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On FI-mono-retractable modules

Marziyeh Atashkar, Yahya Talebi

Abstract. We introduce the notion of FI-mono-retractable modules which is
a generalization of compressible modules. We investigate the properties of such
modules. It is shown that the rings over which every cyclic module is FI-mono-

retractable are simple Noetherian V -ring with zero socle or Artinian semisim-
ple. The last section of the paper is devoted to the endomorphism rings of
FI-retractable modules.
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1. Introduction

Throughout this paper R denotes an arbitrary associative ring with identity

and all modules are unitary right R-modules. For an R-module M , S = End(M)

denotes the endomorphism ring of M . In addition, E(M), Soc(M) and Rad(M)

denote the injective hull, the socle and the Jacobson radical of M , respectively.

Also J(R) stands for the Jacobson radical of R. Let M be a module and N be

a nonzero submodule of M . Then N is called to be an essential submodule of M

denoted by N ≤e M if K∩N 6= 0 for every nonzero submodule K of M . A mod-

ule M is called uniform if every nonzero submodule of M is essential in M . Recall

that M is singular (nonsingular) provided that Z(M) = M (Z(M) = 0) where

Z(M) = {x ∈ M : xI = 0 for some essential ideal I of R}. A submodule N of M

is called fully invariant, if for every f ∈ End(M), f(N) ⊆ N . Clearly 0 and M are

fully invariant submodules of M . There are some well-known fully invariant sub-

modules of a module M such as Rad(M), Soc(M), Z(M). It is clear that the sum

and the intersection of any collection of fully invariant submodules are also fully

invariant. Thus the collection of fully invariant submodules of M is a sublattice of

the complete modular lattice of all submodules of M . J. Zelmanowitz introduced

the notion of compressible modules. A right R-module M is called compressible

if for each nonzero submodule N of M there exists a monomorphism f : M → N .
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For example if R is a domain, then the right R-module R is compressible. In

[7] P. F. Smith and M.R. Vedadi study a generalization of compressible mod-

ules, essentially compressible modules, with focus on essential submodules. In

this work we present another generalization of compressible modules namely, FI-

mono-retractable modules by focusing just on nonzero fully invariant submodules.

An R-module M is called FI-mono-retractable, if for any nonzero fully invariant

submodule N of M there exists a monomorphism f : M → N . Clearly compress-

ible modules are FI-mono-retractable but the converse is not true in general.

In Section 2, we study some properties of FI-mono-retractable modules and we

show that when the FI-mono-retractability implies the essentially retractability.

Also we prove that the class of FI-mono-retractable modules is closed under di-

rect sums and present some conditions to show when FI-retractability condition

is preserved under taking submodules and homomorphic images. We prove that

any finitely generated nonsingular FI-mono-retractable module that has a uni-

form submodule, has finite uniform dimension. In Section 3, we consider FI-

mono-retractable modules over certain rings. Also we investigate rings over which

every cyclic (cocyclic) module is FI-mono-retractable. Such rings are simple Noe-

therian V-ring with zero socle or Artinian semisimple. Section 3 is devoted to

the endomorphism rings of FI-mono-retractable modules. We show that every

finitely generated quasi-projective FI-mono-retractable module has a prime endo-

morphism ring and the endomorphism ring of an indecomposable quasi-injective

FI-mono-retractable module is a field.

2. General properties

We first recall the following elementary well known facts about fully invariant

submodules.

Proposition 2.1. Let R be any ring and M be a nonzero R-module:

(1) Any sum or intersection of fully invariant submodules of M are again

a fully invariant submodule.

(2) Let K ≤ N be submodules of M such that K is a fully invariant submod-

ule of N and N is a fully invariant submodule of M . Then K is a fully

invariant submodule of M .

(3) Let M =
⊕

i∈I
Mi and N be a nonzero fully invariant submodule of M .

Then N =
⊕

i∈I
(N ∩Mi).

(4) Let M = M1 ⊕M2 be the direct sum of submodules M1, M2. Then M1

is a fully invariant submodule of M if and only if Hom(M1,M2) = 0.
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(5) If N ≤ L ≤ M such that N is a fully invariant submodule of M and

L/N is a fully invariant submodule of M/N , then L is a fully invariant

submodule of M .

Proof: For proof of (1), (2), (3), (4) see [5, 2.1], [5, 1.9]. (5) Let f : M → M

be a homomorphism. Then f(N) ≤ N . Now, consider the homomorphism

f̄ : M/N → M/N defined by f̄(m + N) = f(m) + N for all m ∈ M . So

f̄(L/N) ≤ L/N . Clearly f̄(L/N) = (f(L) +N)/N . Therefore f(L) ≤ L. Hence

L is a fully invariant submodule of M . �

Definition 2.2. An R-module M is called FI-mono-retractable provided for

each nonzero fully invariant submodule N of M , there exists a monomorphism

f : M → N .

