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C
∗-points vs P -points and P

♭-points

† Jorge Martinez, Warren Wm. McGovern

Abstract. In a Tychonoff space X, the point p ∈ X is called a C∗-point if every
real-valued continuous function on C r {p} can be extended continuously to p.
Every point in an extremally disconnected space is a C∗-point. A classic ex-
ample is the space W

∗ = ω1 + 1 consisting of the countable ordinals together
with ω1. The point ω1 is known to be a C∗-point as well as a P -point. We
supply a characterization of C∗-points in totally ordered spaces. The remainder
of our time is aimed at studying when a point in a product space is a C∗-point.
This process leads to many interesting new discoveries.
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1. Introduction

The work for this article began more than 20 years ago. As it happens some-

times, the work was stored away in some drawer and lost to the ravages of time.

I found the paper about two years ago and with the decline of my co-author’s

health I felt it prudent to work on it. I had hoped to finish the project as I was

given permission by Jorge to work on it. Now, with the recent passing of J. Mar-

tinez (1945–2020) I felt even a stronger desire to complete the project.

One of the well-known theorems of ordered spaces is that a point is a P -

point precisely when it is not the limit of an (nontrivial) ascending or descending

sequence of points. Disciples of the text [5] are familiar with the example W∗ =

ω1 + 1 consisting of the countable ordinals together with the first uncountable

ordinal. In this case, the point ω1 is in fact a P -point of W∗. The proof of

this involves a demonstration that every continuous function on ω1 is eventually

constant and therefore has a continuous extension to the point ω1. In other words,

the Čech–Stone compactification of ω1 is ω1+1. Specifically, this means that ω1

is also a C∗-point of W∗. It is this fact that drives this article.

All spaces here are assumed to be Tychonoff, that is completely regular and

Hausdorff. For a given space X , C(X) denotes the ring of continuous real-

valued functions defined on X and βX is its Čech–Stone compactification. For
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f ∈ C(X), recall that the cozeroset of f is

coz(f) = {x ∈ X : f(x) 6= 0},

and that Z(f), the zeroset of f , is its complement. The subring of C(X) consisting

of those bounded functions shall be denoted by C∗(X). A subspace Y of X is said

to be C∗-embedded (or C-embedded) if every f ∈ C∗(Y ) (f ∈ C(Y ), respectively)

can be extended to a continuous function on all of X . For any unexplained

topological terminology we refer the reader to either [5] or [4].

Definition 1.1. Let X be a space and p ∈ X . If X r {p} is C∗-embedded in X ,

then p is called a C∗-point of X . If each point of X is a C∗-point of X , we

say that X is a C∗-space. If we change the phrase C∗-embedded in the above

definition to C-embedded, then we have a definition of a C-point and C-space.

Since a C-embedded subset is C∗-embedded it follows that a C-point is a C∗-

point.

Recall the notion of an e.d. point, invented by E. van Douwen, see [2]. Thus

p ∈ X is an e.d. point of X if for each pair of disjoint opens sets, p fails to be in

the closure of one of them. Van Douwen showed that an e.d. point is a C∗-point.

The converse is false as witnessed by the point ω1 ∈ W∗.

The difference between a C-point and C∗-point is seen in the next result.

Proposition 1.2 ([6, Theorem 4.2]). Let X be a space. The point p ∈ X is

a C-point if and only if p ∈ X is a C∗-point and not a Gδ-point of X .

Example 1.3. The example Σ = N ∪ {σ} for some σ ∈ βN r N is extremally

disconnected and hence a C∗-space. The point σ is a Gδ-point and hence Σ is

not a C-space.

On the other hand, every compact extremally disconnected space has the prop-

erty that the only Gδ-points are isolated and hence are C-spaces.

In general, for any point p ∈ βX r X the point p is a C-point of βX and

a C∗-point of X ∪ {p}.

The following is not surprising.

Lemma 1.4. Suppose that X is a Tychonoff space. Then p ∈ X is a C∗-point

in X if and only if it is a C∗-point in any neighborhood U of p.

2. C∗-points in totally ordered spaces

We begin by recalling a familiar definition.

