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Some results on derangement polynomials

Mehdi Hassani, Hossein Moshtagh, Mohammad Ghorbani

Abstract. We study moments of the difference Dn(x) − xnn! e−1/x concerning
derangement polynomials Dn(x). For the first moment, we obtain an explicit
formula in terms of the exponential integral function and we show that it is
always negative for x > 0. For the higher moments, we obtain a multiple integral
representation of the order of the moment under computation.
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1. Introduction

A derangement of a list is a permutation of the entries such that no entry

remains in the original position. We denote the number of derangements on a set

of cardinality n by Dn. The derangement polynomials are natural extensions of

the derangement numbers, and are defined in several different ways in literature,

see [4], [5], [6], [15], [14] and the references given there. The most common defini-

tion of derangement polynomials are those considered by C. Radoux in [15], [14],

where he studied a Hankel determinant constructed on derangement polynomials

Dn(x) defined by

Dn(x) = n!

n
∑

j=0

(−1)j

j!
xn−j .

These polynomials are associated with the number of derangements on a set of

cardinality n by Dn = Dn(1). Recently, the first author in [10, Theorem 2]

computed the kth moments of the difference Dn − e−1n! for each integer k > 1.

The aim of this note is to compute the kth moments of the difference

(1.1) Dn(x)−
xnn!

e1/x
.
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The first moment can be computed in terms of the exponential integral function,

Ei, which is defined by the Cauchy principal value of the integral

Ei(x) = −
∫

∞

−x

e−z

z
dz.

Theorem 1.1. Let x > 0. We have

(1.2)

∞
∑

n=1

(

Dn(x)−
xnn!

e1/x

)

= −1 +
1

e1/x
+

1

x e2/x

(

Ei
( 2

x

)

− Ei
(1

x

))

.

Moreover, the above first moment is always negative for x > 0.

For the higher moments of the difference (1.1), we obtain a multiple integral

representation of the order of the moment under computation, but we are able to

simplify the second moment following an argument due to W. J. LeVeque, see [13],

which has been described by M. Aigner and G.M. Ziegler in [1, Chapter 9].

Theorem 1.2. Let x > 0. For each integer k > 1 the following multiple integral

representation holds

(1.3)

∞
∑

n=1

(

Dn(x) −
xnn!

e1/x

)k

= − (e1/x − 1)k

ek/x

+
1

ek/x

∫ 1/x

0

· · ·
∫ 1/x

0

ez1+···+zk

1− (−x)kz1 · · · zk
dZ,

where Z represents the k-tuple (z1, . . . , zk). More precisely, for the case k = 2 we

have

(1.4)
∞
∑

n=1

(

Dn(x)−
xnn!

e1/x

)2

= − (e1/x − 1)2

e2/x
+

4

e2/x

∫ 1/2x

0

h(z) dz,

where

h(z) =
e2z

x
√
1− x2z2

arctan
xz√

1− x2z2
+

e2/x−2z

x
√

xz(2− xz)
arctan

xz
√

xz(2− xz)
.

We provide the proofs of the above theorems in next section. Before the proofs,

we give a remark on the values of derangement polynomials at negative arguments.

Remark 1.3. Regarding to the summation identities of permutations, recently

the first author [11, Theorem 1.3] showed that for any integer n > 0 and for each

real x 6= 0 we have

(1.5) Sn(x) :=

n
∑

j=0

P (n, j)xj = (−1)nxne1/xEn

(

− 1

x

)

,
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where

En(a) =

∫ a

−∞

tnet dt,

is defined for any fixed a and for any integer n > 0. Now, we observe that

(1.6) Dn(−x) = (−1)nn!
n
∑

j=0

xn−j

j!
= (−1)n

n
∑

j=0

P (n, j)xj .

Thus, for each real x 6= 0 we conclude from (1.5) that

Dn(−x) = xne1/xEn

(

− 1

x

)

.

Replacing x by −x in the last relation implies that

Dn(x) = (−1)nxne−1/xEn

(1

x

)

,

which is indeed equivalent with (2.3). Also, letting x = 1 in (1.6) we get

Dn(−1) = (−1)n
n
∑

j=0

P (n, j).

Note that

0 < e−
n
∑

k=0

1

k!
=

∞
∑

k=1

1

(n+ k)!
=

1

n!

∞
∑

k=1

k
∏

j=1

1

n+ j
<

1

n!

∞
∑

k=1

1

(n+ 1)k
=

1

n · n! .

Thus, we obtain

Dn(−1) = (−1)n⌊en!⌋.
This provides an analogue to a well-known identity concerning Dn due to the first

author, see [8], [7], asserting that

Dn(1) = ⌊e−1(n! + 1)⌋.

Moreover, as the first author in [8], [9] shows, the quantity (−1)nDn(−1) actually

gives the number of all distinct paths between a specific pair vertices in a simple

complete graph on n + 2 vertices. Thus, the derangement polynomials may be

meaningful also at negative arguments, too. Hence, we may ask about computing

moments of the difference under study in this paper for x < 0.

2. Proofs

The key of the proof of Theorem 1.1 and Theorem 1.2 is an integral represen-

tation for the difference Dn(x) − xnn!e−1/x, which itself is based on an integral
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representation for the alternating sum over P (n, j), the number of j-permutations

of n objects. Let a > 1 be a fixed real. For any positive integer n let

(2.1) Ln(a) =

∫ a

1

logn t dt.

The following relation is equivalent to one given by R.A. Askey andM.E.H. Ismail

in [2] and P.M. Kayll in [12]. Recently, first author in [10, Theorem 1] reproved

it in a different form. For any integer n > 1 and for x > 0 we have

(2.2)

n
∑

j=0

(−1)jP (n, j)xn−j =
(−1)nn! + Ln(e

x)

ex
.

