473

Some isomorphic properties in projective tensor products

IOANA GHENCIU

Abstract. We give sufficient conditions implying that the projective tensor product of two Banach spaces X and Y has the p-sequentially Right and the p-Llimited properties, $1 \le p < \infty$.

Keywords: L-limited property; p-(SR) property; p-L-limited property; sequentially Right property

Classification: 46B20, 46B25, 46B28

1. Introduction

For two Banach spaces X and Y, the projective tensor product space of X and Y will be denoted by $X \otimes_{\pi} Y$. In [10] it was studied whether $X \otimes_{\pi} Y$ has the sequentially Right (SR) property or the *L*-limited property, when X and Y have the respective property. In [21] we introduced the *p*-(SR) and the *p*-*L*-limited properties for $1 \leq p < \infty$.

In this paper we use results about relative weak compactness in spaces of compact operators to study whether the p-(SR) and the p-L-limited properties lift from the Banach spaces X and Y to $X \otimes_{\pi} Y$.

2. Definitions and notation

Throughout this paper, X and Y will denote Banach spaces. The unit ball of X will be denoted by B_X , and X^* will denote the continuous linear dual of X. The space X embeds in Y (in symbols $X \hookrightarrow Y$) if X is isomorphic to a closed subspace of Y. An operator $T: X \to Y$ will be a continuous and linear function. The set of all operators, weakly compact operators, and compact operators from X to Y will be denoted by L(X, Y), W(X, Y), and K(X, Y).

A subset S of a Banach space X is said to be weakly precompact (or weakly conditionally compact) provided that every sequence from S has a weakly Cauchy subsequence. A Banach space X is called weakly sequentially complete if every

DOI 10.14712/1213-7243.2023.008

weakly Cauchy sequence in X is weakly convergent. A Banach space X has the Grothendieck property if w^{*}-convergent sequences in X^* are weakly convergent.

An operator $T: X \to Y$ is called *completely continuous* (or *Dunford–Pettis*) if T maps weakly convergent sequences to norm convergent sequences.

A Banach space X has the Dunford-Pettis property (DPP) if every weakly compact operator $T: X \to Y$ is completely continuous for any Banach space Y. Equivalently, X has the DPP if and only if $x_n^*(x_n) \to 0$ whenever (x_n^*) is weakly null in X^* and (x_n) is weakly null in X, see [11, Theorem 1]. If X is a C(K)space or an L_1 -space, then X has the DPP. The reader can check [12] and [11] for results related to the DPP.

A bounded subset A of X is called a *Dunford–Pettis* (or DP) (*limited*, respectively) subset of X if each weakly null (w*-null, respectively) sequence (x_n^*) in X* tends to 0 uniformly on A; i.e.

$$\sup_{x \in A} |x_n^*(x)| \to 0.$$

Every DP (limited, respectively) subset of X is weakly precompact, see [2, page 2], [28, page 377] ([6, Proposition], [32, Lemma 1.1.5, page 25], respectively).

A bounded subset A of X^* is called a V-subset of X^* provided that

$$\sup_{x^* \in A} |x^*(x_n)| \to 0$$

for each weakly unconditionally convergent series $\sum x_n$ in X.

A Banach space X has property (V) ((wV), respectively) if every V-subset of X^* is relatively weakly compact [25] (weakly precompact, respectively). A Banach space X has property (V) if and only if every unconditionally converging operator T from X to any Banach space Y is weakly compact, see [25, Proposition 1]. It is known that C(K) spaces and reflexive spaces have property (V), see [25, Theorem 1, Proposition 7]).

For $1 \leq p < \infty$, p^* denotes the conjugate of p. If p = 1, c_0 plays the role of l_{p^*} . The unit vector basis of l_p will be denoted by (e_n) .

Let $1 \leq p < \infty$. We denote by $l_p(X)$ the Banach space of all *p*-summable sequences with the norm

$$||(x_n)||_p = \left(\sum_{n=1}^{\infty} ||x_n||^p\right)^{1/p}.$$

Let $1 \leq p < \infty$. A sequence (x_n) in X is called *weakly p-summable* if $(\langle x^*, x_n \rangle) \in l_p$ for each $x^* \in X^*$, see [13, page 32], [29, page 134]. Let $l_p^{w}(X)$ denote the set of all weakly *p*-summable sequences in X. The space $l_p^{w}(X)$ is

a Banach space with the norm

$$||(x_n)||_p^{w} = \sup\left\{\left(\sum_{n=1}^{\infty} |\langle x^*, x_n \rangle|^p\right)^{1/p} \colon x^* \in B_{X^*}\right\}$$

If $p = \infty$, then $l_{\infty}(X) = l_{\infty}^{w}(X)$, see [13, page 33]; if (x_n) is a bounded sequence in X, then

$$||(x_n)||_{\infty}^{w} = \sup_{n} ||x_n|| = ||(x_n)||_{\infty}.$$

Let $c_0^{w}(X)$ be the space of weakly null sequences in X. This is a Banach space with the norm

$$\|(x_n)\|_{c_0^{\mathbf{w}}} = \sup_{\|x^*\| \le 1} \|(\langle x^*, x_n \rangle)\|_{c_0},$$

and $c_0^{\mathrm{w}}(X) \simeq W(l_1, X)$.

