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A Marchaud type inequality

Jorge Bustamante

Abstract. We present a new Marchaud type inequality in Lp spaces.
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1. Introduction

For 1 ≤ p < ∞, the Banach space L
p consists of all 2π-periodic, pth power

Lebesgue integrable (class of) functions f on R with the norm

‖f‖p =

(

1

2π

∫

π

−π

|f(x)|p dx

)1/p

.

We also set C2π for the family of all 2π-periodic continuous functions on R with

the norm

‖f‖∞ = sup
x∈[−π,π]

|f(x)|.

Moreover

Xp =

{

L
p, if 1 ≤ p < ∞,

C2π, if p = ∞.

Notice that X∞ is not the space of essentially bounded functions.

For m ∈ N and 1 ≤ r ≤ p ≤ ∞, r 6= ∞, set

(1) Wm
p,r = {f ∈ Xp : f = ϕ a.e. ϕ, ϕ(1), . . . , ϕ(m−1) ∈ AC, ϕ(m) ∈ Xr}.

In the case p = r = ∞, we set Wm
∞,∞ = Cm

2π
(functions m-times continuously

differentiable).

For m ∈ N, f ∈ Xp, 1 ≤ p ≤ ∞, and t > 0 the usual modulus of continuity

(smoothness) of order m of f is defined by

(2) ωm(f, t)p = sup
|h|≤t

‖∆m
h f‖p,
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where

∆m
h f(x) =

m
∑

k=0

(−1)k
(

m

k

)

f(x+ kh).

The Marchaud inequality appeared for the first time in [7], but there are various

extensions. Let us recall a few.

Theorem 1 (H. Johnen, [5, page 302]). Assume 1 ≤ p < ∞. If f ∈ L
p and

(3)

∫ 1

0

ωm+n(f, u)p
uk+1

du < ∞

for some k ∈ N, 1 ≤ k ≤ m− 1, then f ∈ W k
p,p, and for 0 < t ≤ 1 and n ∈ N,

(4) ωm(f (k), t)p ≤ Cr,m

(

tm
∫ 2

t

ωm+n(f, u)p
um+k+1

du+

∫ t

0

ωm+n(f, u)p
uk+1

du

)

.

Another kind of estimate was given by H. Johnen and K. Scherer in [6]. If

1 ≤ k ≤ m− 1 and (3) holds, then f ∈ W k
p,p and

ωm−k(f
(k), t)p ≤ C

∫ t

0

ωm(f, u)p
uk+1

du, f ∈ Xp.

A proof was also included in [3, pages 178–179].

Recall that if 1 ≤ r < p ≤ ∞ and f ∈ Xp, then f ∈ Xr and ‖f‖r ≤ ‖f‖p.

Therefore ωm(f, t)r ≤ ωm(f, t)p.

In this note we show that a result similar to (4) holds, if we replace ωm(f, u)p
by ωm(f, u)r, with 1 ≤ r < p. In fact, we prove the following theorem:

Theorem 2. Assume 1 ≤ r < p < ∞ and m ∈ N, m > 2. There exists

a constant C such that, if f ∈ L
p, 1 ≤ k < m− 1, and

(5)

∫ 1

0

ωm(f, s)r
s1+k+1/r−1/p

ds < ∞,

then f ∈ W k
p,p and for 0 < t ≤ 1/2,

(6) ωm−k(f
(k), t)p ≤ C

(

tm−1−k‖f‖r +

∫ t

0

ωm(f, s)r
s1+k+1/r−1/p

ds+
ωm(f, t)r

t1+k

)

.

Notice that the case k = m−1 is not included in Theorem 2. It is done because

in such a case the term corresponding to ‖f‖r does not go to zero when t → 0. The

result can be improved. As we show in Proposition 2, if we assume condition (5),

then f ∈ W k
r,r. A stronger property holds, but it requires to consider fractional

derivatives and fractional moduli of smoothness (for definitions see [1]). In fact,

it can be proved that under condition (5) there exists β ∈ (0, 1) such that the
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fractional derivative Dk+βf exists a.e. This kind of problems goes beyond the

scope of the paper.

2. Known results

In this section we recall some known facts.

The classes Wm
p,p can be described in terms of strong derivatives. A function

f ∈ L
p has a strong derivative, if there exists g ∈ L

p such that

lim
h→0+

∥

∥

∥

f(·+ h)− f(·)

h
− g

∥

∥

∥

p
= 0.