Remark 2.3. (1) Let R be a commutative ring. Following [1] an R-module M

is multiplication if for each submodule N of M , there exists ideal I of R such that

N = MI. Clearly, if M is multiplication, then M is compressible if and only if

M is FI-mono-retractable.

(2) Following [8] an R-module M is called fully prime if for any nonzero fully

invariant submodule K of M , M is K-cogenerated. And M is called prime if

for any nonzero fully invariant submodule K of M , AnnR(K) = AnnR(M). It is

clear that every FI-mono-retractable module is fully prime. Also, every FI-mono-

retractable module is a prime module. Because if M is FI-mono-retractable and

N is a nonzero fully invariant submodule of M , then there exists monomorphism

f : M → N . Let r ∈ AnnR(N). Then f(Mr) ≤ Nr = 0. So AnnR(N) ≤

AnnR(M).

In the following result we present a condition in which the two concepts of

compressible and FI-mono-retractable are equivalent. In [10] M has (*) condition

if for any nonzero proper submodule K of M , there is an r ∈ R \AnnR(M) with

Mr ⊂ K.

Proposition 2.4. Any FI-mono-retractable module with (*) condition is com-

pressible.

Proof: Suppose that M is FI-mono-retractable and N any nonzero submodule

of M . By (*) condition there exists r ∈R \ AnnR(M) such that MrR ⊂ N .

Since MrR is fully invariant submodule of M , there exists a monomorphism

f : M → MrR and so i ◦ f : M → N is a monomorphism where i denoted the

inclusion map i : MrR → N . �
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In general the class of FI-mono-retractable modules is not closed under tak-

ing submodules and factor modules. For example Z as Z-module is FI-mono-

retractable module but Z-module Z/(4Z) is not FI-mono-retractable module re-

tractable. However, there are some special cases, as follows.

Proposition 2.5. Any fully invariant submodule of an FI-mono-retractable mod-

ule is FI-mono-retractable.

Proof: Suppose that M is FI-mono-retractable and N any nonzero fully invari-

ant submodule of M . Let K be a nonzero fully invariant submodule of N . Then

K is fully invariant submodule of M . By assumption there exists a monomor-

phism f : M → K. Then f ◦ i : N → K is a nonzero monomorphism where i

denotes the inclusion map of N to M . �

Proposition 2.6. Let N be a submodule of an FI-mono-retractable module M

such that α(N) +α−1(N) ≤ N for every monic epimorphism α ∈ End(M). Then

the module M/N is an FI-mono-retractable module.

Proof: Let L/N be a nonzero fully invariant submodule of M/N . By Proposi-

tion 2.1 (5), L is a fully invariant submodule of M . By hypothesis, there exists

monomorphism f : M → L. Since f(N) + f−1(N) ≤ N , the induced mapping

f̄ : M/N → L/N defined by f̄(m+N) = f(m)+N is a monomorphism. It follows

that M/N is an FI-mono-retractable module. �

Corollary 2.7. Let M be an FI-mono-retractable module. Then the module

M/Z(M) is an FI-mono-retractable module.

Proof: Let N be a submodule of M containing Z(M) such that N/Z(M) is

a fully invariant submodule of M/Z(M). Since Z(M) is fully invariant sub-

module of M then N is a fully invariant submodule of M . So there exists

a monomorphism f : M → N . Then f induces f̄ : M/Z(M) → N/Z(M) defined

by f̄(m + Z(M)) = f(m) + Z(M). Since f−1(Z(M)) ≤ Z(M), f̄ is monomor-

phism. �

Proposition 2.8. Let R be any ring and M =
⊕

i∈I
Mi be a direct sum of

FI-mono-retractable module Mi. Then M is a mono-retractable module.

Proof: Let N be any fully invariant submodule of M . Then by Proposi-

tion 2.1 (3), N =
⊕

i∈I
(N ∩ Mi). Since N ∩ Mi is a fully invariant submod-

ule of Mi, there exists monomorphism fi : Mi → N ∩ Mi. Hence f =
⊕

i∈I
fi:⊕

i∈I
Mi →

⊕
i∈I

(N ∩Mi) is monomorphism. �

A module M is called cocyclic provided it contains an essential simple submod-

ule.
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Proposition 2.9. Let M be FI-mono-retractable module. Then:

(1) M is either semisimple or Soc(M) = 0.

(2) M is either singular or nonsingular.

(3) M is singular and semisimple or Soc(M) is projective, but not both.

(4) AnnR(M) is a prime ideal of R.

(5) If M is finitely generated, then no submodule of M is an infinite direct

sum of nonzero fully invariant submodules.