For $p = \infty$, we consider the space $c_0^w(X)$ instead of $l_\infty^w(X) = l_\infty(X)$.

If p < q, then $l_p^{w}(X) \subseteq l_q^{w}(X)$. Further, the unit vector basis of l_{p^*} is weakly *p*-summable for all $1 . The weakly 1-summable sequences are precisely the weakly unconditionally convergent series and the weakly <math>\infty$ -summable sequences are precisely weakly null sequences.

We recall the following isometries: $L(l_{p^*}, X) \simeq l_p^{w}(X)$ for $1 and <math>L(c_0, X) \simeq l_p^{w}(X)$ for p = 1; $T \to (T(e_n))$, see [13, Proposition 2.2, page 36].

Let $1 \leq p \leq \infty$. An operator $T: X \to Y$ is called *p*-convergent if T maps weakly *p*-summable sequences into norm null sequences. The set of all *p*-convergent operators is denoted by $C_p(X, Y)$, see [8].

The 1-convergent operators are precisely the unconditionally converging operators and the ∞ -convergent operators are precisely the completely continuous operators. If p < q, then $C_q(X, Y) \subseteq C_p(X, Y)$.

A sequence (x_n) in X is called *weakly p-convergent* to $x \in X$ if the sequence $(x_n - x)$ is weakly *p*-summable, see [8]. The weakly ∞ -convergent sequences are precisely the weakly convergent sequences.

Let $1 \leq p \leq \infty$. A bounded subset K of X is relatively weakly p-compact (weakly p-compact, respectively) if every sequence in K has a weakly p-convergent subsequence with limit in X (in K, respectively).

An operator $T: X \to Y$ is weakly *p*-compact if $T(B_X)$ is relatively weakly *p*-compact, see [8]. The set of weakly *p*-compact operators $T: X \to Y$ will be denoted by $W_p(X,Y)$. If p < q, then $W_p(X,Y) \subseteq W_q(X,Y)$.

Suppose that $1 \leq p < \infty$. An operator $T: X \to Y$ is called *p*-summing (or absolutely *p*-summing) if there is a constant $c \geq 0$ such that for any $m \in \mathbb{N}$ and

any x_1, x_2, \ldots, x_m in X,

$$\left(\sum_{i=1}^{m} \|T(x_i)\|^p\right)^{1/p} \le c \sup\left\{\left(\sum_{i=1}^{m} |\langle x^*, x_i \rangle|^p\right)^{1/p} \colon x^* \in B_{X^*}\right\}.$$

The least c for which the previous inequality always holds is denoted by $\pi_p(T)$, see [13, page 31]. The set of all p-summing operators from X to Y is denoted by $\Pi_p(X,Y)$. The operator $T: X \to Y$ is p-summing if and only if $(Tx_n) \in l_p(Y)$ whenever $(x_n) \in l_p^w(X)$, see [13, Proposition 2.1, page 34], [12, page 59].

A topological space S is called *dispersed* (or *scattered*) if every nonempty closed subset of S has an isolated point. A compact Hausdorff space K is dispersed if and only if $l_1 \nleftrightarrow C(K)$, see [26, Main Theorem].

The Banach–Mazur distance d(E, F) between two isomorphic Banach spaces E and F is defined by $\inf(||T|| ||T^{-1}||)$, where the infimum is taken over all isomorphisms T from E onto F. A Banach space E is called an \mathcal{L}_{∞} -space (\mathcal{L}_1 -space, respectively) if there is a $\lambda \geq 1$ so that every finite dimensional subspace of E is contained in another subspace N with $d(N, l_{\infty}^n) \leq \lambda$ ($d(N, l_1^n) \leq \lambda$, respectively) for some integer n. Complemented subspaces of C(K) spaces ($\mathcal{L}_1(\mu)$ spaces, respectively) are \mathcal{L}_{∞} -spaces (\mathcal{L}_1 -spaces, respectively), see [5, Proposition 1.26]. The dual of an \mathcal{L}_1 - space (\mathcal{L}_{∞} -space, respectively) is an \mathcal{L}_{∞} -space (\mathcal{L}_1 -space, respectively), see [5, Proposition 1.27].