Definition 2.1. Let X be a space. The point p ∈ X is a P -point if any countable

intersection of neighborhoods of p is also a neighborhood of p.
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Not every P -point is a C∗-point. For example, consider an uncountable discrete

space D, and let λD denote the space D∪{λ} obtained by adjoining the point λ,

such that each d ∈ D remains isolated, and the neighborhoods of λ are the sets S

for which DrS is countable. Then it is easy to see that λ is not a C∗-point, but

it is a P -point.

The main theorem (Theorem 2.3) of this section will characterize the points in

an ordered space which are C∗-points.

First, let us recall the basics about ordered spaces.

Definition & Remarks 2.2. By a totally ordered space (X,≤) we mean a to-

tally ordered set with the interval topology. For x, y ∈ X the notation (−∞, x),

(−∞, x], (x, y), etc. should be understood.

To simplify the discussion leading up to Theorem 2.3 it is useful to introduce

some special terminology. First, denote by (X̂,≤) the Dedekind cut completion

of (X,≤). A point p ∈ X̂ rX will be called a hole in X . Suggestively, for each

p ∈ X̂ we denote by (X < p) (or (p < X)) the set of points of X strictly less

(greater, respectively) than p. Note that if p is a hole in X , then it is not isolated

in X̂, and both (X < p) and (p < X) are clopen sets of X ; moreover, (X < p)

has no largest element (in X), nor (p < X) a least element.

A point x ∈ X is an embedded point if it is neither an endpoint – the least or

largest element of X – nor a successor, nor a predecessor. Clearly, an embedded

point cannot be a C∗-point since the characteristic function on (x,∞) defined on

X r {x} has no continuous extension.

One more convention: if (X,≤) is an ordered space and f ∈ C(X), we say

that f is constant on a tail of X , if there is some x ∈ X , x not being the largest

element, such that f is constant on the interval (x,∞).

Theorem 2.3. Let (X,≤) be a totally ordered space and p ∈ X . Then p is

a C∗-point of X if and only if it is a P -point which is not an embedded point and

not the supremum or infimum of holes in X .

Proof: We first suppose that p ∈ X is a C∗-point. As we pointed out above p

is not an embedded point, and therefore it is a successor or predecessor. Without

loss of generality, we assume that p is a predecessor of X , i.e. the subset (−∞, p ]

is a clopen subset of X . The point p must also be a P -point, or else it is a Gδ-

point of X , which in this case means there is an ascending sequence, say {xn},

whose limit is p. Since ordered spaces are normal, the closed subset {xn} of

(−∞, p) is C-embedded in (−∞, p) and hence also in X r {p}. Therefore, there

is a continuous function f ∈ C∗(Xr{p}) such that f(xn) = 0 whenever n is even

and f(xn) = 1 whenever n is odd. This function cannot be continuously extended

to p, contradicting that x is a C∗-point of X . Therefore, p is also a P -point.
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Next, suppose that p is a supremum of holes; then it must be a predecessor

or else the largest element of X , by the previous paragraph. We may then just

as well assume that it is the largest, and also transfinitely choose a well-ordered

κ-sequence (pσ)σ<κ of holes whose limit is p, for some cardinal κ. Let Ti denote

the trace on X of the interval (pσ, pσ+1). Then (X < p) is a topological sum of

the subspaces Ti. Let k be the characteristic function of the Tσ for all odd i ∈ I.

This is continuous on (X < p), but cannot be extended to p, a contradiction.

Conversely, suppose that p is a P -point which is not an embedded point, and

also neither the supremum or infimum of holes. If p is isolated there’s nothing to

prove. Otherwise, we may suppose without loss of generality that p is the largest

point of X . Note that the cofinality of p is uncountable; that is to say, if S ⊆ X

is well-ordered and cofinal, then |S| ≥ ω1.

We claim that any continuous function on X r {p} is constant on a tail of this

space; that is, if f ∈ C(X r {p}) there is a q < p in X such that f is constant on

the interval (q, p). Let us prove that; a proof that mimics the case for W∗. Since

p is not a supremum of holes, there is an x ∈ X such that there are no holes

of X above x. Suppose that the claim is false; let g be a continuous function

on Y which is not constant on any tail. We will construct a cofinal, well-ordered

sequence S in Y ≡ X r {p}, such that

(a) S with the relative topology is a totally ordered space (to underscore:

with respect to the interval topology!);

(b) h = g|S is not constant on any tail of Y .

