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The common division topology on N

José del Carmen Alberto-Doḿınguez,

Gerardo Acosta, Maira Madriz-Mendoza

Abstract. A topological space X is totally Brown if for each n ∈ N\{1} and every
nonempty open subsets U1, U2, . . . , Un of X we have clX(U1)∩ clX(U2)∩ · · · ∩
clX(Un) 6= ∅. Totally Brown spaces are connected. In this paper we consider
a topology τS on the set N of natural numbers. We then present properties of the
topological space (N, τS), some of them involve the closure of a set with respect
to this topology, while others describe subsets which are either totally Brown or
totally separated. Our theorems generalize results proved by P. Szczuka in 2013,
2014, 2016 and by P. Szyszkowska and M. Szyszkowski in 2018.
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1. Introduction

We denote by Z and N the sets of integers and of natural numbers, respectively.

We define N0 = N ∪ {0} and Nb = {n ∈ N : n ≥ b} for each b ∈ N. The symbol P

denotes the set of prime numbers. We assume that P ⊂ N. Given nonzero

integers a and b, the symbol 〈a, b〉 denotes the greatest common divisor of a

and b. Note that 〈a, b〉 ∈ N.

In this paper we consider arithmetic progressions in both N and Z. Namely,

for each a, b ∈ N we define

P (a, b) = {b+ an : n ∈ N0} = b+ aN0 and M(a) = {an : n ∈ N}.

If a ∈ N and b ∈ Z we also define

PF (a, b) = {b+ az : z ∈ Z} = b+ aZ.

In both [8, page 663] and [9, page 179], S.W. Golomb showed that the family

BG = {P (a, b) : (a, b) ∈ N× N and 〈a, b〉 = 1}
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is a base for a topology τG on N. In [11] A. M. Kirch considered the family

BK = {P (a, b) ∈ BG : a is square-free},

which is a base for a topology τK on N so that τK ⊂ τG. In [1] the first two

authors study properties of the spaces (N, τG) and (N, τK). In this paper we

consider a topology τS on N and present new properties of the space (N, τS).

We divide the paper in four sections. After this Introduction in Section 2 we

present notions and results on topological spaces. In Subsection 2.1 we consider

the notion of a Brown space and of a totally Brown space, as well as properties

different from the ones shown in [1, Section 3]. In Section 3 we present results on

arithmetic progressions, different from the ones that appear in [1, Section 4].

In Section 4 we consider properties of the topological space (N, τS). For exam-

ple this space is totally Brown, not homogeneous and concerning its separation

axioms it is TD but not T 1

2

. In Subsection 4.1 we show that P (a, b) is totally

separated when a ∈ N2. In Subsection 4.2 we study the points at which (N, τS) is

either locally connected or connected im kleinen or almost connected im kleinen.

In Subsection 4.3 we present results that involve the closure of an arithmetic

progression with respect to (N, τS). The important results of this subsection are

Theorems 4.15, 4.16 and 4.17 since with them we can calculate in a simple way

the closure in (N, τS) of an arithmetic progression. In Subsection 4.4 we char-

acterize in Theorem 4.24 the arithmetic progressions that are totally Brown in

(N, τS). It turns out that each arithmetic progression is either totally separated

or totally Brown in (N, τS). The same two possibilities occur in (N, τG), see [1,

Corollary 5.15], but not in (N, τK), since all arithmetic progressions are totally

Brown in (N, τK), see [1, Theorem 6.9].

2. Topological spaces

In this section we collect several notions, results and terminology from general

topology that we use in the paper. The symbol |Z| denotes the cardinality of

the set Z. If (X, τ) is a topological space and A ⊂ X , then the symbols clX(A)

and intX(A) denote the closure and the interior of A in (X, τ), respectively. If

A ⊂ Y ⊂ X , then clY (A) = Y ∩ clX(A). If we need to specify the topology τ

on X we write cl(X,τ)(A) and int(X,τ)(A), respectively.

We say that x ∈ X is an indiscrete point of X if {U ∈ τ : x ∈ U} = {X}. The

topological space (X, τ) is said to be

1) T2 1

2

or Urysohn if for each x, y ∈ X with x 6= y, there exist U, V ∈ τ so

that x ∈ U , y ∈ V and clX(U) ∩ clX(V ) = ∅;
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2) hereditarily disconnected if X does not contain any connected subset of

cardinality larger than one;

3) totally separated if for each x, y ∈ X with x 6= y, there exist U, V ∈ τ so

that x ∈ U , y ∈ V , X = U ∪ V and U ∩ V = ∅;

4) connected im kleinen at x ∈ X if for each U ∈ τ with x ∈ U , there is

a connected subset V of X such that x ∈ intX(V ) ⊂ V ⊂ U ;

5) almost connected im kleinen at x ∈ X if for each U ∈ τ with x ∈ U ,

there is a closed and connected subset V of X such that intX(V ) 6= ∅ and

V ⊂ U ;

6) locally connected at x ∈ X if for each U ∈ τ with x ∈ U , there is V ∈ τ

connected so that x ∈ V ⊂ U ; and locally connected if X is locally

connected at each of its points;

7) homogeneous if for each x, y ∈ X , there exists a homeomorphism f :

X → X so that f(x) = y.

Urysohn spaces are also called completely Hausdorff spaces. By [6, Theo-

rem 6.1.22, page 356] totally separated spaces are hereditarily disconnected. Be-

ing totally separated is hereditary. Though the notions are not equivalent, in the

literature both totally separated spaces as well as hereditarily disconnected spaces

have been called totally disconnected. If X is locally connected at x ∈ X , then

X is connected im kleinen at x. A space which is connected im kleinen at some

point y but not locally connected at y is shown in [14, Examples 119 and 120,

page 139].

Let (X, τ) be a topological space and A ⊂ X . The derived set of A is

A′ = {y ∈ X : for each U ∈ τ with y ∈ U we have A ∩ (U \ {y}) 6= ∅}.