In such a case we denote g = D
(1)
s f . For m ∈ N, the strong derivative is defined

by D
(m)
s (f) = D

(1)
s (D

(m−1)
s f). It is known that f ∈ Wm

p,p if and only if f has

a strong derivative D
(m)
s f , see [2, Theorem 10.1.12]. Moreover, if f ∈ Wm

p,p, then

D
(m)
s f = ϕ(m), where ϕ is associated to f as in (1). In what follows we identify f

and ϕ. Moreover, if f ∈ Wm
p,p, all strong derivatives of lower order exist, see [2,

Theorem 10.1.6].

It is known that Dm : Wm
p,p → L

p, defined by Dmf = D
(m)
s f is a closed linear

operator, see [1, Lemma 2].

In the next result, for 1 ≤ s < ∞, Ls[a, b] denotes the usual Lebesgue space.

Theorem 3 (V.N. Gabushin, [4]). Assume p, q, r ≥ 1 are real numbers, 0 ≤

k < m, k, n ∈ N, and

(7)
m− k

q
+

k

r
≥

m

p
.

There exists a constant A such that, if f ∈ L
q[a, b] and f (m) ∈ L

r [a, b], and

0 < δ ≤ (b − a), then

δk‖Dkf‖p ≤ A(δ1/p−1/q‖f‖q + δm+1/p−1/r‖Dmf‖r).

Proposition 1 (see [3, page 45]). If 1 ≤ p ≤ ∞, f ∈ L
p, m,n ∈ N and s > 0,

then

(8) ωm(f, ns)p ≤ nm ωm(f, s)p,

and

(9) ωm(f, t)p ≤ 2ωm−1(f, t)p.
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Theorem 4 (see [3, page 177]). If 1 ≤ r < ∞ and m ∈ N, there exist positive

constants M1 and M2 such that for f ∈ L
r and 0 < t

(10) M1ωm(f, t)r ≤ Km(f, t)r ≤ M2ωm(f, t)r,

where

Km(f, t)r = inf
g∈Wm

p,p

{‖f − g‖r + tm‖Dmg‖r}.

For n ∈ N0, let Tn be the family of all trigonometric polynomials of degree not

greater than n. For f ∈ L
r define

En,r(f) = inf
T∈Tn

‖f − T ‖r.

3. Two results related with strong derivatives

Theorem 5. Let r be a real number, 1 ≤ r < ∞, and k,m ∈ N. If f ∈ L
r and

(11)

∫ 1

0

ωm(f, s)r
s1+k

ds < ∞,

then f ∈ W j
r,r for every j, 0 ≤ j ≤ k. Moreover if {gn}n∈N is a sequence satis-

fying gn ∈ Wm
r,r and

(12) ‖f − gn‖r +
1

nm
‖Dmgn‖r ≤ Cωm

(

f,
1

n

)

r
, n ∈ N,

with a constant C which depends not on f or n (whose existence is guaranteed

by Theorem 4), then

(13) (Djf)(x) = (Djgn)(x) +
∞
∑

i=1

(Dj(gn2i − gn2i−1))(x) a.e.

for each j, 0 ≤ j ≤ k, and every n ∈ N.

Proof: Let {gn}n∈N ⊂ Wm
r,r be a sequence such that (12) holds.

Fix j, 0 ≤ j ≤ k, and for n, ν ∈ N set

Gn =

∞
∑

i=1

(gn2i − gn2i−1), Sν,n =

ν
∑

i=1

(gn2i − gn2i−1),

and

Hν,n,j =

ν
∑

i=1

(Djgn2i −Djgn2i−1) = Dj(Sν,n).
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If j = 0, it follows from (12) that

lim
ν→∞

‖f − gn − Sν,n‖r = lim
ν→∞

‖f − gn2ν‖r = 0.

Hence f − gn = Gn a.e. for each n ∈ N. This proves (13) for j = 0.

In what follows we assume 1 ≤ j ≤ k.