If we can do this we will have reached a contradiction, because such an S, in the

relative topology, is an ordered space, homeomorphic to the ordinal µ, where µ is

the cofinality of p. And it is well known that any continuous real valued function

on a well ordered space is constant on a tail; see 5.12 of [5], for the proof of this

for µ = ω1.

Let p1 = x. Suppose that for an ordinal ν we have { pµ : µ < ν }, such that

(i) for each µ < ν, the restriction of g to { pα : α < µ } is not constant on

any tail; and

(ii) for each µ < ν, { pα : α < µ } is a totally ordered space in the relative

topology.

Now let us select pν : there are two cases. If ν has a predecessor µ, pick pν to be

any element of Y larger than pµ, with g(pν) 6= g(pµ). By assumption this can be

done. If ν is a limit ordinal, let

pν = sup { pµ : µ < ν },
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which exists by the choice of p1. Now in both cases, the enlarged set { pµ : µ ≤ ν }

satisfies (i) and (ii) above. By transfinite induction then, we have constructed

S = { pµ : µ < τ }, for suitable τ , with the stated properties. �

Armed with Theorem 2.3 it is easy to conclude the following.

Corollary 2.4. Any totally ordered space (X,≤) which is also a C∗-space is

discrete.

Proof: Assume the hypotheses of the corollary. If X is not discrete, then let

p ∈ X be a nonisolated point. By Theorem 2.3 we may assume that p is the

largest element, and that there is a q < p in X , such that the interval [q, p] is

a Dedekind complete, and hence a compact, P -space. Then it must be finite,

contradicting that p is not isolated. �

3. C∗-points in product spaces

We begin with a general result, which pits the density of one factor in a product

space against, the degree to which the system of neighborhoods of a point in the

other is closed under intersections.

Let us first recall some definitions. In what follows κ denotes an infinite car-

dinal number.

Definition 3.1. Suppose that X is a space and p ∈ X . We say that p is a P κ-

point if the intersection of fewer than κ neighborhoods of p is a neighborhood

of p. The density character d(Y ) of a space Y is the least cardinality of a dense

subset of Y .

Proposition 3.2. Let κ be an uncountable cardinal. Suppose that X and Y are

spaces, and that p ∈ X is a nonisolated P κ-point. If q ∈ Y is nonisolated as well,

and d(Y ) < κ, then (p, q) is a C∗-point of X × Y .

Proof: Suppose that S is a dense subset of Y with q /∈ S and |S| < κ. Let

f ∈ C∗(X×{(p, q)}). For each y ∈ Y r {q} put fy(x) = f(x, y) with x ∈ X ; then

fy ∈ C∗(X). Let ry = fy(p), and set

U =
⋂

s∈S

f−1
s ({rs}).

Since p ∈ X is a P κ-point, we have that U is a neighborhood of p. Thus, for

any x, x′ ∈ U , f(x, ·) = f(x′, ·) on the dense set S, and therefore everywhere on

Y r {q}. Since q ∈ Y is not isolated, vertical continuity implies that f(x, q) =

f(x′, q), as long as x, x′ 6= p. Moreover, since p is not isolated, there are at least

two distinct x and x′ in U that witness these coincidences.
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Now define f(p, q) = f(x, q) for any x ∈ U different than p; this is unambigu-

ous. It is easy to see now that f is continuously extended to (p, q); we leave the

verification to the reader. �

From the above we have, immediately:

Corollary 3.3. If X is a P -space without isolated points and Y is a separable

space without isolated points, then X × Y is a C∗-space.

Remark 3.4. In Proposition 3.2, one cannot weaken the assumption on p ∈ X

and suppose that it is only an almost P -point. First, we remind the reader:

x ∈ X is an almost P -point if any zeroset W containing x has nontrivial interior.

Equivalently, in any Tychonoff space X , x ∈ X is an almost P -point if and only

if for any f ∈ C(X) with x ∈ Z(f) we have x ∈ clX intX Z(f).