Note that clX(A) = A ∪ A′. In [3, page 29] it is said that X is TD if for each

x ∈ X the derived set {x}′ is closed in X . In [12, Definition 2.1, page 90] the set

A is said to be g-closed if for each open subset U of X with A ⊂ U it follows

that clX(A) ⊂ U . In [12, Definition 5.1, page 93] it is said that X is T 1

2

if every

g-closed set is closed in X . In both [5] and [10] it is proved that X is T 1

2

if and

only if for every x ∈ X the one-point-set {x} is either open or closed in X . It is

known that

T1 =⇒ T 1

2

=⇒ TD =⇒ T0

and that the reverse inclusions do not hold. For notions and results related with

general topology and not given here, we refer the reader to [6].

2.1 Totally Brown spaces. Let X be a topological space. In [1, Definition 3.1]

it is said that X is a Brown space if for every nonempty open subsets U and V

of X , we have clX(U) ∩ clX(V ) 6= ∅. The space X is totally Brown if for every
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n ∈ N2 and each nonempty open subsets U1, U2, . . . , Un of X we have

clX(U1) ∩ clX(U2) ∩ · · · ∩ clX(Un) 6= ∅.

Clearly

totally Brown =⇒ Brown =⇒ connected.

In [1, Section 3] examples are given to show that the above implications are not

reversible. The following properties are easy to show:

1) nondegenerate Brown spaces are not Urysohn;

2) nondegenerate Brown T1 spaces are infinite.

In this subsection we present more properties of both Brown and totally Brown

spaces. Let X be a topological space and Y ⊂ X . Then Y is totally Brown in X

if and only if for every n ∈ N2 and each nonempty open subsets O1, O2, . . . , On

of Y we have

Y ∩ clX(O1) ∩ clX(O2) ∩ · · · ∩ clX(On) 6= ∅.

Similarly Y is Brown in X if and only if for every nonempty open subsets U

and V of Y we have Y ∩ clX(U) ∩ clX(V ) 6= ∅.

Theorem 2.1. If X contains an indiscrete point, then each nonempty closed

subset of X is totally Brown in X . In particular, X is totally Brown.

Proof: Let x ∈ X be an indiscrete point of X . Then x ∈ clX(U) for every

nonempty subset U of X . Let C be a nonempty closed subset of X . Fix n ∈ N2

as well as n nonempty open subsets O1, O2, . . . , On of C. Then x ∈ C∩clX(O1)∩

clX(O2) ∩ · · · ∩ clX(On), so C is totally Brown in X . �

Theorem 2.2. Let X be a topological space whose nonempty open sets are dense

in X . Then each nonempty open set is totally Brown in X . In particular, X is

totally Brown.

Proof: Let U be a nonempty open subset of X . Fix n ∈ N2 as well as n

nonempty open subsets O1, O2, . . . , On of U . For every i ∈ {1, 2, . . . , n} the set

Oi is open in X so it is dense in X . Hence U ∩clX(O1)∩clX(O2)∩· · ·∩clX(On) =

U 6= ∅. This shows that U is totally Brown in X . �

If X is infinite and we consider the cofinite topology

τC = {∅} ∪ {U ⊂ X : |X \ U | < ℵ0},

then any nonempty open subset of X is dense in (X, τC), so by Theorem 2.2 each

nonempty open subset of X is totally Brown in (X, τC).

The following result presents a condition under which a union of Brown spaces

is a Brown space.
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Theorem 2.3. Let X be a topological space and {Bi : i ∈ I} be a family of

Brown spaces in X . Assume that

(⋆) for each i, j ∈ I with i 6= j if U and V are nonempty open subsets

of Bi and Bj , respectively, then either clX(V )∩clBi
(U) 6= ∅ or clX(U)∩

clBj
(V ) 6= ∅.

Then B =
⋃

i∈I Bi is Brown in X .

Proof: LetO1 andO2 be two nonempty open subsets ofB. Take open subsets U1

and U2 of X so that

O1 = B ∩ U1 =
⋃

i∈I

(Bi ∩ U1) and O2 = B ∩ U2 =
⋃

i∈I

(Bi ∩ U2).

Since bothO1 andO2 are nonempty, there exist i, j ∈ I such that U = Bi∩U1 6= ∅

and V = Bj ∩ U2 6= ∅. Clearly Bi, Bj ⊂ B, U ⊂ O1 and V ⊂ O2. If i = j then,

using that U and V are nonempty open subsets of the Brown space Bi, we have

Bi ∩ clX(U) ∩ clX(V ) 6= ∅. Then

∅ 6= Bi ∩ clX(U) ∩ clX(V ) ⊂ B ∩ clX(O1) ∩ clX(O2).

If i 6= j then by (⋆) we can assume without loss of generality that clX(V ) ∩

clBi
(U) 6= ∅. Hence

∅ 6= clX(V ) ∩ clBi
(U) = Bi ∩ clX(U) ∩ clX(V ) ⊂ B ∩ clX(O1) ∩ clX(O2).

We deduce in both cases that B ∩ clX(O1) ∩ clX(O2) 6= ∅, so B is Brown

in X . �

3. Arithmetic progressions

In this section we present results on arithmetic progression that we use in the

rest of the paper. For a, b ∈ Z, the symbol a|b means that b = ac for some c ∈ Z.

If a, b ∈ Z and m ∈ N, the symbol a ≡ b (mod m) means that m|(a − b). Note

that x ∈ PF (a, b) if and only if a|(x−b), i.e., x ≡ b (mod a). Similarly x ∈ P (a, b)

if and only if a|(x − b) and x ≥ b, i.e., x ≡ b (mod a) and x ∈ Nb. We also have

P (a, b) ⊂ Nb, M(a) = P (a, a), M(1) = N and

P (a, b) = PF (a, b) ∩ Nb.

Hence P (a, b) ⊂ PF (a, b). We say that a ∈ N2 is square-free if its standard prime

decomposition is of the form
∏k

i=1 pi.

Given two arithmetic progressions in N the following result characterizes when

one of these is contained in the other one.
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Theorem 3.1. Let a, b, c, d ∈ N. Then

(1) P (c, d) ⊂ P (a, b) if and only if a|c and d ∈ P (a, b).

In particular,

1) for each c ∈ P (a, b), we have P (a, c) ⊂ P (a, b);

2) P (ac, b) ⊂ P (a, b) ∩ P (c, b);

3) P (an, b) ⊂ P (a, b) for every n ∈ N;

4) if b, c ∈ M(a), then P (c, b) ⊂ M(a);

5) P (a, b) = P (c, d) if and only if a = c and b = d.