The \mathcal{L}_{∞} -spaces, \mathcal{L}_1 -spaces, and their duals have the DPP, see [5, Corollary 1.30].

3. The *p*-(SR) and *p*-*L*-limited properties in projective tensor products

The *Right topology* on a Banach space X is the restriction of the Mackey topology $\tau(X^{**}, X^*)$ to X and it is also the topology of uniform convergence on absolutely convex $\sigma(X^*, X^{**})$ compact subsets of X^* , see [27]. Further, $\tau(X^{**}, X^*)$ can also be viewed as the topology of uniform convergence on relatively $\sigma(X^*, X^{**})$ compact subsets of X^* , see [24].

An operator $T: X \to Y$ is pseudo weakly compact (pwc) (or Dunford-Pettis completely continuous (DPcc)) if it takes weakly null DP sequences in X into norm null sequences in Y, see [19], [33].

A sequence (x_n) in a Banach space X is Right null if and only if it is weakly null and DP, see [19, Proposition 1].

A bounded subset K of X^* is called a *Right set* or R-set if

$$\sup_{x^* \in K} |x^*(x_n)| \to 0$$

for each Right null sequence (x_n) in X.

A Banach space X is sequentially Right (SR) (or X has property (SR)) if every pseudo weakly compact operator $T: X \to Y$ is weakly compact for any Banach space Y, see [27].

A Banach space X is sequentially Right if and only if every Right subset of X^* is relatively weakly compact, see [24, Theorem 3.25].

A Banach space X is weak sequentially Right (wSR) (or has the (wSR) property) if every Right subset of X^* is weakly precompact, see [19].

Let $1 \le p < \infty$. An operator $T: X \to Y$ is called *DP p-convergent* if it takes DP weakly *p*-summable sequences to norm null sequences, see [21].

Let $1 \le p \le \infty$. A bounded subset A of a dual space X^* is called a *p*-Right set, see [21], if for every DP weakly *p*-summable sequence (x_n) in X,

$$\sup_{x^* \in A} |x^*(x_n)| \to 0.$$

Let $1 \leq p \leq \infty$. A Banach space X has the p-(SR) (p-(wSR), respectively) property if every p-Right subset of X^* is relatively weakly compact (weakly precompact, respectively).

The ∞ -Right subsets of X^* are precisely the Right subsets and the ∞ -(SR) property coincides with the (SR) property. If p < q, then a q-Right set in X^* is a p-Right set, since $l_p^w(X) \subseteq l_q^w(X)$. If X has the p-(SR) property, then it has the q-(SR) property, if p < q.

If $1 \le p < \infty$ and X has the p-(SR) property, then X has the (SR) property, and thus X^* is weakly sequentially complete, see [21, Proposition 3.3].

A bounded subset A of X^* is called an *L*-limited set, see [31], if

$$\sup_{x^* \in A} |x^*(x_n)| \to 0$$

for each limited weakly null sequence (x_n) in X.

A Banach space X has the L-limited property (wL-limited property, respectively) if every L-limited subset of X^* is relatively weakly compact, see [31], (weakly precompact, respectively, see [19]).

An operator $T: X \to Y$ is called *limited completely continuous* (lcc) if T maps limited weakly null sequences to norm null sequences, see [30].

Let $1 \le p < \infty$. An operator $T: X \to Y$ is called *limited p-convergent* if it carries limited weakly *p*-summable sequences in X to norm null ones in Y, see [17].

Let $1 \le p \le \infty$. A bounded subset A of a dual space X^* is called a *p*-L-limited set, see [21], if for every limited weakly *p*-summable sequence (x_n) in X,

$$\sup_{x^* \in A} |x^*(x_n)| \to 0.$$

Let $1 \le p \le \infty$. A Banach space X has the *p*-*L*-limited property, see [21], (*p*-w*L*-limited property, respectively) if every *p*-*L*-limited subset of X^* is relatively weakly compact (weakly precompact, respectively).

The ∞ -*L*-limited property coincides with the *L*-limited property. If *X* has the *p*-*L*-limited property, then *X* has the *L*-limited property. Consequently, X^* is weakly sequentially complete and *X* has the Grothendieck property, see [21, Proposition 3.3].

In the following we consider the p-(SR) and p-L-limited properties in the projective tensor product $X \otimes_{\pi} Y$.

If $H \subseteq L(X,Y)$, $x \in X$ and $y^* \in Y^*$, let $H(x) = \{T(x) : T \in H\}$ and $H^*(y^*) = \{T^*(y^*) : T \in H\}.$

In the proof of Theorem 3.3 we will need the following results. We include the proof of the first result for the convenience of the reader.

