, τG) and show new properties

of it. For example, in [14, Theorem 1, page 169] A.M. Kirch showed that (N, τG)

is not locally connected at 1. In the paper nothing is said about the local con-

nectedness of (N, τG) at a point distinct to 1. By Corollary 5.3 we infer that

(N, τG) is not locally connected at each of its points. In Subsection 5.2 we present

several results that involve the closure in (N, τG) of arithmetic progressions. By

its importance in the rest of the paper, the main result of this subsection is The-

orem 5.9.

In Subsection 5.3 we describe totally Brown subsets of (N, τG). The principal

result of this subsection is Theorem 5.12 in which we show that for an arithmetic

progression in N, being totally Brown and being connected are equivalent. One

consequence of this result is Corollary 5.15 in which we show that an arithmetic

progression is either totally separated or totally Brown in (N, τG) and no matter

which is the case, its closure in (N, τG) is always totally Brown (Theorem 5.16).

In Corollary 5.13 we show that (N, τG) is aposyndetic.
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In Section 6 we consider the Kirch space (N, τK) and show new properties

of it. For example, this space is totally Brown and aposyndetic. Many results

from Section 5 remain valid in (N, τK). Others differ, like Theorem 6.2. We

calculate in Theorem 6.4 the closure in (N, τK) of an arithmetic progression and

in Subsection 6.1 we present subsets of N that are totally Brown in (N, τK). The

main result of this subsection is Theorem 6.9, in which we show that the members

of the base of (N, τK) are totally Brown.

2. Notions and terminology

For the sets P (a, b), PF (a, b) and M(a) defined in (1) and (2) we have

P (a, b) ⊂ Nb, M(a) = P (a, a), M(1) = N and

(4) P (a, b) = PF (a, b) ∩ Nb.

Hence P (a, b) ⊂ PF (a, b). The symbol P denotes the set of prime numbers. We

consider that P ⊂ N. Given nonzero integers a and b, the symbols 〈a, b〉 and [a, b]

denote the greatest common divisor and the least common multiple of a and b,

respectively. Note that 〈a, b〉, [a, b] ∈ N and 〈a, b〉[a, b] = |ab|. If a, b, c ∈ N and

〈b, c〉 = 1, then 〈a, bc〉 = 〈a, b〉〈a, c〉.
For nonzero integers a1, a2, . . . , ak ∈ N, the symbol [a1, a2, . . . , ak] denotes the

least common multiple of a1, a2, . . . , ak, respectively. We say that a1, a2, . . . , ak
are relatively prime in pairs if 〈ai, aj〉 = 1 for each i, j ∈ {1, 2, . . . , k} with i 6= j.

For a, b ∈ Z the symbol a|b mean that b = ac for some c ∈ Z. If a, b ∈ Z and

m ∈ N, the symbol a ≡ b (modm) means that m|(a − b). We say that a ∈ N2

is square-free if it is not divided by the square p2 of any p ∈ P. Equivalently

a is square-free if its standard prime decomposition is of the form
∏k

i=1 pi. It

is known that if a, b ∈ N2 are square-free and 〈a, b〉 6= 1, then both 〈a, b〉 and

[a, b] are square-free. Moreover ab is square-free if and only if both a and b are

square-free and 〈a, b〉 = 1.

Theorem 2.1. If a ∈ N2 is square-free and b ∈ N, then there exists q ∈ N so

that [a, b] = bq, q|a and 〈q, b〉 = 1.

Proof: Let A = {p ∈ P : p|a and p ∤ b}. Define q = 1 if A = ∅ and q =
∏

p∈A p

if A 6= ∅. �

Note that x ∈ PF (a, b) if and only if a|(x − b), i.e., x ≡ b (mod a) and x ∈
P (a, b) if and only if a|(x− b) and x ≥ b, i.e., x ≡ b (mod a) and x ∈ Nb.

Let (X, τ) be a topological space and A ⊂ X . Then the symbols clX(A)

and intX(A) denote the closure and the interior of A in (X, τ), respectively. If

A ⊂ Y ⊂ X , then clY (A) = Y ∩ clX(A). If we like to specify the topology τ
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on X we write cl(X,τ)(A) and int(X,τ)(A), respectively. We say that x ∈ X is an

indiscrete point of X if {U ∈ τ : x ∈ U} = {X}. The topological space (X, τ) is

said to be

1) indiscrete if τ = {∅, X};
2) T2 or Hausdorff if for each x, y ∈ X with x 6= y, there exist U, V ∈ τ so

that x ∈ U , y ∈ V and U ∩ V = ∅;
3) T2(1/2) or Urysohn if for each x, y ∈ X with x 6= y, there exist U, V ∈ τ

so that x ∈ U , y ∈ V and clX(U) ∩ clX(V ) = ∅;
4) regular if for each x ∈ X and every closed subset C of X with x /∈ C,

there exist U, V ∈ τ so that x ∈ U , C ⊂ V and U ∩ V = ∅; and X is T3 if

X is regular and for each x ∈ X the one-point-set {x} is closed in X ;

5) hereditarily disconnected if X does not contain any connected subset of

cardinality larger than one;

6) totally separated if for each x, y ∈ X with x 6= y, there exist U, V ∈ τ so

that x ∈ U , y ∈ V , X = U ∪ V and U ∩ V = ∅;
7) connected im kleinen at x ∈ X if for each U ∈ τ with x ∈ U , there is

a connected subset V of X such that x ∈ intX(V ) ⊂ V ⊂ U ;

8) almost connected im kleinen at x ∈ X if for each U ∈ τ with x ∈ U ,

there is a closed and connected subset V of X such that intX(V ) 6= ∅ and

V ⊂ U ;

9) locally connected at x ∈ X if for each U ∈ τ with x ∈ U , there is V ∈ τ

connected so that x ∈ V ⊂ U ; and locally connected if X is locally

connected at each of its points.

Urysohn spaces, also called completely Hausdorff spaces, are Hausdorff spaces.

The Bing space (B, τB) defined in Section 3, the Golomb space (N, τG) defined in

Section 5 and the Kirch space (N, τK) defined in Section 6, are all Hausdorff spaces

which are not Urysohn. Note that X is hereditarily disconnected if and only if

the connected component of any point x ∈ X is the one-point-set {x}, while X

is totally separated if and only if the quasi-component of any point x ∈ X is

the one-point-set {x}. By [7, Theorem 6.1.22, page 356] totally separated spaces

are hereditarily disconnected. A space which is hereditarily disconnected but not

totally separated is presented in [17, Example 72, page 91]. If X is compact and

Hausdorff then, by [7, Theorem 6.1.23, page 357], each hereditarily disconnected

space is totally separated. Being totally separated is hereditary. Though the

notions are not equivalent, in the literature both totally separated spaces as well

as hereditarily disconnected spaces have been called totally disconnected.

If X is locally connected at x ∈ X , then X is connected im kleinen at x.

A space which is connected im kleinen at some point y but not locally connected

at y is shown in [17, Examples 119 and 120, page 139].



Totally Brown subsets of the Golomb space and the Kirch space 193

For notions and results related with number theory and not defined here, we

refer the reader to [8]. For those related with general topology, we refer the reader

to [7].

3. Totally Brown spaces

In this section we present some properties of the spaces described in the fol-

lowing definition.

Definition 3.1. Let (X, τ) be a topological space. We say that X is

1) a Brown space if for every nonempty open subsets U and V of X we have

clX(U) ∩ clX(V ) 6= ∅;
2) a totally Brown space if for every n ∈ N2 and each nonempty open subsets

U1, U2, . . . , Un of X we have clX(U1) ∩ clX(U2) ∩ · · · ∩ clX(Un) 6= ∅.

Brown spaces were introduced in [5, page 77], while totally Brown spaces appear

in [2, page 424] under the name of superconnected spaces. We prefer the given

name in Definition 3.1 since the notion of a superconnected space has appear

in the literature with different meanings. For example, in [6] X is said to be

superconnected if it is connected and every subset which contains a nonempty

open subset is open, while in [15] a space has this property if it contains no

disjoint nonempty open sets.

Note that
totally Brown =⇒ Brown =⇒ connected.

The fact that Brown spaces are connected appear in [5, Proposition 7, page 77].

In the same proposition it is shown that every space with an indiscrete point is

a Brown space and that a Brown space X is regular if and only if X is indiscrete.

Clearly nondegenerate Brown spaces are not Urysohn, so each nondegenerate

connected Urysohn space is neither Brown nor totally Brown.

We now present a Brown space (B, τB) which is not totally Brown. Let

B = {(r1, r2) ∈ Q×Q : r2 ≥ 0}.

For every x = (r1, r2) ∈ B and each i ∈ N, let

Ui(x) = {x} ∪
{

(r, 0) ∈ B :
∣

∣

∣
r −

(

r1 −
r2√
3

)∣

∣

∣
<

1

i

}

∪
{

(r, 0) ∈ B :
∣

∣

∣
r −

(

r1 +
r2√
3

)∣

∣

∣
<

1

i

}

.

If x = (r1, r2) ∈ B and r2 > 0, then the set Ui(x) consists of x together with

all members of B on the x-axis whose distance from a vertex of the equilateral
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triangle, with one vertex at x and the other two on the x-axis, is less than 1/i.