Proof: Assume first that P (c, d) ⊂ P (a, b). Then d, d+ c ∈ P (a, b), so a|(d− b)

and a|[(d + c) − b]. Hence a|[(d + c − b) − (d − b)], i.e., a|c. Now consider that

a|c and d ∈ P (a, b). Then a|(d− b) and d ≥ b. If z ∈ P (c, d), then c|(z − d) and

z ≥ d. Thus a|[(z − d) + (d− b)], i.e., a|(z − b) and z ≥ b. Then z ∈ P (a, b). This

completes the proof of (1) and from this it is straightforward to show 1)–5). �

Theorem 3.2. Let a, b, c, d ∈ N be so that a|c and d ≡ b (mod a). Then

P (c, d) ⊂ N ∩ PF (a, b) and if a ≥ b, then N ∩ PF (c, d) ⊂ P (a, b). In particular

P (a, b) = N ∩ PF (a, b) if a ≥ b.

Proof: Let z ∈ P (c, d). Then c|(z − d) and z ≥ d. Therefore a|(z − d) and

a|(d− b), so a|[(z−d)+(d− b)], i.e., a|(z− b). Hence z ∈ N∩PF (a, b). This shows

the first part. Now assume that a ≥ b and take x ∈ N ∩ PF (c, d). Then c|(x− d)

and a|(d− b), so a|[(x−d)+ (d− b)], i.e., a|(x− b). Hence x ∈ PF (a, b). If x < b,

then a, b− x ∈ N and since a|(b− x) we infer that a ≤ b− x < b, a contradiction

to the fact that a ≥ b. Thus x ≥ b so x ∈ PF (a, b)∩Nb = P (a, b). This completes

the second part. Since a|a and b ≡ b (mod a), the third part follows from the

first two. �

Corollary 3.3. Let a ∈ N2 and b ∈ N be so that 〈a, b〉 = 1. Then

(2) N ∩ PF (c, b) ⊂ N \M(a) for each c ∈ M(a).

In particular, for every d ∈ N with d ≡ b (mod a) and each n ∈ N we have

(3) P (an, d) ⊂ N \M(a).

Proof: Fix c ∈ M(a) and take z ∈ N ∩ PF (c, b). If z ∈ M(a), then a|z, a|c and

c|(z − b), so a|(z − b) which implies that a|[z − (z − b)], i.e., a|b contradicting the

fact that 〈a, b〉 = 1. Then z ∈ N \ M(a). This shows (2). Now let n ∈ N and

d ∈ N be so that d ≡ b (mod a). Since a|an and d ≡ b (mod a) by the first part

of Theorem 3.2 and (2) we have P (an, d) ⊂ N ∩ PF (a, b) ⊂ N \M(a). �



The common division topology on N 335

The next result appears in [1, Theorem 4.7].

Theorem 3.4. Let k ∈ N2, a1, b1, a2, b2, . . . , ak, bk ∈ N. Then the following

conditions are equivalent.

1)
⋂k

i=1 P (ai, bi) 6= ∅;

2) 〈ai, aj〉|(bi − bj) for each i, j ∈ {1, 2, . . . , k} with i 6= j;

3) P (ai, bi) ∩ P (aj , bj) 6= ∅ for each i, j ∈ {1, 2, . . . , k} with i 6= j.

Theorem 3.4 remains true if we replace P by PF in 1) and 3), i.e., if we consider

arithmetic progressions in Z. Hence if a, c ∈ N and b, d ∈ Z then

(4) PF (a, b) ∩ PF (c, d) 6= ∅ if and only if 〈a, c〉|(b − d),

and if b, d ∈ N then

(5) P (a, b) ∩ P (c, d) 6= ∅ if and only if 〈a, c〉|(b − d).

As an application of Theorem 3.4 we obtain a simple proof of the following

result, which is [17, Lemma 3.2, page 777].

Theorem 3.5. For each a, b ∈ N and c ∈ P (a, b) we have P (a, b) ∩ M(b) ∩

M(c) 6= ∅.

Proof: Since 〈a, c〉 = 〈a, b〉 we have 〈a, b〉|(b − b), 〈a, c〉|(b − c) and 〈b, c〉|(b − c)

so the result follows from Theorem 3.4. �

The next theorem is proved in [1, Theorem 4.14].

Theorem 3.6. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. If b ∈ N, then

(6) P (a, b) =
k
⋂

i=1

P (pαi

i , b) and M(a) =
k
⋂

i=1

M(pαi

i ).

The following result is proved in [1, Theorem 4.20].

Theorem 3.7. Let a ∈ N2, b ∈ N and x, y ∈ P (a, b) with x < y. Write

x = am+ b, y = an+ b with 0 ≤ m < n. Then P (a, b) = U ∪ V , where

(7) U =

m
⋃

k=0

P (an+1, ak + b) and V =

an
−1

⋃

k=m+1

P (an+1, ak + b).

Moreover, x ∈ U , y ∈ V and the members of the family

F = {P (an+1, ak + b) : k ∈ {0, 1, . . . , an − 1}}

are pairwise disjoint. In particular, U ∩ V = ∅.
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The next result is the Dirichlet theorem. A proof of it appears in [2, Chapter 7].

Theorem 3.8. Let a, b ∈ N be so that 〈a, b〉 = 1. Then the set P (a, b) ∩ P is

infinite.

For each a ∈ N we define

Θ(a) = {p ∈ P : p|a}.

Note that Θ(a) is finite and Θ(a) = ∅ if and only if a = 1. The proof of the

following result is straightforward.

Proposition 3.9. For each a, b, c ∈ N we have:

1) Θ(ab) = Θ(a) ∪ Θ(b). In particular, for each n ∈ N, Θ(an) = Θ(a) and

Θ(an) = {a} if and only if a ∈ P;

2) Θ(〈a, b〉) = Θ(a) ∩ Θ(b). In particular, Θ(a) ∩ Θ(b) = ∅ if and only if

〈a, b〉 = 1;

3) if d ∈ P (a, b) and Θ(a) ⊂ Θ(b), then Θ(a) ⊂ Θ(d);

4) if Θ(a) ⊂ Θ(c) and Θ(b) ⊂ Θ(c), then Θ(ab) ⊂ Θ(c).

