On butterfly-points in βX , Tychonoff products and weak Lindelöf numbers

SERGEI LOGUNOV

Abstract. Let X be the Tychonoff product $\prod_{\alpha < \tau} X_{\alpha}$ of τ -many Tychonoff nonsingle point spaces X_{α} . Let $p \in X^*$ be a point in the closure of some $G \subset X$ whose weak Lindelöf number is strictly less than the cofinality of τ . Then we show that $\beta X \setminus \{p\}$ is not normal. Under some additional assumptions, p is a butterfly-point in βX . In particular, this is true if either $X = \omega^{\tau}$ or $X = R^{\tau}$ and τ is infinite and not countably cofinal.

Keywords: Butterfly-point; non-normality point; Čech–Stone compactification; Tychonoff product; weak Lindelöf number

Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

Let $X^* = \beta X \setminus X$ be the remainder of the Čech–Stone compactification βX of the Tychonoff space X. One of the most classical and intriguing question in the theory of the countable discrete space $\omega = \{0, 1, 2, ...\}$ is the following, see [3]:

Is $\omega^* \setminus \{p\}$ not normal for any point p of ω^* ?

Despite great efforts so far it was only partially solved, see for example [2], [1] and [9]. But it could be answered for crowded spaces, see for example [4], [5] and [8]. It is closely related to the following concept of B. Shapirovskij: a point pof X is called a b-point or a butterfly-point in X, if there are subsets F and G of $X \setminus \{p\}$ such that $\{p\} = [F] \cap [G]$, see [7]. We say that a point p of X^{*} is a b-point in βX if there are subsets F and G of $X^* \setminus \{p\}$ with the following properties: $\{p\} = [F] \cap [G]$ and $[F \cup G] \subset X^*$. It clearly implies that $\beta X \setminus \{p\}$ is not normal. In [6] the following results were obtained:

Theorem. Let a space $X = \prod_{\alpha < \tau} X_{\alpha}$ be the Tychonoff product of τ -many nonsingle point Tychonoff spaces X_{α} . Let a point $p \in X^*$ be in the closure of some subset $G \subset X$ with $C(G) < cf(\tau)$. Then $\beta X \setminus \{p\}$ is not normal.

DOI 10.14712/1213-7243.2022.023

S. Logunov

We denote by $cf(\tau)$ the cofinality of τ , d(X) the density and C(X) the Suslin number of the space X. By the weak Lindelöf number, denoting it by wL(X), we mean the minimal cardinal τ with the following property: every open cover \mathcal{P} of X contains subfamily \mathcal{P}' of cardinality at most τ with $[\bigcup \mathcal{P}'] = X$. Clearly, $wL(X) \leq C(X)$. By $\Psi^*(p, X)$ we denote the minimal cardinal τ with the following property: there is a family of τ open in βX sets $\{V_\alpha : \alpha < \tau\}$ such that

$$p \in \bigcap_{\alpha < \tau} V_{\alpha} \subset X^*.$$

We put $\Psi^*(X) = \sup\{\Psi^*(p, X) \colon p \in X^*\}$. Now we obtain

Theorem 1. Let the space X be the Tychonoff product $\prod_{\alpha < \tau} X_{\alpha}$ of τ -many non-single point Tychonoff spaces X_{α} . Let a point $p \in X^*$ be in the closure of some $G \subset X$ with $wL(G) < cf(\tau)$. Then $\beta X \setminus \{p\}$ is not normal.

Theorem 2. Let the space X be the Tychonoff product $\prod_{\alpha < \tau} X_{\alpha}$ of τ -many non-single point Tychonoff spaces X_{α} . Let a point $p \in X^*$ be in the closure of some $G \subset X$ with $wL(G) < cf(\tau)$ and $\Psi^*(p, X) < cf(\tau)$. Then p is a butterflypoint in βX . Hence $\beta X \setminus \{p\}$ is not normal.

Corollary 1. Every point $p \in (\omega^{\tau})^*$ is a butterfly-point in $\beta(\omega^{\tau})$, if τ has uncountable cofinality.