If r2 = 0, then Ui(x) consists of all members of B on the x-axis whose distance

from x is less than 1/i. For each x ∈ B, let

Bx = {Ui(x) : i ∈ N}.

It is straightforward to see that the collection {Bx : x ∈ B} generates a topol-

ogy τB on B. The topological space (B, τB) is called the Bing space and was

defined in [4] by R.H. Bing.

It is known that (B, τB) is a Hausdorff space. Moreover, the closure of the set

Ui(x) consists of all points of B whose distance from the line passing through the

point x and forming an angle of 60◦ with the x-axis is not larger than
√
3/(2i), as

well as of all points of B whose distance from the line passing through the point

x and forming an angle of 120◦ with the x-axis is not larger than
√
3/(2i), see [17,

Example 75, page 93] for a picture of such closure. Hence, for each x1, x2 ∈ V

and all i1, i2 ∈ N we have

clB(Ui1(x1)) ∩ clB(Ui2(x2)) 6= ∅.

This implies that (B, τB) is a Brown space. Hence (B, τB) is a Hausdorff space

which is not Urysohn. Such space is not totally Brown. For example, if x1 =

(1, 0), x2 = (2, 0) and x3 = (3, 0), then

clB(U2(x1)) ∩ clB(U2(x2)) ∩ clB(U2(x3)) = ∅.

Let X be a topological space and Y ⊂ X . Then Y is totally Brown in X if and

only if for every n ∈ N2 and each nonempty open subsets O1, O2, . . . , On of Y we

have

Y ∩ clX(O1) ∩ clX(O2) ∩ · · · ∩ clX(On) 6= ∅.

Similarly Y is Brown in X if and only if for every nonempty open subsets U

and V of Y we have

Y ∩ clX(U) ∩ clX(V ) 6= ∅.

Let f : X → Y be a continuous function. In [2, Proposition 2.1, page 424] it is

claimed that if X is totally Brown, then f(X) is totally Brown too and that if

C ⊂ X is both dense and totally Brown in X , then X is totally Brown. These

results remain valid for Brown spaces.

We now present other properties of Brown and of totally Brown spaces. Some

of them are similar to known properties of connected spaces, like the following

three.
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Theorem 3.2. Let τ1 and τ2 be two topologies on X so that τ1 ⊂ τ2. If C ⊂ X

is totally Brown (Brown, respectively) in (X, τ2), then C is totally Brown (Brown,

respectively) in (X, τ1).

Proof: The result follows from the fact that cl(X,τ2)(A) ⊂ cl(X,τ1)(A) for each

A ⊂ X . �

Under the assumptions of Theorem 3.2, if (X, τ2) is totally Brown (Brown,

respectively), then (X, τ1) is totally Brown (Brown, respectively).

Theorem 3.3. Let X be a topological space and B, Y ⊂ X so that Y ⊂ B ⊂
clX(Y ). If Y is totally Brown (Brown, respectively) in X , then B is totally Brown

(Brown, respectively) in X .

Proof: Fix n ∈ N2 as well as n nonempty open subsets O1, O2, . . . , On of B.

For each i ∈ {1, 2, . . . , n} let Ui be an open subset of X so that Oi = B ∩ Ui.

Then Ui ∩ clX(Y ) 6= ∅ so Y ∩ Ui 6= ∅ for every i ∈ {1, 2, . . . , n} and since Y is

totally Brown in X , we infer that

∅ 6= Y ∩
( n
⋂

i=1

clX(Y ∩ Ui)

)

⊂ B ∩
( n
⋂

i=1

clX(B ∩ Ui)

)

= B ∩
( n
⋂

i=1

clX(Oi)

)

.

This shows that B is totally Brown in X . If Y is Brown in X , proceeding as

before we obtain that B is Brown in X . �

Corollary 3.4. Let X be a topological space and Y ⊂ X . If Y is totally Brown

(Brown, respectively) in X , then clX(Y ) is totally Brown (Brown, respectively)

in X . In particular, if Y is both dense and totally Brown (Brown, respectively)

in X , then X is totally Brown (Brown, respectively).

A subset A of a topological space X is a closed domain if A = clX(intX(A)).

Closed domains sets are also called regular closed sets. In Section 5 we show

that the Golomb space (N, τG) is totally Brown and contains subspaces which are

not Brown, so being Brown and being totally Brown is not hereditary. By the

following result, Brown and totally Brown spaces are hereditary with respect to

closed domains.

Theorem 3.5. If X is totally Brown (Brown, respectively) and U is a nonempty

open subset of X , then clX(U) is totally Brown (Brown, respectively) in X . In

particular if A ⊂ X is a nonempty closed domain, then A is totally Brown (Brown,

respectively) in X .

Proof: Fix n ∈ N2 as well as n nonempty open subsetsO1, O2, . . . , On of clX(U).

For each i ∈ {1, 2, . . . , n} let Ui be an open subset of X so that Oi = clX(U)∩Ui.
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Then U ∩ Ui 6= ∅ for every i ∈ {1, 2, . . . , n} and then

∅ 6=
n
⋂

i=1

clX(U ∩ Ui) = clX(U) ∩
( n
⋂

i=1

clX(U ∩ Ui)

)

⊂ clX(U) ∩
( n
⋂

i=1

clX(clX(U) ∩ Ui)

)

= clX(U) ∩
( n
⋂

i=1

clX(Oi)

)

.

This shows that clX(U) is totally Brown in X . If X is Brown, proceeding as

before we obtain that clX(U) is Brown in X . �

Let X be a topological space and a, b ∈ X with a 6= b. We say that X is

aposyndetic at a with respect to b if there exists a closed and connected subset M

of X such that a ∈ intX(M) and b /∈ M . If for each x ∈ X \{a}, X is aposyndetic

at a with respect to x, we say that X is aposyndetic at a. Finally, we say that

X is aposyndetic if X has this property at each of its points. This notion was

defined by F.B. Jones in [12]. If X is T3 and connected im kleinen at a, then X

is aposyndetic at a, so in this sense aposyndesis at a point is a generalization of

the notion of connectedness im kleinen at such point. Both Brown and totally

Brown T2 spaces are aposyndetic, according with the following result.

Theorem 3.6. If X is totally Brown (Brown, respectively) and T2, then X is

aposyndetic.

Proof: Fix a ∈ X and let b ∈ X \ {a}. Since X is T2 there exist open subsets U

and V of X such that a ∈ U , b ∈ V and U ∩ V = ∅. Using this and Theorem 3.5,

the set M = clX(U) is a closed and connected subset of X such that a ∈ intX(M)

and b /∈ M . Hence X is aposyndetic at a. �

In [1] more properties of totally Brown and of Brown spaces are presented.

4. A study of arithmetic progressions

4.1 Elementary properties. In this section we write a systematic study of the

arithmetic progressions P (a, b) and PF (a, b) defined in (1) and (2). We start with

the following results, from which it follows that an arithmetic progression in N is

uniquely determined by its initial term and the common difference of successive

members.

Proposition 4.1. Let a, c ∈ N. If b ∈ Z then PF (a, b) = PF (c, b) if and only if

a = c. Moreover if b ∈ N, then P (a, b) = P (c, b) if and only if a = c.

Proof: Assume that PF (a, b) = PF (c, b). Then a + b ∈ PF (a, b) = PF (c, b), so

c|[(a+b)−b], i.e., c|a. Similarly c+b ∈ PF (c, b) = PF (a, b) and then a|[(c+b)−b],
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i.e., a|c. Hence a = c. This shows the first part. The proof of the second part is

similar. �

Corollary 4.2. Let a, b, c, d ∈ N. Then P (a, b) = P (c, d) if and only if a = c and

b = d.

Proof: Assume that P (a, b) = P (c, d). Since b ∈ P (a, b) = P (c, d), there is

n ∈ N0 such that b = cn + d. Similarly d ∈ P (c, d) = P (a, b), so there exists

m ∈ N0 so that d = am + b. Hence b = cn + d = cn + am + b, so am + cn = 0

and then n = m = 0 so b = d and, by Proposition 4.1, a = c. �

The next result is the core property to show that the family BF defined in (3)

is a base of the Furstenberg topology τF on Z.

Theorem 4.3. For each (a, b) ∈ N× Z the following properties are satisfied:

1) PF (a, b) is infinite, b ∈ PF (a, b) and PF (1, b) = Z;

2) if c ∈ PF (a, b), then PF (a, c) = PF (a, b);

3) if c ∈ N, then PF (ac, b) ⊂ PF (a, b) ∩ PF (c, b).

Similarly, we have the next result.

Theorem 4.4. For each (a, b) ∈ N× N the following properties are satisfied:

1) P (a, b) is infinite, b ∈ P (a, b) and P (1, b) = Nb;

2) if c ∈ P (a, b), then P (a, c) ⊂ P (a, b);

3) if c ∈ N, then P (ac, b) ⊂ P (a, b) ∩ P (c, b).