Consider now the following totally ordered space. Space X is formed by taking

the union of ω1 + 1, the space of ordinals not exceeding ω1, and the closed unit

interval I, by glueing the points ω1 and 0 ∈ I. Call the new point p. Thus in X ,

a < b if they both lie in the copy of ω1 + 1 or the copy of I, and a < b obtains

in either of those chains, or a < ω1 and 0 < b in I. In the interval topology, this

makes p an almost P -point which is not a P -point.

We claim that (p, 0) ∈ X × I is not a C∗-point. Consider the square in X × I,

homeomorphic to I × I, defined by

Y = {(a, b) : a ≥ p}.

Since Y ∼= I × I, it is a metric space, and thus hereditarily normal. This means

that there is a continuous bounded function g ∈ C(Y ), so that the horizontal edge

{(s, 0): s > p} maps to 1 and the vertical edge {(p, t) : t > 0} maps to 0. Extend

g to (X× I)r {(p, 0)} by defining it to be zero everywhere else. Clearly, g cannot

be extended to (p, 0).

Remark 3.5. On the other hand, one may be able to improve on the separability

implicit in the assumption of Proposition 3.2 when κ = ω1.

Consider X = ω1 + 1× ω1 + 1; it is known that (ω1, ω1) is a C∗-point.

We would like to characterize the spaces X for which X×I is a C∗-space. The-

orem 3.8 does this for ordered spaces. Unfortunately, we do not have a complete

answer.

The next proposition is a preliminary to that theorem.

Proposition 3.6. Suppose that (p, q) ∈ X × I is a C∗-point. Then p ∈ X is

neither isolated nor a Gδ-point.

The proof of Proposition 3.6 is facilitated by observing the following first.
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Lemma 3.7. For any space X , any p ∈ X and t ∈ I, X × [0, t] r {(p, t)} is

C∗-embedded in X × I r {(p, t)}.

Proof: Suppose that f ∈ C∗(X × [0, t]r {(p, t)}). Let

f̄(x, t) =

{
f(x, r), if 0 ≤ r ≤ t,

f
(
x, t

(
r−1

t−1

))
, if t ≤ r ≤ 1,

wherever the above makes sense. Then f̄ extends f continuously toX×Ir{(p, t)}.

�

The point of Lemma 3.7 is that in Proposition 3.6 it is enough to prove the

claim for t = 1.

Proof of Proposition 3.6: It makes the presentation easier to identify I

with the interval [0,∞], and assume that (p,∞) is a C∗-point. Evidently, p can-

not be isolated, otherwise ∞ is forced to be a C∗-point of [0,∞], which is absurd.

Now suppose, by way of contradiction, that there is a function f ∈ C∗(X) van-

ishing only at p. We may assume that 0 ≤ f ≤ 1 without loss of generality. Now

define h : X × [0,∞]r {(p,∞)} → R by

h(x, t) =

{
tf(x) ∧ 1, if t ∈ R,

1, if t = ∞ and x 6= p.

It is easy to verify the continuity of h; h obviously does not extend to (p,∞). �

By massaging the proof of Proposition 3.6 one can improve it when (X,≤) is

an ordered space, and get a converse for Corollary 3.3.

Theorem 3.8. Suppose that (X,≤) is an ordered space. Then (p, t) ∈ X × I

is a C∗-point if and only if p is a nonisolated P -point. Furthermore, X × I is

a C∗-space if and only if X is a P -space with no isolated points.

Proof: The sufficiency is a consequence of Proposition 3.2.

For the reverse, suppose that (p, t) is a C∗-point. We have already ruled out

that p is a Gδ-point, and it cannot be isolated (Proposition 3.6). (And, inciden-

tally, p is not an endpoint either.) Suppose, by way of contradiction, that p is not

a P -point. We employ the argument in the proof of Proposition 3.6, regarding

the point t, identifying I with the interval [0,∞] and taking t = ∞.