(6) If M is cocyclic, then M is simple.

(7) If M is quasi-injective, then M has no nontrivial fully invariant submod-

ule.

Proof: (1) Suppose that Soc(M) 6= 0. Then there exists a monomorphism

f : M → Soc(M). So M is semisimple.

(2) The proof is similar to (1).

(3) Suppose that M is FI-mono-retractable. If Z(M) ∩ Soc(M) = 0, then [4,

1.24] implies that Soc(M) is projective. If Z(M) ∩ Soc(M) 6= 0, then FI-mono-

retractable condition on M implies that there exists a monomorphism f : M →

Z(M) ∩ Soc(M). So M is singular and semisimple.

(4) Suppose that I, J are nonzero right ideals of R such that MI 6= 0, MJ 6= 0

and MIJ = 0. By FI-mono-retractable condition on M there exists monomor-

phism f : M → MI. Then f(MJ) ≤ MIJ = 0. So MJ = 0.

(5) Suppose that N = N1⊕N2⊕· · · is direct sum of fully invariant submodule

of M . By assumption there exists a monomorphism f : M → N . Since M is

finitely generated f(M) ≤ N1 ⊕ · · · ⊕ Nk for some positive integer k. Also

f(Nk+1 ⊕ · · · ) ≤ f(M) ∩ (Nk+1 ⊕ · · · ) = 0. Hence Nk+1 ⊕ · · · ≤ Kerf = 0.

(6) Thist is trivial consequence of (1).

(7) Suppose that N is a nonzero fully invariant submodule of M . By assump-

tion there exists a monomorphism f : M → N . Then M ∼= K for some submodule

K ≤ N . Now the isomorphism g : K → M can be extended to ḡ : M → M such

that ḡ(K) = g(K). Therefore M = g(K) = ḡ(K) ≤ ḡ(N) ≤ N . Consequently

M = N . �

AmoduleM is said to have finite uniform dimension denoted by u.dim(M) < ∞

if it does not contain an infinite direct sum of nonzero submodules.

Proposition 2.10. Let M be a finitely generated nonsingular FI-mono-retract-

able module. Then M has finite uniform dimension if and only if M has a uniform

submodule.

Proof: Suppose that M is a nonsingular FI-mono-retractable and U a uniform

submodule of M . Let N = Σ{f(U) : f ∈ Hom(U,M)}. Since N is fully invariant

submodule of M , there exists monomorphism g : M → N . Since M is finitely
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generated, there exists positive integer n and fi ∈ Hom(U,M) such that Im g ≤

f1(U) + · · · + fn(U). Hence g : M → f1(U) + · · · + fn(U) is a monomorphism.

Now, define α : U (n) → f1(U) + · · · + fn(U) by α(u1, · · · , un) = f1(u1) + · · · +

fn(un). It is clear that α is an epimorphism. Then U (n) has finite uniform

dimension. Also since U (n)/Kerα is nonsingular, Kerα is closed in U (n). So [2,

5.10] implies that U (n)/Kerα and so f1(U1) + · · · + fn(Un) has finite uniform

dimension. Consequently M has finite uniform dimension. �

3. FI-mono-retractable modules over certain rings

A ring R is called right quasi-injective if RR is an injective module.

Proposition 3.1. Let R be a right quasi-injective ring and M be a finitely gen-

erated nonsingular FI-mono-retractable module. If M has a uniform submodule,

then M is semisimple, projective and injective.

Proof: Suppose that M has a uniform submodule. By Proposition 2.10, M has

finite uniform dimension. Let u.dim(M) = n. So there exists an essential sub-

module V of M such that V = U1 ⊕U2 ⊕ · · · ⊕Un where U1, U2, . . . , Un are uni-

form submodules of M . We prove that Ui is simple for each 1 ≤ i ≤ n.

Let 0 6= x ∈ Ui. Since xR is nonsingular and R is right quasi-injective, then

R/AnnR(x) and so xR is injective. Hence xR = Ui because Ui is uniform. There-

fore V is semisimple and injective. Now since V is an essential and injective

submodule of M , V = M . Also by [4, 1.26], every nonsingular semisimple module

is projective. �

A ring R is called right V -ring if every simple right R-module is injective.

Proposition 3.2. Let R be any ring. Then R is V -ring if and only if every

cocyclic R-module is FI-mono-retractable.

Proof: Suppose that R is V -ring and M a cocyclic R-module. Let N be simple

and essential submodule of M . By assumption N is a direct summand of M .

So M = N . Conversely, suppose that M is a simple R-module. It is clear that

M = Soc(E(M)), hence E(M) = M by 2.9 (1). �

Proposition 3.3. Let R be any ring such that every cyclic R-module is FI-mono-

retractable. Then every semisimple R-module is injective.