Lemma 3.1 ([20]). Let $1 \leq p < \infty$. Suppose that $L(X, Y^*) = \prod_p(X, Y^*)$. If (x_n) is weakly *p*-summable in X and (y_n) is bounded in Y, then $(x_n \otimes y_n)$ is weakly *p*-summable in $X \otimes_{\pi} Y$.

PROOF: Without loss of generality suppose $||(x_n)||_p^w \leq 1$ and $||y_n|| \leq 1$. Let $T \in (X \otimes_{\pi} Y)^* \simeq L(X, Y^*)$, see [14, page 230]. Then

$$\sum_{n} |\langle T, x_n \otimes y_n \rangle|^p \le \sum_{n} ||T(x_n)||^p \le \pi_p(T)^p.$$

Thus $(x_n \otimes y_n)$ is weakly *p*-summable in $X \otimes_{\pi} Y$.

Lemma 3.2 ([4, Lemma 2]). Let (x_n) be a DP sequence in X weakly converging to $x \in X$ and (y_n) be a DP sequence in Y weakly converging to $y \in Y$. Then $(x_n \otimes y_n)$ is a DP sequence in $X \otimes_{\pi} Y$ that converges weakly to $x \otimes y$.

Theorem 3.3. Let $1 \le p < \infty$. Suppose that $L(X, Y^*) = K(X, Y^*) = \prod_p (X, Y^*)$. If X and Y have the p-(SR) property, then $X \otimes_{\pi} Y$ has the p-(SR) property.

PROOF: Let H be a p-Right subset of $L(X, Y^*) = K(X, Y^*) = \prod_p(X, Y^*)$ and let (T_n) be a sequence in H. By [18, Theorem 3], it is enough to show that (i) H(x) is relatively weakly compact for all $x \in X$ and (ii) $H^*(y^{**})$ is relatively weakly compact for all $y^{**} \in Y^{**}$. Let $x \in X$. We show that $\{T_n(x): n \in \mathbb{N}\}$ is a p-Right subset of Y^* . Suppose (y_n) is a DP weakly p-summable sequence in Y. Let $T \in L(X, Y^*) \simeq (X \otimes_{\pi} Y)^*$, see [14, page 230]. Because T is weakly compact, $T^{**}(X^{**}) \subseteq Y^*$. If $x^{**} \in X^{**}$, then $\sum_n |\langle x^{**}, T^*(y_n) \rangle|^p =$ $\sum_n |\langle T^{**}(x^{**}), y_n \rangle|^p < \infty$. Thus $(T^*(y_n))$ is weakly p-summable in X^* . Hence

$$\sum_{n} |\langle T, x \otimes y_n \rangle|^p = \sum_{n} |\langle x, T^*(y_n) \rangle|^p < \infty.$$

Thus $(x \otimes y_n)$ is weakly *p*-summable in $X \otimes_{\pi} Y$. Let (A_n) be a weakly null sequence in $L(X, Y^*) \simeq (X \otimes_{\pi} Y)^*$. Then $(A_n(x))$ is weakly null in Y^* and

$$\langle A_n, x \otimes y_n \rangle = \langle A_n(x), y_n \rangle \to 0,$$

since (y_n) is a DP sequence in Y. Therefore $(x \otimes y_n)$ is a DP sequence in $X \otimes_{\pi} Y$. Since (T_n) is a p-Right set,

$$\langle T_n, x \otimes y_n \rangle = \langle T_n(x), y_n \rangle \to 0.$$

Therefore $\{T_n(x): n \in \mathbb{N}\}$ is a *p*-Right subset of Y^* , hence relatively weakly compact.

Let $y^{**} \in Y^{**}$. We show that $\{T_n^*(y^{**}): n \in \mathbb{N}\}$ is a *p*-Right subset of X^* . Suppose (x_n) is a DP weakly *p*-summable sequence in X. For $n \in \mathbb{N}$,

$$\langle T_n^*(y^{**}), x_n \rangle = \langle y^{**}, T_n(x_n) \rangle.$$

We show that $(T_n(x_n))$ is a *p*-Right subset of Y^* . Suppose that (y_n) is a DP weakly *p*-summable sequence in *Y*. By Lemma 3.1, $(x_n \otimes y_n)$ is weakly *p*-summable in $X \otimes_{\pi} Y$. By Lemma 3.2, $(x_n \otimes y_n)$ is a DP sequence in $X \otimes_{\pi} Y$. Since $\{T_n : n \in \mathbb{N}\}$ is a *p*-Right set,

$$\langle T_n, x_n \otimes y_n \rangle = \langle T_n(x_n), y_n \rangle \to 0.$$

Therefore $(T_n(x_n))$ is a *p*-Right subset of Y^* , and thus relatively weakly compact.