Now, one of the following must occur, since p is not a P -point: either its

cofinality is uncountable and its co-initiality is countable, or the reverse. Also

note that if a point x in a totally ordered space has countable cofinality then x is

a Gδ-point in the interval (−∞, x]. This means, in turn, that there is a function

f ∈ C(X) which vanishes at p, such that, either f vanishes on a half-interval
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below p, and is strictly positive on a half-interval above p, or else does the order-

reverse. In describing the situation we also factor in Lemma 1.4, in that we trace

to an open interval in X around p. Now, either

Z(f) = {x ∈ X : x ≤ p}, and pos(f) = {x ∈ X : x > p},

with p ∈ clX pos(f), or the order-reverse holds.

Now we modify the definition of h in the proof of Proposition 3.6 as follows.

Of the two events, let us take the first of these; the one displayed above. Then in

the definition of h in the preceding proof, remove the second line, and replace it

with two new ones. Thus:

h(x, t) =





tf(x) ∧ 1, if t ∈ R,

1, if t = ∞ and x > p,

0, if t = ∞ and x < p.

Again, h is continuous everywhere it is defined, and not extendible to (p,∞),

which is the desired contradiction. �

Corollary 3.9. The product X × I is a C∗-space if and only if X × I is a C-

space.

Proof: A nonisolated P -point is not a Gδ-point. Apply Proposition 1.2. �

Remark 3.10. Observe that p ∈ X not being a Gδ-point is not sufficient to

make (p, t) ∈ X × I a C∗-point.

Let αD stand for the one-point compactification of a discrete uncountable

set D. Note that α, the point at infinity, is not a Gδ-point of αD. However,

(α, 1) ∈ αD × I is not a C∗-point. To see this, observe that if d1, d2, . . . is

any infinite sequence in D, then (dn)n converges to α. The sequence and its limit

together form a copy of αN, the one-point compactification of the discrete natural

numbers. Now as αN×I is a metric space, there is a bounded continuous function

g ∈ C(αN × I r {(α, 1)}) which maps the horizontal edge {(dn, 1): n ∈ N} to 1

and the vertical edge {(α, t) : t < 1} to 0. Extend g to all of αD × I r {(α, 1)}

by mapping all other vertical edges to 0. Then the reader can easily check that

g is continuous where defined and not extendible to (α, 1).

It is tempting to generalize this example in a number of ways. However, what

was easy here, namely the extension of g to all points except (α, 1) becomes

problematic in more general situations. What seems to make the extendibility

tick here is that the remaining points of αD are isolated.

Theorem 3.8 seem to insinuate a class of points to us. In the next section we

explore that formally.
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4. P ♭-points

The import of Proposition 3.6 is this: if X × I is a C∗-space then X has no

Gδ-points. As to the converse, Example 3.10 shows that we can have a non Gδ-

point p ∈ X such that (p, q) is not a C∗-point. We are interested in points that are

either isolated or not a Gδ-point. To be precise such a point shall be called a ngd-

point. It then follows that any almost P -point is a ngd-point; the converse is not

true. Our proof of Proposition 3.6 leads us to consider the following definition.

Definition & Remarks 4.1. (a) A point p ∈ X is called a P ♭-point if for

each zeroset Z containing p, either p ∈ intXZ or p is an accumulation point of

Z r intXZ. The space X is a P ♭-space if every point of X is a P ♭-point.

The definitions are worded in this way to guarantee that any P -point, including

an isolated one, is P ♭, and that should be clear. Likewise, it is evident that any

P ♭-point is a ngd-point.

(b) The proof of Theorem 3.8 reveals that, if (X,≤) is an ordered space, then

any P ♭-point is a P -point.

Here is a basic characterization of P ♭-spaces. It follows straight from the

definition.

Proposition 4.2. Suppose that X is a space. Then X is a P ♭-space if and only

if for each zeroset Z, Z r intXZ contains no isolated points of Z r intXZ.

Example 4.3. We give an example of a compact, connected totally ordered

almost P -space which is not P ♭.

We take H̃ , the Dedekind completion of an η1-set, with top and bottom ele-

ments adjoined. For an account of η1-sets the reader is referred to [5], Chapter 13

and several of its exercises; in particular, it is mentioned there that the η1-set H

itself is a P -space, see [5, 13 P.1]. Recall also that in a totally ordered space

(X,≤), a point p ∈ X is an almost P -point if and only if it has either uncount-

able coinitiality or else uncountable cofinality. The statement 13 J.4 of [5] says

precisely that of H̃; thus, H̃ is an almost P -space. Space H̃ is compact and

connected because it is complete and has no gaps or successor pairs.