Corollary 2. Every point $p \in (R^{\tau})^*$ is a butterfly-point in $\beta(R^{\tau})$, if τ has uncountable cofinality.

Corollary 3. Every point $p \in (X^{\tau})^*$ is a butterfly-point in $\beta(X^{\tau})$, if $d(X) + \Psi^*(X) < cf(\tau)$.

By [6], p is a non-normality point of βX^{τ} under the assumptions of Corollaries 1–3.

2. Proofs

First, we prove Theorem 2 using its conditions and notation. Then we can easily prove Theorem 1 by omitting some unnecessary facts. By the Hewitt–Marczevski–Pondiczery theorem and its corollary on the Suslin number of products we obtain $C(X) < cf(\tau)$ in Corollaries 1–3. Therefore Theorem 2 implies these corollaries by Lemma 2.

In our paper all spaces are Tychonoff spaces, R is a straight line, $\{E_{\gamma}: \gamma < \kappa\}$ is a family of cardinality κ and [] is the closure operator in βX . Moreover, x_{α_0} is the α_0 th coordinate of the point $x = (x_{\alpha})_{\alpha < \tau}$ of X and U_{α_0} is the α_0 th factor of the product $U = \prod_{\alpha < \tau} U_{\alpha}$. All the ordinals are strictly less then the number of factors τ .

380

Considering pairwise products, if necessary, we can assume that each X_{α} contains at least three pairwise different points, let us call them a_{α} , b_{α} and c_{α} . Then the points $a = (a_{\alpha})_{\alpha < \tau}$, $b = (b_{\alpha})_{\alpha < \tau}$ and $c = (c_{\alpha})_{\alpha < \tau}$ of the space X are of great importance in our construction. We will present it only for a, assuming it is completely similar for b and c.

We fix an arbitrary base \mathcal{B}_{α} in every X_{α} and assume that the base \mathcal{B} of X consists of all products of the form $U = \prod_{\alpha < \tau} U_{\alpha}$, where $U_{\alpha} \neq X_{\alpha}$ for at most finitely many $\alpha < \tau$ for which $U_{\alpha} \in \mathcal{B}_{\alpha}$. For every $U \in \mathcal{B}$ we put

$$\lambda(U) = \max\{\alpha < \tau \colon U_{\alpha} \neq X_{\alpha}\}.$$

If $\alpha < \tau$, then

$$U(\alpha, a) = \prod_{\gamma \le \alpha} U_{\gamma} \times \prod_{\gamma > \alpha} \{a_{\gamma}\}.$$

We denote by \mathcal{O} all open neighbourhoods of the point p in βX . For each $O \in \mathcal{O}$ we fix both a unique $O' \in \mathcal{O}$ with $[O'] \subset O$ and a unique subfamily F = F(O) of \mathcal{B} with the following properties:

$$|F| \le wL(G), \qquad \bigcup F \subset O \quad \text{and} \quad O' \cap G \subset \Big[\bigcup F \cap G\Big],$$

see Lemma 1. We put

$$\lambda(O) = \lambda(F) = \sup\{\lambda(U) \colon U \in F\}.$$

If $\alpha < \tau$, then

$$F(\alpha, a) = \{U(\alpha, a) \colon U \in F\}.$$

Since $|F| < cf(\tau)$, then $\lambda(O) < \tau$. We set $\mathcal{F} = \{F(O) : O \in \mathcal{O}\}$ and

$$\mathcal{F}(\alpha, a) = \{ F(\alpha, a) \colon F \in \mathcal{F} \}.$$

We fix $\{V_{\gamma}: \gamma < \kappa_o\} \subset \mathcal{O}$ so that $\kappa_0 < cf(\tau)$ and $p \in \bigcap_{\gamma < \kappa_0} [V_{\gamma}] \subset X^*$. Then $\lambda_0 = \sup_{\gamma < \kappa_0} \lambda(V_{\gamma})$ satisfies $\lambda_0 < \tau$.

Lemma 1. If $wL(X) \leq \tau$ and $O \subset X$ is open, then $wL([O]) \leq \tau$.