For notions and results related with number theory that are not defined here,

we refer the reader to [7].

4. The Szczuka space

In [15, Section 3, page 877] P. Szczuka (also known as P. Szyszkowska) consider

the family

BS = {P (a, b) : a, b ∈ N and Θ(a) ⊂ Θ(b)}

and show that it is a base for a topology τS in N. In [16, page 1009] P. Szczuka

named τS the common division topology on N. We name the topological space

(N, τS) the Szczuka space. Clearly

τS = {∅}∪{U ⊂ N : for each b ∈ U there is P (a, b) ∈ BS

so that P (a, b) ⊂ U}.

Note that nonempty open subsets of (N, τS) are infinite. Note also that, for

each b ∈ N, the sets P (1, b) = Nb and M(b) = P (b, b) are open in (N, τS). In

[15, Propositions 3.1–3.2, pages 877–878] it is shown that (N, τS) is a connected

compact space so that every nonempty closed subset of it contains 1. The last

assertion implies the following result (compare with [18, Lemma 3.1, page 93]).
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Theorem 4.1. 1 is the only indiscrete point of (N, τS).

Proof: Let U be an open subset of (N, τS) so that 1 ∈ U . If U 6= N, then N \U

is a nonempty closed subset of (N, τS) that does not contains 1, contradicting [15,

Proposition 3.1, page 877]. Hence 1 is an indiscrete point of (N, τS). If a ∈ N2,

then M(a) is an open subset of (N, τS) such that a ∈ M(a) and M(a) 6= N, so

a is not an indiscrete point of (N, τS). �

Corollary 4.2. (N, τS) is totally Brown. In particular, it is connected.

Proof: The result follows from Theorems 2.1 and 4.1. �

Corollary 4.3. (N, τS) is not homogeneous.

Proof: The image under a homeomorphism of an indiscrete point is an indiscrete

point too, so no homeomorphism from (N, τS) onto itself can map 1 onto 2. �

Concerning separation axioms, in [15, Proposition 3.3, page 878] it is shown

that (N, τS) is a T0 space which is not T1.

Theorem 4.4. (N, τS) is TD but not T 1

2

.

Proof: Since nonempty open sets are infinite and nonempty closed sets contain 1,

for any b ∈ N2 the one-point-set {b} is neither open nor closed, so (N, τS) is not T 1

2

.

To show that (N, τS) is TD let a ∈ N. Let us assume that a ∈ N2. We will prove

that {a}′ = {1}. Assume, by the way of contradiction, that c ∈ {a}′ and c 6= 1.

Then c 6= a. If 1 < c < a take n ∈ N so that a < cn. Then P (cn, c) is an open

subset of (N, τS) that contains c and a /∈ P (cn, c) \ {c}. If a < c then M(c) is an

open subset of (N, τS) that contains c and a /∈ M(c) \ {c}. In any case we deduce

that c /∈ {a}′. This and Theorem 4.1 imply that {a}′ = {1}. Since P (1, 2) ∈ BS

and N \ P (1, 2) = {1} the set {1} is closed in (N, τS). Hence {a}′ = {1} is closed

in (N, τS). Now assume that a = 1. Then {a}′ = ∅ is closed in (N, τS). This

shows that (N, τS) is TD. �

By the proof of Theorem 4.4 if a ∈ N2, then

cl(N,τS)({a}) = {1, a} and cl(N,τS)({1}) = {1},

so {1} is the only one-point-set which is closed in (N, τS). Moreover, 1 is in the

closure in (N, τS) of every one-point-set, and then in every nonempty closed set.

In [13] a topological space X is said to be superconnected if it contains no

disjoint nonempty open sets. Since P (9, 3), P (27, 6) ∈ BS and 〈9, 27〉 = 9 do

not divide 6 − 3 = 3, by (5) we have P (9, 3) ∩ P (27, 6) = ∅. Hence (N, τS) is

not superconnected in the sense of [13]. Indeed for any p1, p2 ∈ P \ {2} we have

P (p21, p1), P (p31, p1p2) ∈ BS and, by (5),

P (p21, p1) ∩ P (p31, p1p2) = ∅.
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Combining 1) of Theorem 3.1 and 3) of Proposition 3.9 we obtain the following

result.

Theorem 4.5. If P (a, b) ∈ BS and c ∈ P (a, b), then P (a, c) ⊂ P (a, b) and

Θ(a) ⊂ Θ(c). Hence P (a, c) ∈ BS and

τS = {∅}∪{U ⊂ N : for each b ∈ U there is P (a, c) ∈ BS

so that b ∈ P (a, c) ⊂ U}.

Now we present two closed subsets of (N, τS) that are important in order to

determine properties related with the closure in (N, τS) of an arithmetic progres-

sion.

Theorem 4.6. If a ∈ N2 and b ∈ M(a), then for each n ∈ N the sets

(N ∩ PF (a
n, b)) ∪ (N \M(a)) and P (an, b) ∪ (N \M(a))

are closed in (N, τS).

Proof: Fix n ∈ N and note that

N \
(

M(a) \ (N ∩ PF (a
n, b))

)

= (N \M(a)) ∪ (N ∩ PF (a
n, b)),

so we will show that U = M(a) \ (N ∩ PF (a
n, b)) is open in (N, τS). Let z ∈ U .

Then a|z and Θ(an) = Θ(a) ⊂ Θ(z), so P (an, z) is an open subset of (N, τS) such

that z ∈ P (an, z) ⊂ M(a). Since an ∤ (z − b), by (4), P (an, z) ∩ PF (a
n, b) = ∅ so

P (an, z) ⊂ U and then U is open in (N, τS). Since

N \ (M(a) \ P (an, b)) = (N \M(a)) ∪ P (an, b)

proceeding as before we show that M(a) \ P (an, b) is open in (N, τS). �

The following result was observed in the proof of [18, Theorem 4.3, page 96].

Theorem 4.7. The family

BS = {P (a, b) ∈ BS : b ≤ a}

is a base for τS .