As we are in an ordered space, any P ♭-point is a P -point. Thus, since H̃ is

not a P -space we are done.

We point out that one need not go to the lengths of the preceding example

to produce a totally ordered space containing a ngd-point which is not P ♭; that

is, not a P -point. Simply use the space X in the remarks of 3.4. Indeed, the

following should be noted at this point; the proof should now be straightforward,

in view of the various comments made in the proof of Theorem 3.8 and elsewhere

about totally ordered spaces. We leave it to the reader.
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Proposition 4.4. In any totally ordered space a ngd-point is necessarily an

almost P -point. Thus, for totally ordered spaces, almost P -points coincide with

ngd-points.

Example 4.5. An example of a P ♭-point which is not an almost P -point.

Consider the product X = (ω1+1)×αN. We denote by ∞ the point at infinity

of the second factor. Now the point p = (ω1,∞) is not an almost P -point, as the

function f defined by f(µ, n) = 1/n is continuous, vanishes at p, while Z(f) is

nowhere dense.

On the other hand, suppose that g ∈ C(X) vanishes at p. As explained in [5,

8.20], there is a countable ordinal µ such that, for each ν ≥ µ, g(µ, ·) = g(ν, ·).

In particular, for all such ν, g(ν,∞) = 0. Thus, ∞ ∈ intαNZ(g(ω1, ·)) if and only

if ∞ ∈ intαNZ(g(ν, ·)) for each ν ≥ µ. If this is the case (ω1,∞) ∈ intXZ(g).

Otherwise, (ω1,∞) is an accumulation point of Z(g)r intXZ(g). This shows that

(ω1,∞) is a strong P ♭-point.

What is true, and easy to see after a little thought, is the following; we leave

the verification to the reader.

Proposition 4.6. A ngd-point is either almost P or else P ♭.

The following proposition should be compared to Proposition 3.2. It will lead

us to P ♭-spaces which are not P -spaces. We will improve upon the final assertion

of Proposition 4.7 in Theorem 4.9 ahead, albeit with an added assumption.

Proposition 4.7. Let κ be an uncountable cardinal. Suppose that p ∈ X is

a nonisolated P κ-point. Let Y be any space satisfying d(Y ) < κ. Then for each

y ∈ Y , (p, y) is a P ♭-point of X × Y . Thus, if X is a P -space without isolated

points and Y is separable, then X × Y is a P ♭-space.

Proof: The second claim is immediate from the first, letting κ = ω1.

Now let S be a dense subset of Y , with |S| < κ. Suppose that f ∈ C∗(X × Y )

and (p, y) ∈ Z(f). Let

W ≡ {x ∈ X : f(p, s) = f(x, s), ∀ s ∈ S}.

Note thatW is an intersection of fewer than κ zerosets containing p, and therefore

a neighborhood of p. Since p is not isolated, at least one x 6= p lies in W . Observe

as well that, since S is dense the functions f(p, ·) and f(x, ·) are identical for each

x ∈ W .

Let us assume now, that Z(f) is not a neighborhood of (p, y). Suppose that

U × U ′ is a box neighborhood of (x, y), where x ∈ W . Without loss of generality

we may take U ⊆ W . Then there is a point (xo, t) ∈ (U ×U ′)∩ coz(f), because of

the assumption on (p, y). But f(xo, t) = f(x, t), and so (x, t) ∈ (U ×U ′)∩ coz(f),
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proving that (x, y) ∈ Z(f)r intX×Y Z(f) for each x ∈ V . This makes it clear that

(p, s) is not isolated in Z(f)r intX×Y Z(f), and so (p, s) is a P ♭-point. �

Remark 4.8. As promised, Proposition 4.7 delivers examples of spaces which

are P ♭, but not P -spaces. In fact, if X is any P -space without isolated points,

then X × I is a P ♭-space without any P -points or almost P -points!