PROOF: Let \mathcal{P} be any open cover of [O] and $U' \cap [O] = U$ for any $U \in \mathcal{P}$ and some open $U' \subset X$. Then the open cover $\mathcal{R} = \{U' : U \in \mathcal{P}\} \cup \{X \setminus [O]\}$ of Xcontains subfamily $\widetilde{\mathcal{R}}$ of cardinality at most τ with $[\bigcup \widetilde{\mathcal{R}}] = X$ and $\widetilde{\mathcal{P}} = \{U \in \mathcal{P} : U' \in \widetilde{\mathcal{R}}\}$ is as required. \Box

Lemma 2. We have $\Psi^*(p, X) \leq \sup_{\alpha < \tau} \Psi^*(X_\alpha)$.

PROOF: Let $g: \beta X \to \prod_{\alpha < \tau} \beta X_{\alpha}$ be the continuous extension of the identity mapping $X \to X$. For any $x \in X$ there is $O \in \mathcal{O}$ with $x \notin [O]$. But q = g(p) is in the closure of $O \cap X = g(O \cap X)$. Hence $q \neq x$ implies $q \notin X$, i.e. $q_{\alpha_0} \in X^*_{\alpha_0}$ for some $\alpha_0 < \tau$. For $\kappa = \Psi^*(X_{\alpha_0})$ we get $q_{\alpha_0} \in \bigcap_{\gamma < \kappa} E_{\gamma} \subset X^*_{\alpha_0}$ for some E_{γ} open

S. Logunov

in βX_{α_0} . Let $f: \beta X \to \beta X_{\alpha_0}$ be composition of g with orthogonal projection $\prod_{\alpha < \tau} \beta X_{\alpha} \to \beta X_{\alpha_0}$. Then $p \in \bigcap_{\gamma < \kappa} f^{-1} E_{\gamma} \subset X^*$.

Lemma 3. If $F \in \mathcal{F}$ and $\alpha \geq \lambda(F)$, then $\bigcup F(\alpha, a) \subset \bigcup F$.

PROOF: If $U \in F$ and $U(\alpha, a)_{\gamma} \neq U_{\gamma}$, then $\gamma > \alpha \geq \lambda(U)$ implies $U_{\gamma} = X_{\gamma}$. Hence $U(\alpha, a) \subset U$ implies Lemma 3.

Lemma 4. For every $\alpha < \tau$ the family $\{\bigcup F(\alpha, a) : F \in \mathcal{F}\}$ is centered.

PROOF: Let $n \in N$ and $F_i \in \mathcal{F}$ for every i < n. Then $F_i = F(O_i)$ for some $O_i \in \mathcal{O}$ and $O'_i \cap G \subset [\bigcup F_i \cap G]$ by our construction. Since the nonempty $U = \bigcap_{i < n} O'_i \cap G$ is open in G, it is in the closure of every $\bigcup F_i \cap U$, which is open in U. There is a point $x = (x_\gamma)_{\gamma < \tau}$ of U with $x \in \bigcap_{i < n} (\bigcup F_i \cap U)$. Define a point $x' = (x'_\gamma)_{\gamma < \tau}$ of X as follows: $x'_\gamma = x_\gamma$ if $\gamma \leq \alpha$ and $x'_\gamma = a_\gamma$ otherwise. Then $x \in \bigcap_{i < n} U_i$ for some $U_i \in F_i$ implies

$$x' \in \bigcap_{i < n} U_i(\alpha, a) \subset \bigcap_{i < n} \bigcup F_i(\alpha, a).$$

For every $\alpha > \lambda_0$ we fix an arbitrary point $\xi_{\alpha}(a)$ in $\bigcap \{ [\bigcup F] : F \in \mathcal{F}(\alpha, a) \}$ and put $A = \{\xi_{\alpha}(a) : \alpha > \lambda_0 \}.$

Lemma 5. If $O \in \mathcal{O}$ and $\alpha \geq \lambda(O)$, then $\xi_{\alpha}(a) \in [O]$.