Proof: Let P (a, b) ∈ BS with a < b and c ∈ P (a, b). By Theorem 4.5 P (a, c) ⊂

P (a, b) and P (a, c) ∈ BS. Moreover 1 ≤ a < b ≤ c. Let pc, kc ∈ P be so that pc|c

and pkc
c ≥ c. Since Θ(a) ⊂ Θ(c), applying 1) of Proposition 3.9,

Θ(pkc
c a) = {pc} ∪Θ(a) ⊂ {pc} ∪Θ(c) = Θ(c).

This shows that P (pkc
c a, c) ∈ BS and since

c ∈ P (pkc
c a, c) ⊂ P (a, c) ⊂ P (a, b),
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we have

P (a, b) =
⋃

c∈P (a,b)

P (pkc
c a, c).

We have seen that each element of BS is a union of members of BS , so BS is

a base for τS . �

4.1 Totally separated subsets of the Szczuka space. By [1, Theorem 5.12]

the members of the base BS of τS are totally Brown in (N, τG). In particular such

members are connected in (N, τG). Now we show that every P (a, b) ∈ BS with

a ∈ N2 is totally separated in (N, τS).

Theorem 4.8. Let a ∈ N2 and b ∈ N be so that P (a, b) ∈ BS . Then P (a, b) is

totally separated in (N, τS). In particular, P (a, b) is hereditarily disconnected.

Proof: Let x, y ∈ P (a, b) with x 6= y. Assume, without loss of generality, that

x < y. Write x = am + b, y = an + b with 0 ≤ m < n and consider the sets U

and V defined in (7). By Theorem 3.7 we have P (a, b) = U ∪V , U ∩V = ∅, x ∈ U

and y ∈ V . Fix k ∈ N0. Since Θ(a) ⊂ Θ(b) and ak + b ∈ P (a, b), by 1) and 3) of

Proposition 3.9 we have Θ(an+1) = Θ(a) ⊂ Θ(ak + b). Then both U and V are

open in (N, τS). �

Corollary 4.9. Let a, b ∈ N be such that 〈a, b〉 6= 1. Then P (a, b) is totally

separated in (N, τS).

Proof: Since 〈a, b〉 6= 1, by 2) of Proposition 3.9 there exists p ∈ Θ(a) ∩ Θ(b).

Then P (a, b) ⊂ M(p). Now, since M(p) ∈ BS by Theorem 4.8 the set M(p) is

totally separated in (N, τS). Hence P (a, b) is totally separated in (N, τS). �

By Theorem 4.8 it follows that M(a) = P (a, a) ∈ BS is totally separated in

(N, τS) for each a ∈ N2. The next result is [18, Theorem 3.2, page 93]. Using

Theorem 4.8 we present a simple proof.

Theorem 4.10. If f : (N, τS) → (N, τS) is a continuous and nonconstant func-

tion, then f(1) = 1.

Proof: Let a = f(1) and assume, by the way of contradiction, that a ∈ N2. We

claim that

(8) f(N) ⊂ M(a).

Since M(a) = P (a, a) is an open subset of (N, τS) that contains a = f(1), by

the continuity of f , there is an open subset U of (N, τS) so that 1 ∈ U and

f(U) ⊂ M(a). Since by Theorem 4.1 the point 1 is indiscrete in (N, τS), we have

U = N. Hence f(N) ⊂ M(a) and (8) holds.
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Since (N, τS) is connected and f is continuous, by (8), f(N) is a connected

subset of M(a), which by Theorem 4.8 is hereditarily disconnected. This implies

that f is constant, a contradiction. Hence a = 1 and then f(1) = 1. �

From Theorem 4.10 it follows that (N, τS) has the fixed point property, i.e., for

each continuous function f : (N, τS) → (N, τS) there is b ∈ N so that f(b) = b.

4.2 Local connectedness. Now we study the points at which the space (N, τS)

is either locally connected or connected im kleinen or almost connected im kleinen.

If A ⊂ Y ⊂ N we denote by intN(A) the interior of A in (N, τS) and by intY (A)

the interior of A in the subspace Y of (N, τS).

Theorem 4.11. Let a, b ∈ N be such that P (a, b) ∈ BS . Hence

1) if a ∈ N2, then P (a, b) is neither connected im kleinen nor almost con-

nected im kleinen at each of its points;

2) if a = 1, then P (a, b) is neither connected im kleinen nor almost connected

im kleinen at each point c ∈ P (a, b) \ {1}.

Proof: To show 1) fix a ∈ N2 and assume that P (a, b) is either connected im

kleinen or almost connected im kleinen at c ∈ P (a, b). By Theorem 4.5 we have

P (a, c) ∈ BS and P (a, c) ⊂ P (a, b). Since P (a, c) is an open subset of P (a, b)

that contains c, there is a connected subset C of P (a, c) so that intP (a,b)(C) 6= ∅.

Hence intN(C) 6= ∅ and since nonempty open subsets of (N, τS) are infinite, the set

C is infinite. This contradicts the fact that, by Theorem 4.8, P (a, c) is hereditarily

disconnected. Therefore 1) holds.

To show 2) assume that a = 1 and that P (a, b) = Nb is either connected im

kleinen or almost connected im kleinen at c ∈ P (a, b) \ {1}. Then M(c) is an

open subset of P (a, b) that contains c, so there is a connected subset D of M(c)

so that intP (a,b)(C) 6= ∅. Hence intN(D) 6= ∅ and since nonempty open subsets

of (N, τS) are infinite, the set D is infinite. This contradicts the fact that, by

Theorem 4.8, M(c) is hereditarily disconnected. �

Corollary 4.12. The space (N, τS) is locally connected at 1 and neither connected

im kleinen nor almost connected im kleinen at each point c ∈ N2. In particular,

(N, τS) is not locally connected.

Proof: By Theorem 4.1, 1 is an indiscrete point of the connected space (N, τS),

so (N, τS) is locally connected at 1. Since N = P (1, 1) the rest of the proof follows

from 2) of Theorem 4.11. �

4.3 The closure in the Szczuka space. We present in this subsection several

results that involve the closure of an arithmetic progression with respect to the
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Szczuka space. If A ⊂ N we denote by clN(A) the closure of A in (N, τS). In [16,

Remark 3.3, page 1010] it is mentioned that

clN(P (1, b)) = N for every b ∈ N.

Now we show that the closure in (N, τS) of each arithmetic progression contains

infinitely many prime numbers.