Let $y \in Y$. An argument similar to the one above shows that $(x_n \otimes y)$ is a DP weakly *p*-summable sequence in $X \otimes_{\pi} Y$. Note that

$$\langle T_n, x_n \otimes y \rangle = \langle T_n(x_n), y \rangle \to 0,$$

since (T_n) is a *p*-Right set. Thus $(T_n(x_n))$ is w^* -null. Therefore $(T_n(x_n))$ is weakly null. This implies that $\{T_n^*(y^{**}): n \in \mathbb{N}\}$ is a *p*-Right subset of X^* , thus relatively weakly compact. Then *H* is relatively weakly compact by [18, Theorem 3].

Theorem 3.4. Let $1 \le p < \infty$. Suppose that $L(X, Y^*) = K(X, Y^*) = \prod_p (X, Y^*)$. If X and Y have the *p*-L-limited property, then $X \otimes_{\pi} Y$ has the *p*-L-limited property.

PROOF: The proof is similar to the proof of Theorem 3.3 and uses [4, Lemma 4]. $\hfill \Box$

If $L(X, Y^*) = K(X, Y^*)$, X has the p-(SR) property and Y is reflexive, then $X \otimes_{\pi} Y$ has the p-(SR) property, see [1, Theorem 3.20]. We obtain a similar result for the p-L-limited property.

I. Ghenciu

Theorem 3.5. Let $1 \le p < \infty$. Suppose that $L(X, Y^*) = K(X, Y^*)$. If X has the *p*-L-limited property and Y is reflexive, then $X \otimes_{\pi} Y$ has the *p*-L-limited property.

PROOF: Let H be a p-L-limited subset of $L(X, Y^*) = K(X, Y^*)$ and let (T_n) be a sequence in H. Let $x \in X$. The set $\{T_n(x) : n \in \mathbb{N}\}$ is a bounded set in a reflexive space, so it is relatively weakly compact.

Let $y \in Y^{**} \simeq Y$. We show that $\{T_n^*(y) : n \in \mathbb{N}\}$ is a *p*-*L*-limited subset of X^* . Suppose (x_n) is a limited weakly *p*-summable sequence in *X*. The proof of Theorem 3.3 shows that $(x_n \otimes y)$ is weakly *p*-summable in $X \otimes_{\pi} Y$. Let (A_n) be a w*-null sequence in $L(X, Y^*) \simeq (X \otimes_{\pi} Y)^*$. Then $(A_n^*(y))$ is w*-null in X^* and

$$\langle A_n, x_n \otimes y \rangle = \langle A_n^*(y), x_n \rangle \to 0,$$

since (x_n) is a limited sequence in X. Therefore $(x_n \otimes y)$ is a limited sequence in $X \otimes_{\pi} Y$. Since (T_n) is a *p*-L-limited set,

$$\langle T_n, x_n \otimes y \rangle = \langle T_n^*(y), x_n \rangle \to 0.$$

Therefore $\{T_n^*(y): n \in \mathbb{N}\}$ is a *p*-*L*-limited subset of X^* , and thus relatively weakly compact. Then *H* is relatively weakly compact by [18, Theorem 3]. \Box

Corollary 3.6. Let $1 \le p < \infty$. Suppose $L(X, Y^*) = \prod_p(X, Y^*)$ and X and Y have the p-(SR) property. If $l_1 \nleftrightarrow X$ (or Y^* has the Schur property), then $X \otimes_{\pi} Y$ has the p-(SR) property.

PROOF: Let $T: X \to Y^*$ be an operator. Since T is p-summing, it is weakly compact and completely continuous, see [13, Theorem 2.17].

Thus T is compact by a result of E. Odell in [28, page 377]. If Y^* has the Schur property, then T is compact (since it is also weakly compact). Then $L(X, Y^*) = K(X, Y^*)$. Apply Theorem 3.3.

Observation 1.

- (i) Let $1 \leq p \leq 2$. If X is an \mathcal{L}_{∞} -space and Y is an \mathcal{L}_p -space, then every operator $T: X \to Y$ is 2-summing, see [13, Theorem 3.7].
- (ii) If X and Y are \mathcal{L}_{∞} -spaces, then $L(X, Y^*) = \prod_p(X, Y^*), 2 \leq p < \infty$. Indeed, by (i), every operator $T: X \to Y^*$ is 2-summing, and thus *p*-summing, $2 \leq p < \infty$.
- (iii) If X and Y are infinite dimensional \mathcal{L}_{∞} -spaces, then $L(X, Y^*) = CC(X, Y^*)$ by [13, Theorems 3.7 and 2.17].

Corollary 3.7. Let $2 \leq p < \infty$. Suppose X and Y are \mathcal{L}_{∞} -spaces and $l_1 \nleftrightarrow X$ (or $l_1 \nleftrightarrow Y$). If X and Y have the p-(SR) property, then $X \otimes_{\pi} Y$ has the p-(SR) property.