PROOF: By Lemma 3 we obtain $\xi_{\alpha}(a) \in \left[\bigcup F(O)(\alpha, a)\right] \subset \left[\bigcup F(O)\right] \subset [O].$ Corollary 4. $p \in [A] \subset \bigcap_{\gamma < \kappa_0} [V_{\gamma}] \subset X^*.$

In the same way, b generates $B = \{\xi_{\alpha}(b): \alpha > \lambda_0\}$ and c generates $C = \{\xi_{\alpha}(c): \alpha > \lambda_0\}$, having the same properties as A. For every $\lambda > \lambda_0$ we put $A_{\lambda} = \{\xi_{\alpha}(a): \alpha \in \lambda \setminus \lambda_0\}, B_{\lambda} = \{\xi_{\alpha}(b): \alpha \in \lambda \setminus \lambda_0\}$ and $C_{\lambda} = \{\xi_{\alpha}(c): \alpha \in \lambda \setminus \lambda_0\}$.

Lemma 6. For every $\lambda > \lambda_0$ the closures of A_{λ} , B_{λ} and C_{λ} are pairwise disjoint.

PROOF: Let the continuous map $g: X_{\lambda} \to [0,2]$ satisfy $g(a_{\lambda}) = 0$, $g(b_{\lambda}) = 1$ and $g(c_{\lambda}) = 2$. Its composition with the orthogonal projection $X \to X_{\lambda}$ has the continuous extension $f: \beta X \to [0,2]$ $(f(x) = g(x_{\lambda})$ for every $x \in X$). Then for any $\alpha \in \lambda \setminus \lambda_0$ and $F \in \mathcal{F}$ we obtain

$$f(\xi_{\alpha}(a)) \in f\left[\bigcup F(\alpha, a)\right] \subset \left[f\left(\bigcup F(\alpha, a)\right)\right] = \left[f\left(\bigcup_{U \in F} U(\alpha, a)\right)\right]$$
$$= \left[\bigcup_{U \in F} f(U(\alpha, a))\right] = \left[\bigcup_{U \in F} g\{a_{\lambda}\}\right] = \{O\}.$$

Hence $f(A_{\lambda}) = \{0\}$. Similarly, $f(B_{\lambda}) = \{1\}$ and $f(C_{\lambda}) = \{2\}$.

Corollary 5. At most one of the sets A, B and C contains p.

Lemma 7. The point *p* is a butterfly-point.

PROOF: Let $q \in X^*$ be not in the closure of some $O \in \mathcal{O}$. By Lemma 6 at most one of the sets $A_{\lambda(O)}$, $B_{\lambda(O)}$ and $C_{\lambda(O)}$ can contain q in its closure. By Lemma 5 the same is true for A, B and C. By Corollaries 4 and 5 our proof is complete. \Box

References

- Bešlagić A., van Douwen E. K., Spaces of nonuniform ultrafilters in space of uniform ultrafilters, Topology Appl. 35 (1990), no. 2–3, 253–260.
- [2] Błaszczyk A., Szymański A., Some non-normal subspaces of the Čech-Stone compactification of a discrete space, Proc. Eighth Winter School on Abstract Analysis and Topology, Praha, 1980, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
- [3] Fine N. J., Gillman L., Extension of continuous functions in βN, Bull. Amer. Math. Soc. 66 (1960), 376–381.
- [4] Logunov S., On non-normality points and metrizable crowded spaces, Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527.
- [5] Logunov S., Non-normality points and big products of metrizable spaces, Topology Proc. 46 (2015), 73–85.
- [6] Logunov S., On non-normality points, Tychonoff products and Suslin number, Comment. Math. Univ. Carolin. 63 (2022), no. 1, 131–134.
- [7] Shapirovskij B., On embedding extremely disconnected spaces in compact Hausdorff spaces, b-points and weight of pointwise normal spaces, Dokl. Akad. Nauk SSSR 223 (1987), 1083–1086.
- [8] Terasawa J., βX {p} are non-normal for non-discrete spaces X, Topology Proc. 31 (2007), no. 1, 309–317.
- Warren N. M., Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer. Math. Soc. 33 (1972), 599–606.

S. Logunov:

Department for Algebra and Topology, Udmurt State University, Universitetskaya 1, Izhevsk 426034, Russia

E-mail: olla209@yandex.ru

(Received October 2021, revised February 7, 2022)