Theorem 4.13. If a ∈ N2 and b ∈ N, then

(9)
⋂

p∈Θ(a)

(N \M(p)) ⊂ clN(P (a, b)).

In particular,

(10) P \Θ(a) ⊂ clN(P (a, b)).

Proof: Let c be in the left side of (9) and U be a nonempty open subset of

(N, τS) so that c ∈ U . Then there is d ∈ N with Θ(d) ⊂ Θ(c) so that P (d, c) ⊂ U .

If 〈d, a〉 6= 1, then for some p ∈ P we have p|d and p|a. Note that p ∈ Θ(a)∩Θ(c)

so c ∈ M(p) contradicting the choice of c. Then 〈d, a〉 = 1, so 〈d, a〉|(c− b). This

implies, by (5), that

∅ 6= P (d, c) ∩ P (a, b) ⊂ U ∩ P (a, b).

Hence c ∈ clN(P (a, b)) and (9) holds. The inclusion (10) follows from (9) and the

fact that

P \Θ(a) ⊂ {z ∈ N : 〈z, p〉 = 1 for each p ∈ Θ(a)} =
⋂

p∈Θ(a)

(N \M(p)).

�

If a = 1, then Θ(a) = ∅ and clN(P (a, b)) = N, so the inclusion (10) is valid for

each a ∈ N.

Theorem 4.14. Let a, b, c, d ∈ N be so that a|c and d ≡ b (mod a). Then

(11) N ∩ PF (c, d) ⊂ clN(P (a, b)).

In particular

(12) N ∩ PF (a
n, b) ⊂ clN(P (a, b)) for each n ∈ N.

Proof: Note that if a ≥ b then, by the second part of Theorem 3.2,

N ∩ PF (c, d) ⊂ clN(N ∩ PF (c, d)) ⊂ clN(P (a, b)).
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We will show that inclusion (11) holds independently of the relation between a

and b. Let z ∈ N∩ PF (c, d) and U be a nonempty open subset of (N, τS) so that

z ∈ U . Then there is q ∈ N with Θ(q) ⊂ Θ(z) so that P (q, z) ⊂ U . Note that

c|(z − d), 〈q, a〉|a and a|c. Then 〈q, a〉|(z − d). From a|(d − b) and 〈q, a〉|a we

infer that 〈q, a〉|(d − b). Hence 〈q, a〉|[(z − d) + (d − b)], i.e., 〈q, a〉|(z − b). This

implies, by (5), that

∅ 6= P (q, z) ∩ P (a, b) ⊂ U ∩ P (a, b),

so z ∈ clN(P (a, b)) and (11) is satisfied. The inclusion (12) follows from (11) and

the facts that b ≡ b (mod a) and a|an for every n ∈ N. �

The following result generalizes [16, Lemma 3.2, page 1009].

Theorem 4.15. Let a, b, c ∈ N be so that b ≡ c (mod a). Then

(13) clN(N ∩ PF (a, c)) = clN(P (a, b)).

In particular, clN(P (a, b)) = clN(P (a, c)) and if b ∈ M(a), then clN(P (a, b)) =

clN(M(a)).

Proof: Since a|a and b ≡ c (mod a) by Theorem 3.2 we have P (a, b) ⊂ N ∩

PF (a, c). Taking closures in (N, τS), the right side of (13) is a subset of its left

side. Since a|a and c ≡ b (mod a) by (11) we have N ∩ PF (a, c) ⊂ clN(P (a, b)).

Hence the left side of (13) is a subset of its right side. This shows (13). Now,

since b ≡ b (mod a) and b ≡ c (mod a) applying (13) two times we have

clN(P (a, b)) = clN(N ∩ PF (a, b)) = clN(P (a, c)).

Now assume that b ∈ M(a). Then b ≡ a (mod a) and by (13)

clN(P (a, b)) = clN(N ∩ PF (a, a)) = clN(M(a)).

�

Let a, b, c ∈ N be so that c ∈ P (a, b). Then b ≡ c (mod a) and P (a, c) ⊂

P (a, b). The inclusion might be proper but, by Theorem 4.15, clN(P (a, c)) =

clN(P (a, c)).

The following result generalizes [16, Theorem 3.4, page 1010] since we do not

use the condition c ≤ pn as claimed in [16].

Theorem 4.16. Let p ∈ P and b, c ∈ N. For each n ∈ N so that b ≡ c (mod pn)

we have

(14) clN(P (pn, b)) = (N ∩ PF (p
n, c)) ∪ (N \M(p)).
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In particular,

1) if 〈p, b〉 = 1, then clN(P (pn, b)) = N \M(p);

2) if p|b, then clN(P (p, b)) = N;

3) P (2, 1) is closed in (N, τS);

4) for each q ∈ P we have clN(M(q)) = N and if P (q, b) ∈ BS, then

clN(P (q, b)) = N.

Proof: Fix n ∈ N and let

C = (N ∩ PF (p
n, c)) ∪ (N \M(p)).

Clearly Θ(pn) = {p} and pn|(c− b). Then, by (9) and (11) we have

N \M(p) ⊂ clN(P (pn, b)) and N ∩ PF (p
n, c) ⊂ clN(P (pn, b)).

Hence the right side of (14) is contained in its left side. To show the reverse

inclusion we divide the proof in two cases. Assume first that p|c. Then by

Theorem 4.6, C is closed in (N, τS) and, by Theorem 3.2,

P (pn, b) ⊂ N ∩ PF (p
n, c) ⊂ C.

Then the left side of (14) is contained in its right side. Now assume that p ∤ c.

Then 〈p, c〉 = 1 and since b ≡ c (mod p), by (3), we have P (pn, b) ⊂ N \M(p).

Since N \M(p) is closed in (N, τS) we get

clN(P (pn, b)) ⊂ N \M(p) ⊂ C.

Hence (14) holds.

To show 1) assume that 〈p, b〉 = 1. Then 〈pn, b〉 = 1 and, by (2),

N ∩ PF (p
n, b) ⊂ N \M(p)

so, by (14), we have

clN(P (pn, b)) = (N ∩ PF (p
n, b)) ∪ (N \M(p)) = N \M(p).