PROOF: Suppose $l_1 \nleftrightarrow X$. By Observation 1, $L(X, Y^*) = \prod_p(X, Y^*)$. By Corollary 3.6, $X \otimes_{\pi} Y$ has the *p*-(SR) property. If $l_1 \nleftrightarrow Y$, then the previous argument shows that $Y \otimes_{\pi} X$ has the *p*-(SR) property. Hence $X \otimes_{\pi} Y \simeq Y \otimes_{\pi} X$ has the *p*-(SR) property.

Let $1 \le p \le \infty$. A Banach space X has the Dunford-Pettis property of order p (DPP_p) if every weakly compact operator $T: X \to Y$ is p-convergent for any Banach space Y, see [8].

If X has the DPP, then X has the DPP_p for all 1 .

A Banach space X has the DP*-*property* (DP*P) if all weakly compact sets in X are limited, see [7].

The space X has the DP*P if and only if $L(X, c_0) = CC(X, c_0)$, see [7, Proposition 2.1], [23, Theorem 1]. If X has the DP*P, then it has the DPP. If X is a Schur space or if X has the DPP and the Grothendieck property, then X has the DP*P.

Let $1 \le p \le \infty$. A Banach space X has the DP*-property of order p (DP*P_p) if all weakly p-compact sets in X are limited, see [16].

If X has the DP*P, then X has the DP*P_p for all $1 \le p < \infty$. If X has the DP*P_p, then X has the DPP_p.

If X has property (V), then X has the (SR) property, see [10, page 247].

Proposition 3.8. Let $1 \le p < \infty$.

- (i) If X has the DPP_p and property (V), then X has the p-(SR) property.
- (ii) If X has the DP^*P_p and property (V), then X has the p-L-limited property.
- (iii) If X is an \mathcal{L}_{∞} -space, then X^{**} has the p-(SR) property and the p-Llimited property.

PROOF: (i) Let $T: X \to Y$ be a DP *p*-convergent operator. Then *T* is *p*-convergent, since *X* has the DPP_{*p*}, see [21, Theorem 3.18]. Since *T* is unconditionally convergent and *X* has property (V), *T* is weakly compact. Then *X* has the *p*-(SR) property, see [21, Theorem 3.10].

(ii) Let $T: X \to Y$ be a limited *p*-convergent operator. Then *T* is *p*-convergent, since *X* has the DP*P_p, see [21, Theorem 3.17]. As above, *T* is weakly compact, and thus *X* has the *p*-*L*-limited property, see [21, Theorem 3.10].

(iii) Since X is an \mathcal{L}_{∞} -space, X^{**} is complemented in some C(K) space, see [13, Theorem 3.2]. Moreover, C(K) spaces have the *p*-(SR) property (by (i)). Thus X^{**} has the *p*-(SR) property and property (V) (since these properties are inherited by quotients). Further, X^{**} has the DP*P, see [23, Corollary 5], thus the DP*P_p. Then X^{**} has the *p*-*L*-limited property.

I. Ghenciu

Proposition 3.9. Let $1 \le p \le \infty$. A Banach space X has the *p*-L-limited property if and only if it has the *p*-(SR) property and the Grothendieck property.

PROOF: The case $p = \infty$ is [10, Proposition 24].

Let $1 \le p < \infty$. Suppose X has the *p*-L-limited property. Then X has the *p*-(SR) property and the Grothendieck property, see [21, Proposition 3.3].

Conversely, suppose X has the p-(SR) property and the Grothendieck property. Since X has the Grothendieck property, any DP set in X is limited. Hence any DP weakly *p*-summable sequence in X is limited weakly *p*-summable. Then any *p*-L-limited set in X^* is a *p*-Right set, and thus relatively weakly compact. \Box

Corollary 3.10. Let $2 \le p < \infty$. Let $X = C(K_1)$, $Y = C(K_2)$, where K_1 and K_2 are infinite compact Hausdorff spaces and K_1 (or K_2) is dispersed. Then $X \otimes_{\pi} Y$ has the *p*-(SR) property.

PROOF: We have that C(K) spaces are \mathcal{L}_{∞} -spaces, see [13, Theorem 3.2], and have the p-(SR) property. If K_1 (or K_2) is dispersed, then $l_1 \nleftrightarrow C(K_1)$ (or $l_1 \nleftrightarrow C(K_2)$), see [26, Main Theorem]. Apply Corollary 3.7.

Corollary 3.11. Let $2 \leq p < \infty$. Suppose X and Y are \mathcal{L}_{∞} -spaces, $l_1 \not\leftrightarrow Y$, and Y has the p-(SR) property. Then $X^{**} \otimes_{\pi} Y$ has the p-(SR) property.