4.2 Intersection of arithmetic progressions. Given k ∈ N2, it is important

to detect when the intersection of k arithmetic progressions is nonempty and, in

such case, what we obtain as such intersection. The following result is proved

in [13, Theorem 3.12, page 60], and is an extension of the Chinese Remainder

theorem.

Theorem 4.5. Let k ∈ N2, a1, a2, . . . , ak ∈ N and b1, b2, . . . , bk ∈ Z. Then the

simultaneous congruences

(5) x ≡ b1 (mod a1) x ≡ b2 (mod a2) . . . x ≡ bk (mod ak)

have a solution if and only if 〈ai, aj〉|(bi−bj) for each i, j ∈ {1, 2, . . . , k} with i 6= j.

When this condition is satisfied, the general solution forms a single congruence

class mod [a1, a2, . . . , ak].

Note that x is a solution of the simultaneous congruences (5) if and only if

x ∈ ⋂k
i=1 PF (ai, bi). Using this and Theorem 4.5 we obtain the following result.

Theorem 4.6. Let k ∈ N2, a1, a2, . . . , ak ∈ N and b1, b2, . . . , bk ∈ Z. Then the

following conditions are equivalent:
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1)
⋂k

i=1 PF (ai, bi) 6= ∅;
2) 〈ai, aj〉|(bi − bj) for each i, j ∈ {1, 2, . . . , k} with i 6= j;

3) PF (ai, bi) ∩ PF (aj , bj) 6= ∅ for each i, j ∈ {1, 2, . . . , k} with i 6= j;

4) the intersection
⋂k

i=1 PF (ai, bi) contains an arithmetic progression in Z.

Take notice that
⋂k

i=1 PF (ai, bi) 6= ∅ if and only if the members of the family

{PF (ai, bi) : i ∈ {1, 2, . . . , k}} have nonempty intersections by pairs. Theorem 4.6

remains valid for arithmetic progressions in N, see [2, Theorem 1.1, page 424] and

for k = 2, compare with part 2 of [17, Examples 60 and 61, page 82].

Theorem 4.7. Let k ∈ N2, a1, b1, a2, b2, . . . , ak, bk ∈ N. Then the following

conditions are equivalent:

1)
⋂k

i=1 P (ai, bi) 6= ∅;
2) 〈ai, aj〉|(bi − bj) for each i, j ∈ {1, 2, . . . , k} with i 6= j;

3) P (ai, bi) ∩ P (aj , bj) 6= ∅ for each i, j ∈ {1, 2, . . . , k} with i 6= j;

4) the intersection
⋂k

i=1 P (ai, bi) contains an arithmetic progression in N.

If a1, a2, . . . , ak ∈ N are relatively prime in pairs, then assertion 2) of Theo-

rems 4.6 and 4.7 is valid, so assertion 1) of such theorems is valid too. Let a, c ∈ N

and b, d ∈ Z. By Theorem 4.6,

(6) PF (a, b) ∩ PF (c, d) 6= ∅ if and only if 〈a, c〉|(b − d).

Moreover if b, d ∈ N then by Theorem 4.7,

(7) P (a, b) ∩ P (c, d) 6= ∅ if and only if 〈a, c〉|(b − d).

In particular if 〈a, c〉 = 1, then PF (a, b) ∩ PF (c, d) 6= ∅ and P (a, b) ∩ P (c, d) 6= ∅.

Corollary 4.8. If a, b, c ∈ N and 〈a, c〉 = 1, then P (a, b) ∩M(c) 6= ∅.

Corollary 4.9. Let a, b, c ∈ N be such that b 6= c and max{b, c} < a. Then

P (a, b) ∩ P (a, c) = ∅.

Proof: Let d = max{b, c} and e = min{b, c}. If P (a, b) ∩ P (a, c) 6= ∅ then,

by (7), 〈a, a〉|(b− c), so a|(d− e) and then a ≤ d− e < d, a contradiction with the

fact that d < a. Hence P (a, b) ∩ P (a, c) = ∅. �

In the next result we analyze the intersection of finitely many arithmetic pro-

gressions. We show that, when such intersection is nonempty, it is another arith-

metic progression.
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Theorem 4.10. Let a1, a2, . . . , ak ∈ N. If b1, b2, . . . , bk ∈ Z are such that
⋂k

i=1 PF (ai, bi) 6= ∅ then for each t ∈ ⋂k
i=1 PF (ai, bi), we have

(8) PF ([a1, a2, . . . , ak], t) =

k
⋂

i=1

PF (ai, bi)

and, if a1, a2, . . . , ak are relatively prime in pairs, then

(9) PF (a1a2 · · · ak, t) =
k
⋂

i=1

PF (ai, bi).

If b1, b2, . . . , bk ∈ N are such that
⋂k

i=1 P (ai, bi) 6= ∅ then for each t ∈
⋂k

i=1 P (ai, bi), we have

(10) P ([a1, a2, . . . , ak], t) =

( k
⋂

i=1

P (ai, bi)

)

∩Nt

and, if a1, a2, . . . , ak are relatively prime in pairs, then

(11) P (a1a2 · · · ak, t) =
( k
⋂

i=1

P (ai, bi)

)

∩Nt.

Proof: Let b1, b2, . . . , bk ∈ Z be such that
⋂k

i=1 PF (ai, bi) 6= ∅. Fix t ∈
⋂k

i=1 PF (ai, bi). Then ai|(t− bi) for each i ∈ {1, 2, . . . , k}. Let

z ∈ PF ([a1, a2, . . . , ak], t) and i ∈ {1, 2, . . . , k}.

Note that [a1, a2, . . . , ak]|(z − t), so ai|(z − t). Hence ai|[(z − t) + (t − bi)], i.e.,

ai|(z − bi), and then z ∈ PF (ai, bi). This shows that z ∈ ⋂k
i=1 PF (ai, bi) so the

left side of (8) is contained in its right side. To prove the reverse inclusion, let

z ∈ ⋂k
i=1 PF (ai, bi). Given i ∈ {1, 2, . . . , k} we know that ai|(z − bi) and since

ai|(t − bi), we have ai|[(z − bi) − (t − bi)], i.e., ai|(z − t). This implies that

[a1, a2, . . . , ak]|(z − t) and then z ∈ PF ([a1, a2, . . . , ak], t). Hence (8) is satisfied.

If a1, a2 . . . , ak are relatively prime in pairs then [a1, a2, . . . , ak] = a1a2 · · ·ak, so
(9) follows from this and (8).

Now assume that b1, b2, . . . , bk ∈ N are such that
⋂k

i=1 P (ai, bi) 6= ∅. Fix

t ∈ ⋂k
i=1 P (ai, bi). Then t ≥ bi for each i ∈ {1, 2, . . . , k}, so Nt ⊂

⋂k
i=1 Nbi and
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by (4) and (8),

P ([a1,a2, . . . , ak], t) = PF ([a1, a2, . . . , ak], t) ∩ Nt

=

( k
⋂

i=1

PF (ai, bi)

)

∩
( k
⋂

i=1

Nbi

)

∩Nt =

( k
⋂

i=1

PF (ai, bi) ∩ Nbi

)

∩ Nt

=

( k
⋂

i=1

P (ai, bi)

)

∩ Nt =
k
⋂

i=1

[P (ai, bi) ∩Nt].

Hence (10) is satisfied. The proof of (11) is like the proof of (9). �

Corollary 4.11. Let a1, a2 . . . , ak ∈ N. If b ∈ Z, then

PF ([a1, a2, . . . , ak], b) =

k
⋂

i=1

PF (ai, b)

and if a1, a2, . . . , ak are relatively prime in pairs, then

(12) PF (a1a2 · · · ak, b) =
k
⋂

i=1

PF (ai, b).

Moreover if b ∈ N, then

P ([a1, . . . , ak], b) =
k
⋂

i=1

P (ai, b)

and if a1, a2, . . . , ak are relatively prime in pairs, then

P (a1a2 · · · ak, b) =
k
⋂

i=1

P (ai, b).

Let a, c ∈ N. By Theorem 4.10 if b, d ∈ Z are such that PF (a, b)∩PF (c, d) 6= ∅
then for each t ∈ PF (a, b) ∩ PF (c, d), we have

PF ([a, c], t) = PF (a, b) ∩ PF (c, d).

Moreover if b, d ∈ N and P (a, b)∩P (c, d) 6= ∅ then for every t ∈ P (a, b)∩P (c, d),

we have

(13) P ([a, c], t) = P (a, b) ∩ P (c, d) ∩Nt.

Hence,

(14) P ([a, c], t) ⊂ P (a, b) ∩ P (c, d).
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The inclusion in (14) might be proper. Take, for example, P (2, 3) and P (6, 1).

Clearly 13 ∈ P (6, 1) ∩ P (2, 3) and by (14),

P (6, 13) = P ([6, 2], 13) ⊂ P (6, 1) ∩ P (2, 3).

Note that 7 ∈ [P (6, 1) ∩ P (2, 3)] \ P (6, 13). By (13)

P (6, 13) = P (6, 1) ∩ P (2, 3) ∩ N13 = P (6, 1) ∩ P (2, 3) ∩ P (1, 13).

Now we show that the nonempty intersection of finitely many arithmetic progres-

sions in N is another arithmetic progression in N.