First, we prove that Hν,n,j is a Cauchy sequence in L
r. If ν, σ ∈ N, since

k < m, from Theorem 3 (with δ = 1/(n2i) and p = q = r) and (12), we obtain

‖Hν+σ,n,j −Hν,n,j‖r ≤
ν+σ
∑

i=ν+1

‖Dj(gn2i − gn2i−1)‖r

≤ A

ν+σ
∑

i=ν+1

(n2i)j‖gn2i − gn2i−1‖r +A

ν+σ
∑

i=ν+1

1

(n2i)m−j
‖Dm(gn2i − gn2i−1)‖r

≤ A

ν+σ
∑

i=ν+1

(n2i)j(‖gn2i − f‖r + ‖gn2i−1 − f‖r)

+AC

ν+σ
∑

i=ν+1

(n2i)m

(n2i)m−j
ωm

(

f,
1

n2i

)

r

+AC

ν+σ
∑

i=ν+1

(n2i)m

(n2i)m−j

1

2m
ωm

(

f,
1

n2i−1

)

r

≤ 2AC
ν+σ
∑

i=ν

(n2i+1)jωm

(

f,
1

n2i

)

r
+ 2AC

ν+σ
∑

i=ν

(n2i)jωm

(

f,
1

n2i

)

r

(here we have used (8) and it will be used again in the next inequality)

≤ 2m+1AC

ν+σ
∑

i=ν

(n2i+1)jωm

(

f,
1

n2i+1

)

r
+ 2AC

ν+σ
∑

i=ν

(n2i)jωm

(

f,
1

n2i

)

r

≤ C1

ν+σ+1
∑

i=ν

(n2i)jωm

(

f,
1

n2i

)

r
≤ C2

ν+σ+1
∑

i=ν

∫ 1/(n2i−1)

1/n2i

ωm(f, s)r
sj+1

ds

≤ C2

∫ 1/(n2ν)

0

ωm(f, s)r
sj+1

ds.

Therefore, it follows from (11) that {Hν,n,j}
∞
ν=1 is a Cauchy sequence in L

r. Thus

there exists g ∈ L
r such that ‖Hν,n,j − g‖r → 0, as ν → ∞.

Since Sν,n → f − gn = Gn, Hν,n(f) = Dk(Sν,n) → g in L
r, as ν → ∞, and

Dj is a closed linear operator, then f − gn = Gn ∈ W j
r,r and Dj(f − gn) =
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Djf −Djgn = g. Hence

Djgn +

∞
∑

i=1

(Djgn2i −Djgn2i−1) = g +Djgn = Djf a.e.

�

Proposition 2. If 1 ≤ r < p ≤ ∞, and f ∈ L
r satisfies (11) with k ∈ N, then

f ∈ W k
r,r.

Proof: It is known, see [9, page 334], that if

∞
∑

i=1

ik−1Ei,r(f) < ∞,

then f is equivalent to a function g ∈ Xk
r,r. On the other hand, there exists

a constant C such that for each f ∈ L
r, see [9, page 325],

(14) En,r(f) ≤ Cωm

(

f,
1

n+ 1

)

r
.

Hence

∞
∑

i=1

ik−1Ei,r(f) ≤ C1

∞
∑

i=1

ik−1ωm

(

f,
1

i+ 1

)

r
≤ C1

∞
∑

i=1

∫ i+1

i

sk−1ωm

(

f,
1

s

)

r
ds

= C1

∫ ∞

1

sk−1ωm

(

f,
1

s

)

r
ds = C1

∫ 1

0

ωm(f, t)r
tk+1

dt < ∞.

�

4. Proof of Theorem 2

Given t ∈ (0, 1/2], choose n ∈ N such that

1

1 + n
< t ≤

1

n
< 2π.

Set τ(j) = (1+n)2j and λj = 1/τ(j). If f ∈ L
p, taking into account (10) for each

j ∈ N0 we can fix hj ∈ Wm
r,r such that

(15) ‖f − hj‖r + λm
j ‖Dmhj‖r ≤ 2M2ωm(f, λj)r.

Step 1: From Proposition 2 we know that f ∈ W k
r,r. Hence there exists ϕ such

that f = ϕ a.e., ϕ, ϕ(1), . . . , ϕ(m−1) ∈ AC, and ϕ(m) ∈ L
r. Thus we only need to
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find G ∈ L
p, such that

(16) ϕ(m) = G a.e.

Of course, we can assume that f = ϕ.
The conditions hj ∈ Wm

r,r and 0 ≤ k < m imply Dkhj ∈ L
p. In fact Dkhj is

an (absolutely) continuous function.

Taking into account that hi → f in the norm of L
r , see (15),

(17) f = h0 +

∞
∑

i=0

(hi+1 − hi) a.e.