This shows 1). To show 2) assume that p|b. Then b ≡ p (mod p) and by (14)

clN(P (p, b)) = (N ∩ PF (p, p)) ∪ (N \M(p)) = P (p, p) ∪ (N \M(p))

= M(p) ∪ (N \M(p)) = N.

This shows 2). Since 〈2, 1〉 = 1 by 1) we have

clN(P (2, 1)) = N \M(2) = P (2, 1),

so 3) holds. To show 4) let q ∈ P. Since q|q, by 2),

clN(M(q)) = clN(P (q, q)) = N.
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Now assume that P (q, b) is open in (N, τS). Then {q} = Θ(q) ⊂ Θ(b) so q|b and

by 2) clN(P (q, b)) = N. This shows 4). �

In [4] a topological space X is said to be superconnected if it is connected

and every subset which contains a nonempty open subset is open. Note that

P (4, 2) ∈ BS and, by (14)

clN(P (4, 2)) = (N ∩ PF (2
2, 2)) ∪ (N \M(2)) = P (4, 2) ∪ P (2, 1).

Hence clN(P (4, 2)) is a nonempty proper closed subset of (N, τS) that contains

a nonempty open set. Since (N, τS) is connected, clN(P (4, 2)) is not open. Hence

(N, τS) is not superconnected in the sense of [4].

Now we show that when the intersection of finitely many arithmetic progres-

sions in N is nonempty, the closure in (N, τS) of such intersection is the intersection

of the closures of the arithmetic progressions. By [1, Theorems 5.9 and 6.3] the

equality (15) holds in both (N, τG) and (N, τK).

Theorem 4.17. Let a1, b1, a2, b2, . . . , ak, bk ∈ N be so that
⋂k

i=1 P (ai, bi) 6= ∅.

Then

(15) clN

( k
⋂

i=1

P (ai, bi)

)

=
k
⋂

i=1

clN(P (ai, bi)).

Proof: Clearly the left side of (15) is contained in its right side, so to show the

reverse inclusion let b be a member in the right side of (15) and U be an open

subset of (N, τS) so that b ∈ U . Take a ∈ N with Θ(a) ⊂ Θ(b) and P (a, b) ⊂ U .

Then

(16) P (a, b) ∩ P (ai, bi) 6= ∅ for each i ∈ {1, 2, . . . , k}.

Since
⋂k

i=1 P (ai, bi) 6= ∅, by Theorem 3.4, we have

(17) P (ai, bi) ∩ P (aj , bj) 6= ∅ for each i, j ∈ {1, 2, . . . , k} with i 6= j.

Combining (16) and (17) we infer, applying again Theorem 3.4, that

P (a, b) ∩

( k
⋂

i=1

P (ai, bi)

)

6= ∅,

so U ∩
(
⋂k

i=1 P (ai, bi)
)

6= ∅ and then b is in the left side of (15). �

Now we write some consequences of Theorem 4.17. The following result appears

in [16, Theorem 3.5, page 1011] with a very different proof.
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Theorem 4.18. If a ∈ N2 and a =
∏k

i=1 p
αi

i is the standard prime decomposi-

tion of a, then

(18) clN(P (a, b)) =
k
⋂

i=1

clN(P (pαi

i , b)).

Proof: The result follows from the first part of (6) and (15). �

In the proof of [1, Theorems 5.10 and 6.4] it is shown that equality (18) is valid

in both (N, τG) and (N, τK). The following result was proved differently in the

second part of [16, Theorem 3.6, page 1012].

Theorem 4.19. Let a, b ∈ N2 be such that a is square-free and a|b. Then P (a, b)

and M(a) are open subsets of (N, τS) so that clN(P (a, b)) = N = clN(M(a)).

Proof: Clearly P (a, b) and M(a) are open subsets of (N, τS). By the last part

of Theorem 4.15, clN(P (a, b)) = clN(M(a)). Let a =
∏k

i=1 pi be the standard

prime decomposition of a. For each i ∈ {1, 2, . . . , k} we have pi|b so by 2) of

Theorem 4.16, clN(P (pi, b)) = N. Then by the first part of (6) and (15),

clN(P (a, b)) = clN

( k
⋂

i=1

P (pi, b)

)

=

k
⋂

i=1

clN(P (pi, b)) = N.

Alternatively we can use the second part of (6), (15) and 4) of Theorem 4.16, to

deduce that clN(M(a)) = N. �

In the following result we calculate the closure in (N, τS) of an arithmetic

progression P (a, b) with a ∈ N2.

Theorem 4.20. Let a ∈ N2 and b, c ∈ N so that b ≡ c (mod a). If a =
∏k

i=1 p
αi

i

is the standard prime decomposition of a, then

(19) clN(P (a, b)) =

k
⋂

i=1

[(N ∩ PF (p
αi

i , c)) ∪ (N \M(pi))].

Proof: For each i ∈ {1, 2, . . . , k} we have pαi

i |a so b ≡ c (mod pαi

i ). Hence, by

(14) and (18)

clN(P (a, b)) =

k
⋂

i=1

clN(P (pαi

i , b)) =

k
⋂

i=1

[(N ∩ PF (p
αi

i , c)) ∪ (N \M(pi))].

�
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Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime decomposition

of a. Given b ∈ N since b ≡ b (mod a) by (19) we have

(20) clN(P (a, b)) =

k
⋂

i=1

[(N ∩ PF (p
αi

i , b)) ∪ (N \M(pi))].

Let Ab be the set of c ∈ N so that c ≤ a and for each i ∈ {1, 2, . . . , k} either

〈pi, c〉 = 1 or c ≡ b (mod pαi

i ). Take x ∈ clN(P (a, b)) and choose n ∈ N0 and

c ∈ N such that x = an + c and c ≤ a. Given i ∈ {1, 2, . . . , k} by (20) either

x ∈ PF (p
αi

i , b) or x ∈ N \ M(pi). Since an ≡ 0 (mod pαi

i ) in the first case we

infer that c ≡ b (mod pαi

i ) and, in the second case, we get 〈pi, c〉 = 1. This shows

that c ∈ Ab and x ∈ P (a, c), so

clN(P (a, b)) ⊂
⋃

c∈Ab

P (a, c).