Theorem 4.12. For each i ∈ {1, 2, . . . , k} let ai, bi ∈ N be such that

k
⋂

i=1

P (ai, bi) 6= ∅.

If z ∈ N, then

(15) P ([a1, a2, . . . , ak], z) =

k
⋂

i=1

P (ai, bi)

if and only if z = min
(

⋂k
i=1 P (ai, bi)

)

.

Proof: Let a = [a1, a2, . . . , ak]. Assume first that z = min
(

⋂k
i=1 P (ai, bi)

)

.

Then
⋂k

i=1 P (ai, bi) ⊂ Nz. Using this and (10) we have

P (a, z) =

( k
⋂

i=1

P (ai, bi)

)

∩ Nz =

k
⋂

i=1

P (ai, bi).

Now assume that z ∈ N is such that (15) holds. Since z ∈ P (a, z) we have

z ∈ ⋂k
i=1 P (ai, bi) and if t ∈ ⋂k

i=1 P (ai, bi), then t ∈ P (a, z) so t ≥ z. Hence,

z = min
(

⋂k
i=1 P (ai, bi)

)

. �

Notice that 7 = min(P (6, 1) ∩ P (2, 3)) so, by Theorem 4.12,

P (6, 7) = P (6, 1) ∩ P (2, 3).

If a, b, c, d ∈ N are such that P (a, b) ∩ P (c, d) 6= ∅ then, by Theorem 4.12,

P ([a, c], z) = P (a, b) ∩ P (c, d) if and only if z = min(P (a, b) ∩ P (c, d)).

Let a1, a2, . . . , ak ∈ N. Since [a1, a2, . . . , ak] = min
(

⋂k
i=1 M(ai)

)

and M(ai) =

P (ai, ai) for each i ∈ {1, 2, . . . , k}, by Corollary 4.11 and Theorem 4.12 we have

the following result.
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Theorem 4.13. Let a1, a2, . . . , ak ∈ N. Then
⋂k

i=1 M(ai) 6= ∅ and

(16) M([a1, a2, . . . , ak]) =

k
⋂

i=1

M(ai).

In particular, if a1, a2, . . . , ak are relatively prime in pairs, then

(17) M(a1a2 · · · ak) = M(a1) ∩M(a2) ∩ · · · ∩M(ak).

As an application of Corollary 4.11 we have the following result (compare (19)

with (3.1) of [21, page 15]).

Theorem 4.14. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. If b ∈ Z, then

(18) PF (a, b) =

k
⋂

i=1

PF (p
αi

i , b) and M(a) =

k
⋂

i=1

M(pαi

i ).

Moreover, if b ∈ N, then

(19) P (a, b) =

k
⋂

i=1

P (pαi

i , b).

Proof: Assume first that b ∈ Z. Given i, j ∈ {1, 2, . . . , k} with i 6= j the equality

〈pi, pj〉 = 1 implies that 〈pαi

i , p
αj

j 〉 = 1, so pα1

1 , pα2

2 , . . . , pαk

k are relatively prime in

pairs and then [pα1

1 , pα2

2 , . . . , pαk

k ] = pα1

1 pα2

2 · · · pαk

k . Since b ∈ ⋂k
i=1 PF (p

αi

i , b), by

(12) and (17),

PF (a, b) = PF (p
α1

1 pα2

2 · · · pαk

k , b) =

k
⋂

i=1

PF (p
αi

i , b)

and

M(a) = M(pα1

1 pα2

2 · · · pαk

k ) =
k
⋂

i=1

M(pαi

i ).

Hence (18) holds. If b ∈ N then, proceeding as before we obtain (19). �

The following result generalizes [18, Lemma 4.1, page 904].

Theorem 4.15. Let a, c ∈ N be such that a|c. If b, d ∈ Z are such that PF (a, b)∩
PF (c, d) 6= ∅, then PF (c, d) ⊂ PF (a, b). Moreover if b, d ∈ N, P (a, b)∩P (c, d) 6= ∅
and b < a, then P (c, d) ⊂ P (a, b).

Proof: To show the first part let b, d ∈ Z be such that PF (a, b) ∩ PF (c, d) 6= ∅.
By (6), 〈a, c〉|(b − d). Since a|c we infer that 〈a, c〉 = a, so a|(b − d). Let y ∈
PF (c, d). Then c|(y − d) and since a|c we have a|(y − d). This implies that

a|[(y − d)− (b− d)], i.e., a|(y − b), so y ∈ PF (a, b). Hence PF (c, d) ⊂ PF (a, b).
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To show the second part let b, d ∈ N be such that P (a, b) ∩ P (c, d) 6= ∅ and

b < a. Let y ∈ P (c, d). Proceeding as in the first part, we infer that a|(y − b).

Let x ∈ Z be such that y − b = ax. If x ≤ −1, then ax ≤ −a. Hence y − b ≤ −a

and then 0 ≤ y ≤ b − a, so a ≤ b, a contradiction. Hence x ≥ 0 and then

y ∈ P (a, b). �

Corollary 4.16. Let a, c ∈ N be such that a|c. If b ∈ Z, then PF (c, b) ⊂ PF (a, b).

Moreover, if b ∈ N and b < a, then P (c, b) ⊂ P (a, b).

Corollary 4.17. Let a, c ∈ N. If b ∈ Z, then PF (ac, b) ⊂ PF ([a, c], b). Moreover

PF (ac, b) = PF ([a, c], b) if and only if 〈a, c〉 = 1. If b ∈ N then P (ac, b) ⊂
P ([a, c], b) and P (ac, b) = P ([a, c], b) if and only if 〈a, b〉 = 1.

Theorem 4.18. Let a, c ∈ N and b, d ∈ Z. If PF (c, d) ⊂ PF (a, b), then a|c. On

the other hand, if b, d ∈ N and P (c, d) ⊂ P (a, b), then a|c.

Proof: Since d, c + d ∈ PF (c, d) we have d, c + d ∈ PF (a, b), so a|(d − b) and

a|[(c+ d)− b)]. Hence a|[(c+ d− b)− (d− b)], i.e., a|c. �

4.3 Decompositions of arithmetic progressions. Without proof, in several

papers of P. Szczuka (also known as P. Szyszkowska), like [18, page 902], [19,

page 878], [22, page 1010] and [24, page 93], an arithmetic progression in N is

decomposed as the union of pairwise disjoint arithmetic progressions in N. In

the next result, we present the precise meaning of such decomposition and give

a proof.

Theorem 4.19. Let a ∈ N2 and b ∈ N. Then for each t ∈ N2,

(20) P (a, b) =

at−1
−1

⋃

k=0

P (at, ak + b)

and the members of the family F = {P (at, ak + b) : k ∈ {0, 1, . . . , at−1 − 1}} are

pairwise disjoint.

Proof: Let A = {0, 1, . . . , at−1 − 1}. Fix t ∈ N2 and let x in the right side

of (20). Then there exist m ∈ N0 and k0 ∈ A so that x = atm+ (ak0 + b). Since

t > 1 we have t− 1 ≥ 1 so at−1m+ k0 ∈ N0 satisfies

x = a(at−1m) + (ak0 + b) = a(at−1m+ k0) + b ∈ P (a, b).

This shows that the right side of (20) is a subset of its left side. Now assume that

x is in the left side of (20). Let l,m ∈ N0 and k ∈ A be such that x = al+ b and

l = at−1m+ k. Then

x = al+ b = a(at−1m+ k) + b = atm+ (ak + b) ∈ P (at, ak + b).

Hence x is in the right side of (20) and such equality is satisfied.
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To show the second part, let n1, n2 ∈ N0 and k1, k2 ∈ A be such that k1 6= k2
and atn1 + (ak1 + b) = atn2 + (ak2 + b). Then at−1(n1 − n2) = k2 − k1. Hence

k2 ≡ k1 (mod at−1). Now, since k1 and k2 are distinct members of the set A,

which is a complete residue system modulo at−1, the integers k1 and k2 are not

congruent modulo at−1. From this contradiction, we infer that the members of F
are pairwise disjoint. �

Now, given an arithmetic progression P (a, b) with a ∈ N2, and x, y ∈ P (a, b)

with x 6= y, we decompose P (a, b) as the union of two disjoint sets U and V so

that x ∈ U and y ∈ V .

Theorem 4.20. Let a ∈ N2, b ∈ N and x, y ∈ P (a, b) with x < y. Write

x = am+ b, y = an+ b with 0 ≤ m < n. Then P (a, b) = U ∪ V , where

(21) U =

m
⋃

k=0

P (an+1, ak + b) and V =

an
−1

⋃

k=m+1

P (an+1, ak + b).

Moreover, x ∈ U , y ∈ V and the members of the family

F = {P (an+1, ak + b) : k ∈ {0, 1, . . . , an − 1}}

are pairwise disjoint. In particular, U ∩ V = ∅.

Proof: Since 0 ≤ m < n < 2n ≤ an we have 0 ≤ m < m+ 1 ≤ n ≤ an − 1, so

x = am+ b = an+1(0) + am+ b ∈ P (an+1, am+ b) ⊂ U

and

y = an+ b = an+1(0) + an+ b ∈ P (an+1, an+ b) ⊂ V.