Theorem 3.8 tells us that a totally ordered space (X,≤) without isolated points

is a P -space precisely when X × I is a C∗-space. It seems reasonable to ask then

for which totally ordered spaces X without isolated points X × I is a P ♭-space.

The next proposition gives a partial answer.

Theorem 4.9. Suppose that (X,≤) is a totally ordered, connected almost P -

space. Then X × Y is a P ♭-space for each separable space Y .

Proof: Suppose that (p, y) ∈ X × Y and f ∈ C∗(X × Y ), with (p, y) ∈ Z(f).

We suppose, without loss of generality, that p has uncountable coinitiality in X .

Let S be a countable dense subset of Y . Once again, let

W ≡ {x ∈ X : f(p, s) = f(x, s), ∀ s ∈ S}.

The set W is a zeroset of X , containing p, and in view of the uncountable coini-

tiality of p, there is a q > p such that [p, q) ⊆ W ; that is, for each t ∈ S and

each p ≤ x < q, f(x, t) = f(p, t). By the density of S in Y , it follows, as in the

previous proof, that, identically, f(x, ·) = f(p, ·) for each such x. In particular,

(x, y) ∈ Z(f) for each x ∈ [p, q).

To proceed, there are a number of cases to consider:

(a) For each x ∈ [p, q), y ∈ clY cozY (f(x, ·)). Evidently, (x, y) ∈ clX×Y ×

cozX×Y (f), and therefore, since p is not isolated, it follows that (p, y) ∈

Z(f)r intX×Y Z(f).

(b) For each x ∈ [p, q), y ∈ intY ZY (f(x, ·)). Then f vanishes on the box

[p, q)×Bo for a suitable open set Bo ⊆ Y containing y. Two possibilities

remain:

(b-1) Next, suppose that for each neighborhood V of p in X and each neigh-

borhood B of y ∈ Y there is a t ∈ B ∩ Bo, t 6= y, such that V contains

a point of the boundary of Z(f(·, t)). Then each box neighborhood V ×B

of (p, y) contains a point of the boundary of Z(f), which is necessarily

distinct from (p, y) and which proves that (p, y) ∈ Z(f) r intX×Y Z(f)

and an accumulation point of it.

(b-2) Left to consider: there exist neighborhoods W of p and O ⊆ Bo of y

such that for each t ∈ O with t 6= y, W does not intersect the boundary

of Z(f(·, t)). Now, W does intersect Z(f(·, t)) for each such t, because it
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intersects [p, q). Since X is connected we may shrink W a bit and assume

that it is an interval and connected. As we have the partition

W = W ∩ coz(f(·, t)) ∪W ∩ intXZ(f(·, t))

for each t ∈ O. Since the second component of the above partition is

nonempty, connectedness implies that O ⊆ Z(f(·, y)). Putting it another

way, f vanishes on the neighborhood W ×O of (p, y).

The upshot of this is that (p, y) is a P ♭-point of X×Y , and the proof is complete.

�

It is worth making a couple of remarks about Theorem 4.9 and its proof.

Remark 4.10. (a) Recall that H̃ stands for the two-point compactification of

the Dedekind completion of the η1-set H . First, observe that Theorem 4.9 and

Theorem 3.8 imply that H̃ × I is a compact, connected P ♭-space which is not

a C∗-space. Unlike, compact P -spaces, which are necessarily finite, as is well

known, here we have a continuum which is P ♭.

(b) The following example shows that the connectedness assumption in The-

orem 4.9 cannot be removed; not even if Y is a compact metric space, and not

even if it is the interval I. To simplify the presentation we use Y = αN, but the

reader will readily appreciate how to adapt things for I.

Let S be any totally ordered P -space without isolated points. Then X is the

totally ordered space constructed as the following disjoint union:

X =

( ∞⋃

n=1

Sn

)
∪ {p} ∪ S∞,

where Sn = S = S∞ for each natural number n and the ordering on X is defined

by a < b if

◦ both a, b ∈ Sm for some m ∈ N ∪ {∞} and a < b in S; or

◦ a = p and b ∈ S∞; or

◦ b = p and a ∈ Sm for some m ∈ N; or

◦ a ∈ Sm and b ∈ Sn for some m ∈ N and n ∈ N ∪ {∞} with m < n.