Proof: Suppose that M is any semisimple R-module. Let 0 6= x ∈ E(M) then

0 6= xR ∩M = Soc(xR). By assumption xR is FI-mono-retractable. So Proposi-

tion 2.9 (1) implies xR is semisimple. So xR ≤ M and so M = E(M). �
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Following [6] the ring R is right GV -ring in case each right simple R-module

is injective or projective. Let R be any ring. In [6, 4.8] equivalent conditions are

provided for R such that any semisimple R-module is injective.

Proposition 3.4. Let R be any ring. If every cyclic R-module is FI-mono-

retractable, then R is either simple right Noetherian V-ring with zero socle or

Artinian semisimple.

Proof: Suppose that R is a ring such that every cyclic R-module is FI-mono-

retractable. Then by Proposition 3.2, every semisimple R-module is injective.

Now the equivalent conditions in [6, 4.8] completes the proof. �

Proposition 3.5. Let R be a commutative ring. If every cyclic R-module is

FI-mono-retractable, then R is Artinian semisimple.

Proof: Suppose that every cyclic R-module is FI-mono-retractable. Proposi-

tion 3.3 implies that every semisimple R-module is injective. Now by [6, 4.9], R

is Artinian semisimple. �

4. Endomorphism ring of certain FI-mono-retractable modules

Definition 4.1. A ring R is called right FI-mono-retractable if RR is FI-mono-

retractable.

Recall that an element c ∈ R is right regular if r.annR(c) = 0 where r.annR(c)

denotes the right annihilator of c.

Lemma 4.2. Let R be any ring. The following statements are equivalent:

(1) R is a right FI-mono-retractable ring.

(2) Every two-sided ideal of R has right regular element.

Proof: (1) ⇒ (2) Suppose that R is FI-mono-retractable and I any two-sided

ideal of R. There exists a monomorphism f : R → I. So, f(1R) is right regular

element of I.

(2) ⇒ (1) Suppose I is any two-sided ideal of R and x ∈ I a right regular

element. Then the map f : R → I defined by f(r) = xr is a monomorphism. �

Proposition 4.3. Let M be a quasi-projective FI-mono-retractable module. If

M is finitely generated, then S = End(M) is a right FI-mono-retractable ring.

Proof: Suppose that M is finitely generated quasi-projective FI-mono-retract-

able. Let I be any two-sided ideal of S. Then IM is a fully invariant submodule

of M and so there exists a monomorphism f : M → IM . Since M is finitely

generated and quasi projective by [9, 18.4], Hom(M, IM) = I. On the other
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hand, r.annS(f) = Hom(M,Ker f) = 0. Hence f ∈ I is right regular element.

The Lemma 4.2 implies that S is FI-mono-retractable. �

Corollary 4.4. Let R be a right FI-mono-retractable ring. Then Mn(R) is FI-

mono-retractable for any n.

Proof: Suppose that R is a right FI-mono-retractable ring. Then R(n) is a fi-

nitely generated R-module. Proposition 4.3 implies that End(R(n)) is a right

FI-mono-retractable ring and so Mn(R) is a right FI-mono-retractable ring. �

Proposition 4.5. Every right FI-mono-retractable ring is prime ring.

Proof: Suppose that R is a right FI-mono-retractable ring. By Proposi-

tion 2.9 (4) AnnR(R) is a prime ideal and so R is prime. �

Corollary 4.6. Let M be a quasi-projective FI-mono-retractable module. If M

is finitely generated, then S = End(M) is prime ring.

Proof: The proof follows by Propositions 4.3 and 4.5. �

Proposition 4.7. Let R be a right FI-mono-retractable ring. If RR is quasi-

injective, then R is simple.

Proof: Suppose that R is a right FI-mono-retractable ring and RR is quasi-

injective. By Proposition 2.9 (7), RR has no nontrivial fully invariant submodule.

So R has no ideal other than the trivial ones. Therefore R is simple. �

Proposition 4.8. Let R be a right hereditary right FI-mono-retractable ring.

Then R is right Noetherian if and only if R has a right uniform ideal.

Proof: Suppose that R has a right uniform ideal. Then R is right nonsingular

ring because R is right hereditary. So by Proposition 2.10, RR has finite uniform

dimension. Now by [4, 5.20], the proof is completed. Conversely, it is clear. �

Proposition 4.9. The endomorphism ring of an indecomposable quasi-injective

FI-mono-retractable module is a field.

Proof: Suppose that M is an indecomposable quasi-injective FI-mono-retract-

able module with S = End(M). Since M is quasi-injective and FI-retractable,

by Proposition 2.9 (7), M has no fully invariant submodule other than the trivial

ones. Therefore [3, Exercise 29, page 183] implies that S is a field. �
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