Applying (20) with t = n+ 1, which belongs to N2, we infer that

P (a, b) =

at−1
−1

⋃

k=0

P (at, ak + b) =

an
−1

⋃

k=0

P (an+1, ak + b)

=

( m
⋃

k=0

P (an+1, ak + b)

)

∪
( an

−1
⋃

k=m+1

P (an+1, ak + b)

)

= U ∪ V.

Moreover, by Theorem 4.19, the members of the family

F = {P (at, ak + b) : k ∈ {0, 1, . . . , at−1 − 1}}
= {P (an+1, ak + b) : k ∈ {0, 1, . . . , an − 1}}

are pairwise disjoint. In particular, U ∩ V = ∅. �
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Corollary 4.21. Let a ∈ N2, b ∈ N and x, y ∈ P (a, b) with x 6= y. Then there

exist U and V so that P (a, b) = U ∪ V , x ∈ U , y ∈ V and U ∩ V = ∅.

5. The Golomb space

In both [10, page 663] and [11, page 179], S.W. Golomb showed that the family

BG = {P (a, b) : (a, b) ∈ N× N and 〈a, b〉 = 1}

is a base for a topology τG in N. In [17, Examples 60 and 61, page 82] this topolo-

gy is called the relatively prime integer topology. However as it is now more

popular in general topology, we call τG the Golomb topology and refer to the

topological space (N, τG) as the Golomb space. Clearly

τG = {∅} ∪ {U ⊂ N : for each b ∈ U there is a ∈ N

so that 〈a, b〉 = 1 and P (a, b) ⊂ U}.

In this section we present new properties of (N, τG). Let b, c ∈ N be such that

b 6= c. Take a ∈ P with max{b, c} < a. Then 〈a, b〉 = 〈a, c〉 = 1, so P (a, b)

and P (a, c) are open subsets in (N, τG) that contain b and c, respectively. By

Corollary 4.9, P (a, b) ∩ P (a, c) = ∅. This implies that (N, τG) is Hausdorff, so it

is not superconnected in the sense of [15].

If p ∈ P, then 〈p, i〉 = 1 for each i ∈ {1, 2, . . . , p− 1} so each P (p, i) is open in

(N, τG). Moreover

N \M(p) =

p−1
⋃

i=1

P (p, i),

so M(p) is closed in (N, τG).

5.1 Totally separated subsets of the Golomb space. In this subsection we

show that the members of the base BG whose common difference of successive

members is greater than one are totally separated. We then derive some conse-

quences of this fact. The following result was proved differently in [2, Proposi-

tion 3.2, page 427].

Theorem 5.1. Let a ∈ N2 and b ∈ N be such that 〈a, b〉 = 1. Then P (a, b) is

totally separated. In particular, P (a, b) is hereditarily disconnected.

Proof: Let x, y ∈ P (a, b) with x 6= y. Assume, without loss of generality, that

x < y. Write x = am + b, y = an + b with 0 ≤ m < n and consider the sets U

and V defined in (21). By Theorem 4.20 we have P (a, b) = U ∪ V , U ∩ V = ∅,
x ∈ U and y ∈ V . Fix k ∈ N0. If 〈an+1, ak+ b〉 6= 1, there is p ∈ P so that p|an+1
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and p|(ak + b). Then p|a and p|b. Since this contradicts the fact that 〈a, b〉 = 1

we infer that 〈an+1, ak+ b〉 = 1, and then both U and V are open in (N, τG). �

If A ⊂ Y ⊂ N, we denote by intN(A) the interior of A in (N, τG) and by intY (A)

the interior of A in the subspace Y of (N, τG).

Theorem 5.2. If a, b ∈ N and 〈a, b〉 = 1, then P (a, b) is neither connected im

kleinen nor almost connected im kleinen at each of its points.

Proof: Let us assume that P (a, b) is either connected im kleinen or almost con-

nected im kleinen at c ∈ P (a, b). We divide the proof in two cases. Assume first

that a ∈ N2. Since 〈a, c〉 = 1 and P (a, c) is an open subset of P (a, b) that con-

tains c, there is a connected subset C of P (a, c) so that intP (a,b)(C) 6= ∅. Hence

intN(C) 6= ∅ and since nonempty open subsets of (N, τG) are infinite, the set C

is infinite. This contradicts the fact that, by Theorem 5.1, P (a, c) is hereditarily

disconnected.

Now assume that a = 1. Let p ∈ P be so that c < p. Then 〈p, c〉 = 1 and since

P (p, c) is an open subset of P (a, b) that contains c, there is a connected subset D

of P (p, c) so that intP (a,b)(D) 6= ∅. Hence intN(D) 6= ∅ and since nonempty open

subsets of (N, τG) are infinite, the set D is infinite. This contradicts the fact that,

by Theorem 5.1, P (p, c) is hereditarily disconnected. �

Corollary 5.3. The Golomb space (N, τG) is neither connected im kleinen nor

almost connected im kleinen at each of its points. In particular, (N, τG) is not

locally connected.

Proof: Since N = P (1, 1) the result follows from Theorem 5.2. �

As we mention in Section 1, by Corollary 5.3 we infer that (N, τG) is not locally

connected at each of its points.

5.2 The closure in the Golomb topology. We present in this subsection

several results that involve the closure of an arithmetic progression with respect

to the Golomb space. If A ⊂ N we denote by clN(A) the closure of A in (N, τG).

The next result shows that the closure in (N, τG) of P (a, b) might contain members

of P (a, b) which are natural numbers less than b.

Theorem 5.4. If a, b ∈ N, then PF (a, b) ∩ N ⊂ clN(P (a, b)).

Proof: Let x ∈ PF (a, b)∩N and z ∈ Z be so that x = az+ b. Let W be an open

subset of (N, τG) with x ∈ W . Take c ∈ N so that 〈c, x〉 = 1 and P (c, x) ⊂ W .

Since 〈c, a〉|az we have 〈c, a〉|(x − b) so, by (7), P (c, x) ∩ P (a, b) 6= ∅ and then

x ∈ clN(P (a, b)). �
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Let a, b ∈ N and n ∈ N. Clearly P (an, b) ⊂ clN(P (an, b)). In the next result

we show that M(a) ⊂ clN(P (an, b)). Note that if 〈a, b〉 = 1, then 〈an, b〉 = 1, so

P (an, b) ∈ BG.

Theorem 5.5. If a, b ∈ N, then

(22) M(a) ⊂ clN(P (an, b)) for every n ∈ N.

Moreover, for each nonempty open subset U of (N, τG), there is c ∈ N so that

M(c) ⊂ clN(U).

Proof: Fix n ∈ N and let c ∈ M(a) and W be an open subset of (N, τG) with

c ∈ W . Take d ∈ N so that 〈d, c〉 = 1 and P (d, c) ⊂ W . Assume that 〈d, an〉 6= 1

and let p ∈ P be so that p|d and p|an. Hence p|a, so p|d and p|c and then

〈d, c〉 6= 1, a contradiction. Therefore 〈d, an〉 = 1. This implies, by (7), that

P (d, c) ∩ P (an, b) 6= ∅ and then W ∩ P (an, b) 6= ∅ so c ∈ clN(P (an, b)). This

shows (22).

Now assume that U is a nonempty open subset of (N, τG). Let b ∈ U and

c ∈ N so that 〈c, b〉 = 1 and P (c, b) ⊂ U . Applying (22) we obtain that M(c) ⊂
clN(P (c, b)) ⊂ clN(U). �

Corollary 5.6. For each b ∈ N the arithmetic progression P (1, b) is dense in

(N, τG), i.e., clN(P (1, b)) = N.

Corollary 5.7. For any finite collection {P (ai, bi) : i ∈ {1, 2, . . . , k}} of arith-

metic progressions in N, we have

(23) M([a1, a2, . . . , ak]) ⊂
k
⋂

i=1

clN(P (ai, bi)).

In particular,
⋂k

i=1 clN(P (ai, bi)) 6= ∅. Moreover, for each c ∈ N we have

(24) M(c) ∩
( k
⋂

i=1

clN(P (ai, bi))

)

6= ∅.

Proof: Let us assume that a = [a1, a2, . . . , ak] and c ∈ N. By Theorem 5.5,

M(ai) ⊂ clN(P (ai, bi)) for each i ∈ {1, 2, . . . , k}. Using this and (16) we have

∅ 6= M(a) =

k
⋂

i=1

M(ai) ⊂
k
⋂

i=1

clN(P (ai, bi)).

Moreover

∅ 6= M([c, a]) = M(c) ∩M(a) ⊂ M(c) ∩
( k
⋂

i=1

clN(P (ai, bi))

)

.

�
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The next result is part 10 of [17, Examples 60 and 61, page 83]. The proof

that we present is different.

Theorem 5.8. If b ∈ N and p ∈ P, then

(25) clN(P (pn, b)) = M(p) ∪ [PF (p
n, b) ∩ N] for each n ∈ N.