It is easy to verify that X is an almost P -space without isolated points; p is the

only non P -point, and it has countable cofinality.

Now let us consider X × αN, and we identify αN with the sequence (1/n)n∈N

in I together with the limit 0, endowed with the ordinary metric topology. What

we will show is that the point (p, 0) is not a P ♭-point.
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To that end, consider the following function f ∈ C(X × αN)

f(x, t) =





0, if t = 0 or x ≥ p,

0, if t = 1

n
and x ∈ Sm with m 6= n,

1

n
, if t = 1

n
and x ∈ Sn.

We leave it to the reader to check that f is continuous, and that it satisfies all

the conditions of case (b-2) in the proof of Theorem 4.9. However, observe as well

that (p, 0) is the only point on the boundary of Z(f). This shows that (p, 0) is

not a P ♭-point.

(c) Looking ahead to Proposition 4.11, notice that the example in (b) also has

the following feature: the space X is a P ♭-space (Proposition), but X × αN is

not.

Here is a property which distinguishes the behavior of ngd-spaces from the P ♭

ones.

Proposition 4.11. Suppose that X × Y is an ngd-space; then either X or Y is

an ngd-space.

Proof: By way of contradiction suppose that there exist a ∈ X and b ∈ Y and

zerosets Za and Zb of X and Y , respectively, containing a and b, respectively,

as isolated points. Thus we may find neighborhoods Va and Vb of a and b,

respectively, such that Va ∩ Za = {a} and Vb ∩ Zb = {b}.

Now note that Za × Zb is a zeroset of X × Y containing (a, b), and that

(Va × Vb) ∩ (Za × Zb) = {(a, b)},

which contradicts that (a, b) is an ngd-point of the product. �

Let us conclude this section with a brief observation.

Remark 4.12. In the conclusion of Proposition 4.11 we may add: but not nec-

essarily both. Once again, use the example H̃ × I, of 4.10 (a); we have that

H̃ × I is P ♭, while the interval is not an ngd-space. (Indeed, note that in any

second countable space, and hence in any metric space, the only ngd-points are

the isolated ones.)

This example also shows that Proposition 4.11 fails for P ♭-spaces.
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5. Open questions

We summarize the discussion in this article around a few focussed open ques-

tions.

Remark 5.1. We have characterized for an ordered space (X,≤), when X × I

is a C∗-space. By Theorem 3.8, this happens precisely when X is a P -space

without any isolated points.

In fact, for spaces without isolated points we have the following implications:

X is a P -space ⇒ X × I is a C∗-space ⇒ X is a P ♭-space.

We note, furthermore (keeping to spaces without isolated points):

(i) The second arrow does not reverse (Remark 3.10).

(ii) There is more to the first implication above; according to Proposition 4.7

we also have

X is a P -space ⇒ X × I is a strong P ♭-space.

(iii) The implication in (ii) does not reverse; recall the comments in 4.10 (a).

(iv) We do not know whether the first arrow in the display above reverses, nor

whether one can conclude that X is a P -space from the assumption that

X × I is both a C∗-space and a strongly P ♭-space.

(v) We do not know either if the conclusion of the second arrow above can

be strengthened to “strong P ♭-space”. It can for totally ordered spaces,

where the strongly P -flat points are precisely the P -points, and one can

invoke Theorem 3.8 again.

Remark 5.2. We have some information regarding the question: when is X × I

a strong P ♭-space? Most of what we know is in the form of counterexamples to

possible conjectures.

(a) For spaces without isolated points one has the implication

X is a P -space ⇒ X × I is strongly P ♭,

as observed in Remark 5.1 (ii); and, as already noted, this implication does not

reverse. In fact one cannot conclude that X is a P -space from the assumption

that X × I is strongly P ♭ (Theorem 4.9); not even for totally ordered spaces.

(b) Unlike for P ♭-spaces the assumption that X × Y is strongly P ♭ does not

imply that either factor has that property. The example in 4.10 (a) witnesses

this, and, in particular, the following failure for totally ordered spaces to boot:

X × I is a strong P ♭-space 6⇒ X is strongly P ♭.
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