PROOF: Since X is an \mathcal{L}_{∞} -space, X^{**} has the p-(SR) property by Proposition 3.8. Apply Corollary 3.7.

Every $L_p(\mu)$ space is an \mathcal{L}_p -space, $1 \le p \le \infty$, see [13, Theorem 3.2].

Corollary 3.12. Let $1 \le p < \infty$. Let X be a C(K) space and $Y = l_r$, r > 2. Then $X \otimes_{\pi} Y$ has the p-(SR) property.

PROOF: Since X is a C(K) space, it has the p-(SR) property. If q is the conjugate of r, then 1 < q < 2. Every operator $T: C(K) \to l_q$, 1 < q < 2, is compact [34, Lemma, page 100]. Apply [1, Theorem 3.20].

A C(K) space has the Grothendieck property if and only if it contains no complemented copy of c_0 , see [9].

Corollary 3.13. Let $1 \le p < \infty$. Let X be a C(K) space with the Grothendieck property and $Y = l_r$, r > 2. Then $X \otimes_{\pi} Y$ has the p-L-limited property.

PROOF: Since X is a C(K) space with the Grothendieck property, it has the DP*P, see [23, Corollary 5]. Further, X has property (V), see [25, Theorem 1]. By Proposition 3.8 (or 3.9), X has the *p*-*L*-limited property. The proof of Corollary 3.12 shows that $L(X, Y^*) = K(X, Y^*)$. Apply Theorem 3.5.

Lemma 3.14. Let $1 \le p < \infty$.

- (i) If X is an infinite dimensional space with the Schur property, then X does not have the p-(wSR) (the p-wL-limited, respectively) property.
- (ii) If X has the p-(wSR) (the p-wL-limited, respectively) property, then $l_1 \xrightarrow{c} X$ and $c_0 \nleftrightarrow X^*$.

PROOF: (i) If X is an infinite dimensional space with the Schur property, then X does not have the (wSR) (the wL-limited, respectively) property, see [19, Corollary 5]. Hence X does not have the p-(wSR) (the p-wL-limited, respectively) property.

(ii) By (i), l_1 does not have the p-(wSR) (the p-wL-limited, respectively) property. Since the p-(wSR) (the p-wL-limited, respectively) property is inherited by quotients, it follows that if X has the p-(wSR) (the p-wL-limited, respectively) property, then $l_1 \xrightarrow{c} X$, and $c_0 \nleftrightarrow X^*$, see [3, Theorem 4].

Theorem 3.15. Let $1 \le p < \infty$.

- (i) If $X \otimes_{\pi} Y$ has the *p*-(*SR*) property, then X and Y have the *p*-(*SR*) property and at least one of them does not contain l_1 .
- (ii) If $X \otimes_{\pi} Y$ has the *p*-*L*-limited property, then X and Y have the *p*-*L*-limited property and at least one of them does not contain l_1 .

PROOF: We only prove (i). The other proof is similar. Suppose that $X \otimes_{\pi} Y$ has the *p*-(SR) property. Then X and Y have the *p*-(SR) property, since this property is inherited by quotients. We will show that $l_1 \nleftrightarrow X$ or $l_1 \nleftrightarrow Y$. Suppose that $l_1 \hookrightarrow X$ and $l_1 \hookrightarrow Y$. Hence $L_1 \hookrightarrow X^*$, see [12, page 212]. Also, the Rademacher functions span l_2 inside of L_1 , and thus $l_2 \hookrightarrow X^*$. Similarly $l_2 \hookrightarrow Y^*$. Then $c_0 \hookrightarrow K(X, Y^*)$, see [15, page 334], [22, Corollary 24]. By Lemma 3.14 we have a contradiction that concludes the proof.

Corollary 3.16. Let $1 \leq p < \infty$. Suppose that $L(X, Y^*) = K(X, Y^*) = \prod_p(X, Y^*)$. The following statements are equivalent:

- (i) X and Y have the p-(SR) property and at least one of them does not contain l₁.
 - (ii) $X \otimes_{\pi} Y$ has the p-(SR) property.
- (i) X and Y have the p-L-limited property and at least one of them does not contain l₁.
 - (ii) $X \otimes_{\pi} Y$ has the *p*-*L*-limited property.

PROOF: We only prove 1. The other proof is similar.

- (i) \Rightarrow (ii) by Theorem 3.3.
- (ii) \Rightarrow (i) by Theorem 3.15.