Proof: Fix n ∈ N. By Theorems 5.4 and 5.5 the right side of (25) is contained

in its left side. To show the other inclusion take x ∈ clN(P (pn, b)) and assume

that x /∈ M(p). If 〈pn, x〉 6= 1, then there is q ∈ P so that q|pn and q|x. Then q|p
so q = p and then p|x contradicting the fact that x /∈ M(p). Then 〈pn, x〉 = 1,

so P (pn, x) ∈ BG. Hence P (pn, x) ∩ P (pn, b) 6= ∅ and by (7), we have pn|(x − b)

implying that x ∈ PF (p
n, b) ∩N. �

If in Theorem 5.8 we assume that 〈p, b〉 = 1, then 〈pn, b〉 = 1 for each n ∈ N,

so P (pn, b) ∈ BG.

By (23) the intersection of the closures in (N, τG) of finitely many arithmetic

progressions is always nonempty. Note that the intersection of such arithmetic

progressions might be empty, but when this is not the case, the next result cal-

culates the intersection of such closures just as the closure of the intersection of

the progressions.

Theorem 5.9. Let a1, b1, a2, b2, . . . , ak, bk ∈ N be such that
⋂k

i=1 P (ai, bi) 6= ∅.
Then

(26) clN

( k
⋂

i=1

P (ai, bi)

)

=

k
⋂

i=1

clN(P (ai, bi)).

Proof: Clearly the left side of (26) is contained in its right side, so to show the

reverse inclusion, let b be a member of the right side of (26) and W be an open

subset of (N, τG) with b ∈ W . Take a ∈ N such that 〈a, b〉 = 1 and P (a, b) ⊂ W .

Then

(27) P (a, b) ∩ P (ai, bi) 6= ∅ for every i ∈ {1, 2, . . . , k}.

Since
⋂k

i=1 P (ai, bi) 6= ∅, by Theorem 4.7, we have

(28) P (ai, bi) ∩ P (aj , bj) 6= ∅ for each i, j ∈ {1, 2, . . . , k} with i 6= j.

Combining (27) and (28) we infer, applying again Theorem 4.7, that

P (a, b) ∩
( k
⋂

i=1

P (ai, bi)

)

6= ∅,

so W ∩
(

⋂k
i=1 P (ai, bi)

)

6= ∅ and then b is in the left side of (26). �
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The following result appears with a different proof in [2, Lemma 2.2, page 425].

Theorem 5.10. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. If b ∈ N, then

(29) clN(P (a, b)) = N ∩
( k
⋂

i=1

[M(pi) ∪ PF (p
αi

i , b)]

)

.

Proof: Combining (19), (25) and (26) we have

clN(P (a, b)) = clN

( k
⋂

i=1

P (pαi

i , b)

)

=

k
⋂

i=1

clN(P (pαi

i , b))

=

k
⋂

i=1

[M(pi) ∪ (PF (p
αi

i , b) ∩N)] = N ∩
( k
⋂

i=1

[M(pi) ∪ PF (p
αi

i , b)]

)

.

�

5.3 Totally Brown subsets of the Golomb space. In this subsection we

describe some subsets of N which are totally Brown, and hence connected in

(N, τG). We will use the following families of arithmetic progressions:

M = {M(a) : a ∈ N} and P = {P (a, b) : (a, b) ∈ N× N}.

Note that M ⊂ P and by (16), M is closed under finite intersections. The fol-

lowing result shows that the union of any collection A of arithmetic progressions

in N, that contains at least one member of M, is totally Brown in (N, τG). When

the family A is countable this result was proved slightly different in [2, Propo-

sition 2.3, page 425]. As a particular case we obtain [20, Lemma 3.2, page 431]

which claims that M(p) ∪ P (p, 1) is connected in (N, τG).

Theorem 5.11. Let A ⊂ P be such that A ∩M 6= ∅. Then W =
⋃A is totally

Brown in (N, τG). In particular, any union of members of M is totally Brown in

(N, τG).

Proof: Let c ∈ N be such that M(c) ∈ A. Hence M(c) ⊂ W . Fix n ∈ N2 as well

as n nonempty open subsets O1, O2, . . . , On of W . For each i ∈ {1, 2, . . . , n}, let
Ui be an open subset of (N, τG) so that Oi = W ∩ Ui and take bi ∈ Oi. Then there

exist ai, ci, di ∈ N so that 〈ai, bi〉 = 1, P (ai, bi) ⊂ Ui and bi ∈ P (ci, di) ∈ A. Then

P (ci, di) ⊂ W and P (ci, di)∩P (ai, bi) 6= ∅ for every i ∈ {1, 2, . . . , n}. Combining
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(24) and (26) we have

∅ 6= M(c) ∩
( n
⋂

i=1

[clN(P (ci, di)) ∩ clN(P (ai, bi))]

)

= M(c) ∩
( n
⋂

i=1

clN(P (ci, di) ∩ P (ai, bi))

)

⊂ W ∩
( n
⋂

i=1

clN(W ∩ Ui)

)

= W ∩
( n
⋂

i=1

clN(Oi)

)

.

�

Now we characterize the arithmetic progressions P (a, b) that are totally Brown

in (N, τG). To do this for each a ∈ N we define

Θ(a) = {p ∈ P : p|a}.

Note that Θ(a) = ∅ if and only if a = 1. In [18, Theorem 3.3, page 901] it is

shown that P (a, b) is connected in (N, τG) if and only if Θ(a) ⊂ Θ(b). From the

results that we have presented, the proof of 3) implies 4) in the next result is

simpler than the one that appears in [18, Theorem 3.3, page 901]. Clause 7) of

the next result was also proved in [2, Corollary 2.4, page 425].

Theorem 5.12. Let a, b ∈ N. Then the following assertions are equivalent:

1) P (a, b) is totally Brown in (N, τG);

2) P (a, b) is Brown in (N, τG);

3) P (a, b) is connected in (N, τG);

4) Θ(a) ⊂ Θ(b).

In particular

5) M(c) is totally Brown in (N, τG) for every c ∈ N;

6) if 〈a, b〉 = 1, then P (a, b) is totally Brown in (N, τG) if and only if a = 1;

7) (N, τG) is totally Brown.

Proof: We have seen that totally Brown spaces are Brown and that Brown

spaces are connected so 1) implies 2) and 2) implies 3). Now assume that P (a, b)

is connected in (N, τG). If Θ(a) 6⊂ Θ(b) then a ∈ N2 and there is p ∈ Θ(a) \Θ(b).

Then 〈p, b〉 = 1 so, by Theorem 5.1, P (p, b) is totally separated. Since p|a we

have P (a, b) ⊂ P (p, b) so P (a, b) is totally separated too. Since this contradicts

the fact that P (a, b) is connected, we infer that Θ(a) ⊂ Θ(b), so 3) implies 4).

Now assume that Θ(a) ⊂ Θ(b). Fix n ∈ N2 as well as n nonempty open subsets

O1, O2, . . . , On of P (a, b). For each i ∈ {1, 2, . . . , n}, let Ui be an open subset of

(N, τG) so that Oi = P (a, b) ∩ Ui and take bi ∈ Oi. Then a|(b − bi) and there
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is ai ∈ N with 〈ai, bi〉 = 1 and P (ai, bi) ⊂ Ui. Note that P (a, b) ∩ P (ai, bi) 6= ∅.
Assume that 〈a, ai〉 6= 1 for some i ∈ {1, 2, . . . , n} and let p ∈ P be such that

p|a and p|ai. Then p|b and since a|(b − bi) we have p|bi. Since this contradicts

the fact that 〈ai, bi〉 = 1, we infer that 〈a, ai〉 = 1 for each i ∈ {1, 2, . . . , n}
and then 〈a, a1a2 · · · an〉 = 1. This implies, by Corollary 4.8, that P (a, b) ∩
M(a1a2 · · · an) 6= ∅. By Theorem 5.5 and (26) we have

∅ 6= P (a, b) ∩M(a1a2 · · · an) ⊂ P (a, b) ∩
( n
⋂

i=1

M(ai)

)

⊂ P (a, b) ∩
( n
⋂

i=1

clN(P (ai, bi))

)

= P (a, b) ∩
( n
⋂

i=1

[clN(P (a, b)) ∩ clN(P (ai, bi))]

)

= P (a, b) ∩
( n
⋂

i=1

clN(P (a, b) ∩ P (ai, bi))

)

⊂ P (a, b) ∩
( n
⋂

i=1

clN(P (a, b) ∩ Ui)

)

= P (a, b) ∩
( n
⋂

i=1

clN(Oi)

)

.

This shows that P (a, b) is totally Brown in (N, τG). Hence 4) implies 1) and this

completes the proof that assertions 1), 2), 3) and 4) are equivalent. To show 5)

let c ∈ N. Since M(c) = P (c, c) and Θ(c) ⊂ Θ(c), by 3) implies 1), M(c) is totally

Brown in (N, τG).

To show 6) assume that 〈a, b〉 = 1. Then Θ(a) ∩Θ(b) = ∅. If P (a, b) is totally

Brown in (N, τG) then, by 1) implies 4), we have Θ(a) ⊂ Θ(b) so Θ(a) = ∅ and

then a = 1. Conversely, if a = 1, then ∅ = Θ(a) ⊂ Θ(b) so by 4) implies 1) the

set P (a, b) is totally Brown in (N, τG). This shows 6). Finally, since N = M(1)

by 5) (N, τG) is totally Brown. �

Corollary 5.13. The Golomb space (N, τG) is aposyndetic.