Now take z ∈
⋃

c∈Ab
P (a, c). Then z ∈ N and there exist c ∈ Ab and m ∈ N0

such that z = am + c. Given i ∈ {1, 2, . . . , k} since c ∈ Ab either 〈pi, c〉 = 1 or

c ≡ b (mod pαi

i ). In the first case z ∈ N \M(pi) and, in the second case, using

that am ≡ 0 (mod pαi

i ) we get z ∈ PF (p
αi

i , b). Then, by (20), z ∈ clN(P (a, b))

and then
⋃

c∈Ab

P (a, c) ⊂ clN(P (a, b)).

In this way we obtain the following result that was proved differently in the first

part of [16, Theorem 3.6, page 1012].

Theorem 4.21. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. Then, for each b ∈ N,

(21) clN(P (a, b)) =
⋃

c∈Ab

P (a, c).

By (21) the right side of (20) is the union of finitely many arithmetic progres-

sions in N, all with the same common difference of successive members. When

〈a, b〉 = 1 we can simplify the right side of (20).

Theorem 4.22. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. Then for each b ∈ N with 〈a, b〉 = 1 we have

(22) clN(P (a, b)) =

k
⋂

i=1

(N \M(pi)).

Proof: Since 〈a, b〉 = 1 we have 〈pαi

i , b〉 = 1 for every i ∈ {1, 2, . . . , k} so, by (2),

N ∩ PF (p
αi

i , b) ⊂ N \M(pi) and then

(23) (N ∩ PF (p
αi

i , b)) ∪ (N \M(pi)) = N \M(pi).

Equality (22) follows from (20) and (23). �
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Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime decomposition

of a. For each b ∈ N let Cb be the set of c ∈ N so that c ≤ a and for each

i ∈ {1, 2, . . . , k} we have 〈pi, c〉 = 1. Reasoning as in the proof of Theorem 4.21,

using (22) instead, we obtain the following result.

Theorem 4.23. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. Then for each b ∈ N with 〈a, b〉 = 1 we have

clN(P (a, b)) =
⋃

c∈Cb

P (a, c).

4.4 Totally Brown subsets of the Szczuka space. In this subsection we

characterize the arithmetic progressions P (a, b) that are totally Brown in (N, τS).

In [15, Theorem 3.4, page 878] it is shown that P (a, b) is connected in (N, τS) if and

only if 〈a, b〉 = 1. From the results that we have seen, the proof of 2) implies 3) in

the next result is simpler than the one presented in [15, Theorem 3.4, page 878].

Theorem 4.24. Let a, b ∈ N. Then the following assertions are equivalent:

1) P (a, b) is totally Brown in (N, τS);

2) P (a, b) is Brown in (N, τS);

3) P (a, b) is connected in (N, τS);

4) 〈a, b〉 = 1.

In particular, P (a, b) ∈ BS is totally Brown in (N, τS) if and only if a = 1.

Proof: We have seen that totally Brown spaces are Brown and that Brown

spaces are connected, so 1) implies 2) and 2) implies 3). Now assume 3). If

〈a, b〉 6= 1 by Corollary 4.9, P (a, b) is totally separated in (N, τS). Hence P (a, b)

is not connected in (N, τS). This shows that 3) implies 4). Now assume 4). Fix

n ∈ N2 as well as n nonempty open subsets O1, O2, . . . , On of P (a, b). For each

i ∈ {1, 2, . . . , n} let Ui be an open subset of (N, τS) so that Oi = P (a, b) ∩ Ui

and take bi ∈ Oi. Then there exists ai ∈ N such that Θ(ai) ⊂ Θ(bi) and

P (ai, bi) ⊂ Ui. For every i ∈ {1, 2, . . . , n}, by (10),

(24) P \Θ(ai) ⊂ clN(P (ai, bi)) and P (a, b) ∩ P (ai, bi) 6= ∅.

Since A =
⋃n

i=1 Θ(ai) is finite and by Theorem 3.8 the set P (a, b) ∩ P is infinite,

there exists p ∈ (P (a, b) ∩ P) \A. Then, by (24),

p ∈ P (a, b) ∩

( n
⋂

i=1

(P \Θ(ai))

)

⊂ P (a, b) ∩

( n
⋂

i=1

clN(P (ai, bi))

)

.
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Hence, by (15),

∅ 6= P (a, b) ∩

( n
⋂

i=1

clN(P (ai, bi))

)

= P (a, b) ∩

( n
⋂

i=1

[clN(P (a, b)) ∩ clN(P (ai, bi))]

)

= P (a, b) ∩

( n
⋂

i=1

clN(P (a, b) ∩ P (ai, bi))

)

⊂ P (a, b) ∩

( n
⋂

i=1

clN(Oi)

)

.

This shows that P (a, b) is totally Brown in (N, τS). Therefore 4) implies 1).

With this the equivalence between assertions 1)–4) is complete. Now assume that

P (a, b) ∈ BS. Then Θ(a) ⊂ Θ(b). If P (a, b) is totally Brown in (N, τS) then, by

1) implies 4), 〈a, b〉 = 1 so by 2) of Proposition 3.9,

∅ = Θ(〈a, b〉) = Θ(a) ∩Θ(b) = Θ(a).

Then a = 1. Conversely, if a = 1 then 〈a, b〉 = 1 and by 4) implies 1) the set

P (a, b) is totally Brown in (N, τS). �

Corollary 4.25. For each a, b ∈ N the arithmetic progression P (a, b) is either

totally separated or totally Brown in (N, τS).

Proof: If 〈a, b〉 = 1, by Theorem 4.24, P (a, b) is totally Brown in (N, τS). If

〈a, b〉 6= 1, by Corollary 4.9, P (a, b) is totally separated in (N, τS). �

By [1, Corollary 5.15] the same two possibilities mentioned in Corollary 4.25

are satisfied in (N, τG). However, by [1, Theorem 6.9], each arithmetic progression

P (a, b) is totally Brown in (N, τK).

It is worth to compare Corollary 4.12 with the comment previous to [15, Corol-

lary 3.5, page 879] in which it is said that due to the equivalence between 3) and 4)

of Theorem 4.24 “we can easily see that every base of the topology τS contains

some disconnected arithmetic progression”. And due to this in [15, Corollary 3.5,

page 879] it is claimed that (N, τS) is not locally connected.
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