To make a connection with derangement polynomials, we conclude from (1.6) that

Dn(x) = (−1)n
n
∑

j=0

(−1)jP (n, j)xj .

In the relation (2.2) we replace x by 1/x. Thus, we obtain the following key

relation

(2.3) Dn(x) =
xnn!

e1/x
+

(−x)n

e1/x
Ln(e

1/x).

Proof of Theorem 1.1: We conclude from (2.3) that

∞
∑

n=1

(

Dn(x) −
xnn!

e1/x

)

=

∞
∑

n=1

(−x)n

e1/x
Ln(e

1/x) =
1

e1/x
lim

N→∞

N
∑

n=1

(−x)nLn(e
1/x)

=
1

e1/x
lim

N→∞

N
∑

n=1

(−x)n
∫ e1/x

1

logn t dt

=
1

e1/x
lim

N→∞

∫ e1/x

1

N
∑

n=1

(−x log t)n dt.

We use the following finite geometric series computation

N
∑

n=1

yn =
y

1− y
(1− yN ).

Hence,

∞
∑

n=1

(

Dn(x)−
xnn!

e1/x

)

= − x

e1/x
lim

N→∞

∫ e1/x

1

log t

1 + x log t

(

1− (−x log t)N
)

dt.
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Note that for 1 < t < e1/x, with x > 0, we have 0 < x log t < 1. Thus we may

use the bounded convergence theorem [3, Theorem 3.26] to interchange the limit

and integral in the last relation. Consequently,

∞
∑

n=1

(

Dn(x) −
xnn!

e1/x

)

= − x

e1/x

∫ e1/x

1

lim
N→∞

log t

1 + x log t

(

1− (−x log t)N
)

dt

= − x

e1/x

∫ e1/x

1

log t

1 + x log t

(

1− lim
N→∞

(−x log t)N
)

dt

= − x

e1/x

∫ e1/x

1

log t

1 + x log t
dt.

We apply the change of variable w = 1 + x log t to evaluate the last integral.

Thus,
∞
∑

n=1

(

Dn(x)−
xnn!

e1/x

)

= − 1

xe2/x

∫ 2

1

(

1− 1

w

)

ew/x dw

= −1 +
1

e1/x
+

1

xe2/x

∫ 2

1

ew/x

w
dw.

Also, to evaluate the last integral we apply the change of variable w/x = −z.

This implies that

∫ 2

1

ew/x

w
dw =

∫

−2/x

−1/x

e−z

−xz
(−xdz) = −

∫

−1/x

−2/x

e−z

z
dz = Ei

(2

x

)

− Ei
(1

x

)

.

This gives (1.2). Finally, let M(x) be the function at the right hand side of (1.2).

We observe that limx→0+ M(x) = −1/2 and limx→∞ M(x) = 0. Also,

d

dx
M(x) =

1

x3e2/x

(

2xe1/x − x e2/x + (2− x)
(

Ei
( 2

x

)

− Ei
(1

x

)))

.

Since d
dx M(x) > 0 for x > 0, we deduce that M(x) is negative and strictly

increasing for x > 0. This completes the proof. �

Proof of Theorem 1.2: We follow an argument due to W. J. LeVeque, see [13],

which has been described by M. Aigner and G.M. Ziegler in [1, Chapter 9]. By

use of (2.1), we obtain

Ln(e
1/x)2 =

(
∫ 1/x

0

zn1 e
z1 dz1

)(
∫ 1/x

0

zn2 e
z2 dz2

)

=

∫ 1/x

0

∫ 1/x

0

(z1z2)
nez1+z2 dAz1,z2 .
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Hence, we conclude from (2.3) that

∞
∑

n=1

(

Dn(x)−
xnn!

e1/x

)2

= −L0(e
1/x)2

e2/x
+

1

e2/x

∞
∑

n=0

x2nLn(e
1/x)2.

Note that L0(e
1/x) = e1/x − 1, and

∞
∑

n=0

x2nLn(e
1/x)2 =

∞
∑

n=0

∫ 1/x

0

∫ 1/x

0

(x2z1z2)
nez1+z2 dAz1,z2 .

Since the function ez1+z2 is bounded on the region [0, 1/x] × [0, 1/x], uniform

convergence of the geometric series allows us to change the order of sum and

integrals. Accordingly,

∞
∑

n=1

(

Dn(x) −
xnn!

e1/x

)2

= − (e1/x − 1)2

e2/x
+

1

e2/x
I,

where

I =

∫ 1/x

0

∫ 1/x

0

ez1+z2

1− x2z1z2
dAz1,z2 .

The same reasoning applies to the case of other moments. Thus, meanwhile

we obtain (1.3). Let us compute I. For this purpose, we apply the change of

coordinates. Let 2u = z1 + z2 and 2v = z1 − z2. We get the new domain of

integration from old domain by first rotating it by −45◦ and then shrinking it by

a factor of
√
2. This new domain of integration and the function to be integrated

are symmetric with respect to the u-axis. Also, dAz1,z2 = 2dAu,v. Therefore,

I = 4

∫ 1/(2x)

0

∫ u

0

e2u

1− x2u2 + x2v2
dv du+4

∫ 1/x

1/(2x)

∫ 1/x−u

0

e2u

1− x2u2 + x2v2
dv du.

Computing the inner integrals, we get

I = 4

∫ 1/(2x)

0

e2u

x
√
1− x2u2

arctan
xu√

1− x2u2
du

+ 4

∫ 1/x

1/(2x)

e2u

x
√
1− x2u2

arctan
1− xu√
1− x2u2

du.

Substituting u = 1/x− z in the last integral and simplifying yields (1.4). �
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