Proof: Since (N, τG) is totally Brown and T2, the result follows from this and

Theorem 3.6. �

Corollary 5.14. Let a, b ∈ N. Then P (a, b) is totally separated if and only if

Θ(a) 6⊂ Θ(b).

Proof: Assume first that P (a, b) is totally separated. Then P (a, b) is not con-

nected in (N, τG) and, by Theorem 5.12, Θ(a) 6⊂ Θ(b). Now assume that Θ(a) 6⊂
Θ(b) and let p ∈ Θ(a) \ Θ(b). Then 〈p, b〉 = 1 and since p|a we have P (a, b) ⊂
P (p, b). By Theorem 5.1, P (p, b) is totally separated and then P (a, b) is totally

separated too. �
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Corollary 5.15. For each a, b ∈ N the arithmetic progression P (a, b) is either

totally separated or totally Brown in (N, τG).

By Corollaries 5.3 and 5.13, (N, τG) is aposyndetic at each of its points and

connected im kleinen at none of its points.

We mention another application of Theorem 5.12. Given a ∈ N2 and b ∈ N

let q =
∏

p∈Θ(a) p. Note that q is square-free and if Θ(a) ⊂ Θ(b) then P (a, b)

is totally Brown in (N, τG) and P (a, b) ⊂ M(q). If a = 1, then P (a, b) is totally

Brown in (N, τG) and P (a, b) ⊂ M(a). This shows that the members of P which

are totally Brown in (N, τG) are subsets of members of M of the form M(q) with

q = 1 or q square-free, which are totally Brown in (N, τG) too.

By 7) of Theorem 5.12, (N, τG) is connected. By (25)

clN(P (4, 3)) = M(2) ∪ [PF (4, 3) ∩ N] = M(2) ∪ P (4, 3).

Hence clN(PG(4, 3)) is a nonempty proper closed subset of N that contains a non-

empty open subset of (N, τG), namely P (4, 3). Moreover clN(P (4, 3)) is not open

in (N, τG). Then (N, τG) is not superconnected in the sense of [6].

It is worth to compare Corollary 5.3 with the comment mentioned in [18,

page 901] in which it is said that “we can easily see that every base of the topol-

ogy τG contains some disconnected arithmetic progressions”. Then it is claimed

that by this comment and the equivalence between 3) and 4) of Theorem 5.12,

the space (N, τG) is not locally connected.

Let p ∈ P. We have seen that M(p) is closed in (N, τG). By 5) of Theorem 5.12,

M(p) is also connected in (N, τG). Clearly intN(M(p)) = ∅. Let A ⊂ P be such

that A∩M 6= ∅. By Theorem 5.11 and Corollary 3.4 both W =
⋃A and clN(W )

are totally Brown in (N, τG). Since (N, τG) is totally Brown, by Theorem 3.5 for

any nonempty open subset U of (N, τG), the set clN(U) is totally Brown.

Despite the fact that, by Theorem 5.1, some arithmetic progressions are not

totally Brown in (N, τG), the next result shows that its closure is always totally

Brown in (N, τG).

Theorem 5.16. Let A ⊂ P be such that A 6= ∅. If W =
⋃A, then B = clN(W )

is totally Brown in (N, τG). In particular, for each a, b ∈ N the set clN(P (a, b)) is

totally Brown in (N, τG).

Proof: Fix n ∈ N2 as well as n nonempty open subsets O1, O2, . . . , On of B. For

each i ∈ {1, 2, . . . , n} let Ui be an open subset of (N, τG) so that Oi = B ∩Ui and

let bi ∈ Oi. Take ai ∈ N with 〈ai, bi〉 = 1 and P (ai, bi) ⊂ Ui. Since bi ∈ clN(W )

we have W ∩P (ai, bi) 6= ∅ so there exist ci, di, ei ∈ N such that ei ∈ P (ci, di) ∈ A
and ei ∈ P (ai, bi). Hence P (ci, ei) ∩ P (ai, bi) 6= ∅ and P (ci, ei) ∩ P (ai, bi) ⊂
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W ∩ P (ai, bi). We also have

clN(P (ci, ei) ∩ P (ai, bi)) ⊂ clN(clN(P (ci, ei)) ∩ P (ai, bi))

⊂ clN(clN(W ) ∩ Ui) = clN(Oi).

Applying (23) with the finite collection

{P (c1, e1)} ∪ {P (ci, ei) : i ∈ {1, 2, . . . , n}} ∪ {P (ai, bi) : i ∈ {1, 2, . . . , n}}

of arithmetic progressions in N, as well as (26), we have

∅ 6= clN(P (c1, e1)) ∩
( n
⋂

i=1

[clN(P (ci, ei)) ∩ clN(P (ai, bi))]

)

⊂ B ∩
( n
⋂

i=1

clN(P (ci, ei) ∩ P (ai, bi))

)

⊂ B ∩
( n
⋂

i=1

clN(Oi)

)

.

This shows that B is totally Brown in (N, τG). �

Corollary 5.17. Let a ∈ N2 and b ∈ N be such that 〈a, b〉 = 1. Then P (a, b) is

totally separated and clN(P (a, b)) is totally Brown in (N, τG).

Proof: The result follows from Theorems 5.1 and 5.16. �

By Theorems 4.12 and 5.9 the intersection of the closure of finitely many mem-

bers of P is totally Brown in (N, τG). By Theorem 5.16 the union of the closure

of finitely many members of P is also totally Brown in (N, τG).

6. The Kirch space

In [14] A.M. Kirch considered the family

BK = {P (a, b) ∈ BG : a is square-free},

which is a base of a topology τK on N so that τK ⊂ τG, and showed that the

topological space (N, τK) is connected, locally connected and Hausdorff. In [17,

Examples 60 and 61, page 82] this topology is called the prime integer topology.

However we call τK the Kirch topology and refer to the topological space (N, τK)

as the Kirch space. Clearly

τK = {∅} ∪ {U ⊂ N : for each b ∈ U there exists a ∈ N2

such that P (a, b) ∈ BK and P (a, b) ⊂ U}.

The fact that τK ⊂ τG implies, by Theorem 3.2, that (N, τK) is totally Brown.

Moreover if C ⊂ N is totally Brown (Brown, connected, respectively) in (N, τG),
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then C is totally Brown (Brown, connected, respectively) in (N, τK). Since (N, τK)

is totally Brown and T2, by Theorem 3.6, (N, τK) is aposyndetic.

The inclusion τK ⊂ τG also implies that for each A ⊂ N we have

cl(N,τG)(A) ⊂ cl(N,τK)(A).

Hence many results presented in Subsection 5.2 remain valid in (N, τK). Particu-

larly all the results from Theorem 5.4 to Corollary 5.7 are valid in (N, τK). Hence

we have the following theorem.

Theorem 6.1. Let a, b, a1, b1, a2, b2, . . . , ak, bk ∈ N. Then

1) PF (a, b) ∩ N ⊂ cl(N,τK)(P (a, b));

2) M(a) ⊂ cl(N,τK)(P (an, b)) for each n ∈ N;

3) for each nonempty open subset U of (N, τK), there exists c ∈ N such that

M(c) ⊂ cl(N,τK)(U);

4) cl(N,τK)(P (1, b)) = N;

5) for any finite collection {P (ai, bi) : i ∈ {1, 2, . . . , k}} of arithmetic pro-

gressions in N, we have M([a1, a2, . . . , ak]) ⊂
⋂k

i=1 cl(N,τK)(P (ai, bi)) and,

in particular,
⋂k

i=1 cl(N,τK)(P (ai, bi)) 6= ∅;
6) M(c) ∩

(

⋂k
i=1 cl(N,τK)(P (ai, bi))

)

6= ∅ for each c ∈ N.

Assertion 4) of Theorem 6.1 is [23, Remark 4.1, page 676]. Concerning equality

(25) its right side is contained in its left side, considering the closure in (N, τK).

However the proper way to obtain cl(N,τK)(P (pn, b)) is presented in the next result

(compare the first part with [23, Theorem 4.4, page 676] and the second part with

[23, Corollary 4.5, page 678]).

Theorem 6.2. Let b ∈ N and p ∈ P. Then

(30) cl(N,τK)(P (pn, b)) = M(p) ∪ [PF (p, b) ∩ N] for each n ∈ N.

In particular, cl(N,τK)(P (pn, b)) = cl(N,τK)(P (p, b)) for every n ∈ N.

Proof: Take x ∈ cl(N,τK)(P (pn, b)) and consider that x /∈ M(p). Then 〈p, x〉 = 1.

This implies, since P (p, x) is an open subset of (N, τK) that contains x, that

P (p, x) ∩ P (pn, b) 6= ∅. Hence, by (7), p|(x − b), so x ∈ PF (p, b) ∩ N. This shows

that x is in the right side of (30).