Since (Dkhi+1 −Dkhi) ∈ L
p for each i ∈ N, if

(18)

∞
∑

i=0

‖Dkhi+1 −Dkhi‖p < ∞

then the series

(19) Dkh0 +

∞
∑

i=0

(Dkhi+1 −Dkhi)

converges in L
p, see [8, page 109].

Let us verify that (18) holds. In order to simplify the notations we set α =

1/r − 1/p.

In the case q = r < p, condition (7) holds. Since λk
i < 2π, Theorem 3 can be

used (with δ = λi, recall that we consider q = r) and it follows from (15) that

λk
i ‖D

khi+1 −Dkhi‖p ≤ A(λ−α
i ‖hi+1 − hi‖r + λm−α

i ‖Dmhi+1 −Dmhi‖r)

≤ Aλ−α
i (‖hi+1 − f‖r + ‖f − hi‖r + λm

i ‖Dmhi‖r + 2mλm
i+1‖D

mhi+1‖r)

≤ 2M2Aλ
−α
j (ωm(f, λi)r + 2mωm(f, λi+1)r)

≤ 2AM2(1 + 2m)λ−α
i ωm(f, λi)r.

Note that, since λi = 2λi+1,

1 ≤ 2

∫ λi

λi+1

ds

s
.

Therefore, using (8), one has (recall that k + α > 0)

∞
∑

j=0

‖Dkhj+1 −Dkhj‖p ≤ 2(1 + 2m)AM2

∞
∑

i=0

λ−α
i

ωm(f, λi)r

λk
i

≤ 4(1 + 2m)AM2

∞
∑

i=0

2mωm(f, λi+1)r

λk+α
i

∫ λi

λi+1

ds

s
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(20)

≤ 4(1 + 2m)AM2 2
m

∞
∑

i=0

∫ λi

λi+1

ωm(f, s)r
s1+k+α

ds

= 4(1 + 2m)AM22
m

∫ λ0

0

ωm(f, s)r
s1+k+α

ds

≤ 4(1 + 2m)AM22
m

∫ t

0

ωm(f, s)r
s1+k+1/r−1/p

ds < ∞,

where we use condition (5). Thus the series (19) converges in L
p. The limit of

the partial sums of the series (19) will be denoted by Mk.

We will show that in (16) we can take G = Mk. Since h0 can be chosen as

gn+1 in (12) and hi as g(n+1)2i , it follows from (13) that

Mk = Dkgn+1 +

∞
∑

i=0

Dk
(

g(n+1)2i+1 − g(n+1)2i
)

= Dkf a.e.

We have proved that f ∈ W k
p,p.

Step 2: We will need an estimate of ‖Dm−1h0‖p in terms of ‖f‖r and ωm(f, t)r.

Take into account that
1

λ0
= 1 + n ≤ 2n ≤

2

t
.

We use again Theorem 3 (with δ = 1) and (15) to obtain

(21)

‖Dm−1h0‖p ≤ A(‖h0‖r + ‖h
(m)
0 ‖r) ≤ A(‖f‖r + ‖f − h0‖r + ‖Dmh0‖r)

≤ A
(

‖f‖r + 2M2ωm(f, λ0)r +
1

λm
0

2M2ωm(f, λ0)r

)

≤ A
(

‖f‖r + 2M2
ωm(f, t)r

tm
+ 2

2m

tm
M2ωm(f, t)r

)

≤ A
(

‖f‖r + 2M2(1 + 2m)
ωm(f, t)r

tm

)

.

Step 3: Let us verify (6). From (8), (9) and (10), we know that

ωm−k(D
kf, t)p ≤ 2m−kωm−k

(

Dkf,
1

1 + n

)

p
≤ 21+m−kωm−1−k

(

Dkf,
1

1 + n

)

p

≤
21+m−k

M1

(

‖Dkf −Dkh0‖p +
1

(1 + n)m−1−k
‖Dm−1h0‖p

)

(22)

≤
21+m−k

M1

(

‖Dkf −Dkh0‖p + tm−1−k‖Dm−1h0‖p

)

.
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From (22), (17), (20), and (15) we obtain

ωm−k(D
kf, t)p ≤ C2

( ∞
∑

j=0

‖Dkhj+1 −Dkhj‖p + tm−1−k‖Dm−1h0‖p

)

≤ C2

(
∫ t

0

ωm(f, s)r
s1+k+α

ds+ tm−1−k‖f‖r +
ωm(f, t)r

t1+k

)

.

�
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