Now take x ∈ PF (p, b) ∩ N and let W be an open subset of (N, τK) with

x ∈ W . Then there exists c ∈ N2 square-free so that 〈c, x〉 = 1 and P (c, x) ⊂ W .

Hence either 〈c, pn〉 = 1 or 〈c, pn〉 = p. In any case since p|(x − b) by (7) we

have P (c, x) ∩ P (pn, b) 6= ∅. Then W ∩ P (pn, b) 6= ∅. This shows that x ∈
cl(N,τK)(P (pn, b)), so PF (p, b) ∩ N ⊂ cl(N,τK)(P (pn, b)). By 2) of Theorem 6.1 we
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have M(p) ⊂ cl(N,τK)(P (pn, b)). Hence the right side of (30) is contained in its

left side. �

The same proof of Theorem 5.9 applies in (N, τK). Hence we have the following

result.

Theorem 6.3. Let a1, b1, a2, b2, . . . , ak, bk ∈ N be such that
⋂k

i=1 P (ai, bi) 6= ∅.
Then

(31) cl(N,τK)

( k
⋂

i=1

P (ai, bi)

)

=

k
⋂

i=1

cl(N,τK)(P (ai, bi)).

The following result appears in both [3, Lemma 1, page 4] and [23, Theorem 4.6,

page 678]. Our proof is shorter than the one presented in [23], though slightly

different than the one that appears in [3].

Theorem 6.4. If a ∈ N2 and a =
∏k

i=1 p
αi

i is the standard prime decomposition

of a, then

(32) cl(N,τK)(P (a, b)) =

k
⋂

i=1

cl(N,τK)(P (pαi

i , b)).

Proof: The result follows from (19) and (31). �

We are ready to present the formula for the closure in (N, τK) of an arithmetic

progression in N.

Theorem 6.5. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. If b ∈ N, then

(33) cl(N,τK)(P (a, b)) = N ∩
( k
⋂

i=1

[M(pi) ∪ PF (pi, b)]

)

.

Proof: By (30) and (32)

cl(N,τK)(P (a, b)) =

k
⋂

i=1

cl(N,τK)(P (pαi

i , b)) =

k
⋂

i=1

[M(pi) ∪ (PF (pi, b) ∩ N)]

= N ∩
( k
⋂

i=1

[M(pi) ∪ PF (pi, b)]

)

.

�

Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime decomposition

of a. Define c = p1p2 · · · pk =
∏

p∈Θ(a) p and for each b ∈ N let

Ab = {d ≤ c : for each i ∈ {1, 2, . . . , k} either pi|d or d ≡ b (mod pi)}.
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Let x ∈ cl(N,τK)(P (a, b)). Consider n ∈ N0 and d ∈ N so that x = cn + d and

d ≤ c. Given i ∈ {1, 2, . . . , k} we have pi|c and, by (33),

cn+ d ∈ M(pi) ∪ PF (pi, b).

Hence either pi|d or d ≡ b (mod pi), so d ∈ Ab and since x ∈ P (c, d), it follows

that x ∈ ⋃

d∈Ab
P (c, d).

Now assume that x ∈ ⋃

d∈Ab
P (c, d). Let d ∈ Ab be so that x ∈ P (c, d). Given

i ∈ {1, 2, . . . , k} we have pi|c and, since d ∈ Ab either pi|d or d ≡ b (mod pi). In

the first case both c and d belong to M(pi), so x ∈ M(pi). In the second case we

have pi|c, pi|(d− b) and c|(x− d), so pi|[(x− d) + (d− b)], i.e., pi|(x− b). Hence

x ∈ N ∩ PF (pi, b). This shows that

x ∈
k
⋂

i=1

[M(pi) ∪ (PF (pi, b) ∩ N)] = cl(N,τK)(P (a, b)).

Therefore we have the following result which is [23, Theorem 4.7, page 680].

Theorem 6.6. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. Define c = p1p2 · · · pk. Then for each b ∈ N

(34) cl(N,τK)(P (a, b)) =
⋃

d∈Ab

P (c, d).

By (34) the right side of (33) is the union of finitely many arithmetic progres-

sions in N, all with the same common difference of successive members.

Theorem 6.7. Let a, b, c1, d1, c2, d2, . . . , cn, dn ∈ N be such that P (ci, di) ∈ BK

and P (a, b) ∩ P (ci, di) 6= ∅ for each i ∈ {1, 2, . . . , n}. Then there exists d ∈ N so

that for every i ∈ {1, 2, . . . , n},

∅ 6= M(d) ∩ P (a, b) ⊂ cl(N,τK)(P (a, b) ∩ P (ci, di)).

Proof: For every i ∈ {1, 2, . . . , n} let bi ∈ P (a, b) ∩ P (ci, di). Then a|(bi − b),

ci|(bi − di) and, by (10),

P ([a, ci], bi) ⊂ P (a, b) ∩ P (ci, di).

Since P (ci, di) ∈ BK , each ci ∈ N2 is square-free and 〈ci, di〉 = 1. Applying

Theorem 2.1, there exists qi ∈ N such that [a, ci] = aqi, qi|ci and 〈qi, a〉 = 1. Let

d = q1q2 · · · qn. Since 〈qi, a〉 = 1 for each i ∈ {1, 2, . . . , n} we have 〈d, a〉 = 1.

Then, by Corollary 4.8, M(d) ∩ P (a, b) 6= ∅.
Fix i ∈ {1, 2, . . . , n} and let z ∈ M(d) ∩ P (a, b) and U be an open subset

of (N, τK) such that z ∈ U . Take x ∈ N2 square-free so that 〈x, z〉 = 1 and
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P (x, z) ⊂ U . Since a|(z − b) and a|(bi − b) we have a|[(z − b) − (bi − b)], i.e.,

a|(z − bi). From 〈x, z〉 = 1, qi|d and d|z it follows that 〈x, qi〉 = 1. Hence

〈x, [a, ci]〉 = 〈x, aqi〉 = 〈x, a〉〈x, qi〉 = 〈x, a〉,

so 〈x, [a, ci]〉|(z − bi). Therefore, by (7),

∅ 6= P (x, z) ∩ P ([a, ci], bi) ⊂ U ∩ P (a, b) ∩ P (ci, di).

This shows that z ∈ cl(N,τK)(P (a, b) ∩ P (ci, di)). �

6.1 Totally Brown subsets of the Kirch space. In this subsection we de-

scribe subsets of the Kirch space which are totally Brown. By Theorem 3.2 the

results presented in Theorems 5.11 and 5.16 remain valid in (N, τK). By the same

reason, the implication 4) implies 1) in Theorem 5.12 is valid in (N, τK), so we

have the following result.

Theorem 6.8. Let a, b ∈ N be such that Θ(a) ⊂ Θ(b). Then P (a, b) is totally

Brown in (N, τK).

By 4) of Theorem 6.1 and Theorem 6.8 for each b ∈ N the arithmetic progres-

sion P (1, b) is totally Brown and dense in (N, τK). Note that if P (a, b) ∈ BK then,

since a 6= 1 and 〈a, b〉 = 1 we have Θ(a) 6⊂ Θ(b). The following result generalizes

[18, Theorem 3.5, page 901].

Theorem 6.9. If a, b ∈ N, then P (a, b) is totally Brown in (N, τK).

Proof: Fix n ∈ N2 as well as n nonempty open subsets O1, O2, . . . , On of P (a, b).

For each i ∈ {1, 2, . . . , n} let Ui be an open subset of (N, τK) with Oi = P (a, b)∩Ui

and take di ∈ Oi. Then there exists ci ∈ N2 square-free such that 〈ci, di〉 = 1

and P (ci, di) ⊂ Ui. Note that P (ci, di) ∈ BK and P (a, b) ∩ P (ci, di) 6= ∅ for each

i ∈ {1, 2, . . . , n}. Then, by Theorem 6.7, there exists d ∈ N so that for every

i ∈ {1, 2, . . . , n},
∅ 6= M(d) ∩ P (a, b) ⊂ cl(N,τK)(P (a, b) ∩ P (ci, di)).

Thus

∅ 6= M(d) ∩ P (a, b) = P (a, b) ∩M(d) ∩ P (a, b)

⊂ P (a, b) ∩
( n
⋂

i=1

cl(N,τK)(P (a, b) ∩ P (ci, di))

)

⊂ P (a, b) ∩
( n
⋂

i=1

cl(N,τK)(P (a, b) ∩ Ui)

)

= P (a, b) ∩
( k
⋂

i=1

cl(N,τK)(Oi)

)

.

This shows that P (a, b) is totally Brown in (N, τK). �
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By Theorem 6.9 it follows that (N, τK) is locally connected. We can also show

that if P (a, b) ∈ BK and c ∈ P (a, b), then P (a, b) is locally connected at c.

A description of totally Brown subsets of the Szczuka space (N, τS), defined

by P. Szczuka in [19], where τS is called the common division topology on N, is

made in [1]. In the same paper there is also a description of totally Brown subsets

of the Rizza space (N, τR), defined by G.B. Rizza in [16], where τR is called the

division topology on N.
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México

E-mail: gerardo.delgadillo@ujat.mx

(Received February 18, 2021, revised December 15, 2021)