483

I. Ghenciu

Corollary 3.17. Let $1 \le p < \infty$. Suppose that X and Y have the DPP and $L(X, Y^*) = \prod_p (X, Y^*)$. The following statements are equivalent:

- (i) X and Y have the p-(SR) property and at least one of them does not contain l₁.
- (ii) $X \otimes_{\pi} Y$ has the p-(SR) property.

PROOF: (i) \Rightarrow (ii) Suppose that X and Y have the DPP. Without loss of generality suppose that $l_1 \not\rightarrow X$. Then X^* has the Schur property, see [11, Theorem 3]. Apply Corollary 3.6.

(ii) \Rightarrow (i) by Theorem 3.15.

By Corollary 3.17, the space $C(K_1) \otimes_{\pi} C(K_2)$ has the *p*-(SR) property if and only if either K_1 or K_2 is dispersed.

References

- Alikhani M., Sequentially right-like properties on Banach spaces, Filomat 33 (2019), no. 14, 4461–4474.
- [2] Andrews K. T., Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), no. 1, 35–41.
- [3] Bessaga C., Pełczyński A., On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164.
- [4] Bombal F., Emmanuele G., Remarks on completely continuous polynomials, Quaestiones Math. 20 (1997), no. 1, 85–93.
- [5] Bourgain J., New Classes of L_p-Spaces, Lecture Notes in Mathematics, 889, Springer, Berlin, 1981.
- [6] Bourgain J., Diestel J., Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58.
- [7] Carrión H., Galindo P., Laurenço M. L., A stronger Dunford-Pettis property, Studia Math. 184 (2008), no. 3, 205–216.
- [8] Castillo J. M. F., Sánchez F., Dunford-Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59.
- [9] Cembranos P., C(K, E) contains a complemented copy of c₀, Proc. Amer. Math Soc. 91 (1984), no. 4, 556–558.
- [10] Cilia R., Emmanuele G., Some isomorphic properties in K(X,Y) and in projective tensor products, Colloq. Math. 146 (2017), no. 2, 239–252.
- [11] Diestel J., A survey of results related to the Dunford-Pettis property, Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pages 15–60.
- [12] Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984.
- [13] Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
- [14] Diestel J., Uhl J. J., Jr., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, 1977.
- [15] Emmanuele G., A remark on the containment of c₀ in spaces of compact operators, Math. Proc. Cambridge. Philos. Soc. **111** (1992), no. 2, 331–335.

- [16] Fourie J. H., Zeekoei E. D., DP*-properties of order p on Banach spaces, Quaest. Math. 37 (2014), no. 3, 349–358.
- [17] Fourie J. H., Zeekoei E. D., On weak-star-p-convergent operators, Quaest. Math. 40 (2017), no. 5, 563–579.
- [18] Ghenciu I., Property (wL) and the reciprocal Dunford-Pettis property in projective tensor products, Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329.
- [19] Ghenciu I., A note on some isomorphic properties in projective tensor products, Extracta Math. 32 (2017), no. 1, 1–24.
- [20] Ghenciu I., Dunford-Pettis like properties on tensor products, Quaest. Math. 41 (2018), no. 6, 811–828.
- [21] Ghenciu I., Some classes of Banach spaces and complemented subspaces of operators, Adv. Oper. Theory 4 (2019), no. 2, 369–387.
- [22] Ghenciu I., Lewis P., The embeddability of c₀ in spaces of operators, Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256.
- [23] Ghenciu I., Lewis P., Completely continuous operators, Colloq. Math. 126 (2012), no. 2, 231–256.
- [24] Kačena M., On sequentially Right Banach spaces, Extracta Math. 26 (2011), no. 1, 1–27.
- [25] Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
- [26] Pełczyński A., Semadeni Z., Spaces of continuous functions. III. Spaces C(Ω) for Ω without perfect subsets, Studia Math. 18 (1959), 211–222.
- [27] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K., Topological characterization of weakly compact operators, J. Math. Anal. Appl. 325 (2007), no. 2, 968–974.
- [28] Rosenthal H. P., Point-wise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), no. 2, 362–377.
- [29] Ryan R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer, London, 2002.
- [30] Salimi M., Moshtaghioun S. M., The Gelfand-Phillips property in closed subspaces of some operator spaces, Banach J. Math. Anal. 5 (2011), no. 2, 84–92.
- [31] Salimi M., Moshtaghioun S. M., A new class of Banach spaces and its relation with some geometric properties of Banach spaces, Hindawi Publishing Corporation, Abstr. Appl. Anal. (2012), Article ID 212957, 8 pages.
- [32] Schlumprecht T., Limited Sets in Banach Spaces, Ph.D. Dissertation, Ludwigs-Maxmilians-Universität, Münich, 1987.
- [33] Wen Y., Chen J., Characterizations of Banach spaces with relatively compact Dunford– Pettis sets, Adv. Math. (China) 45 (2016), no. 1, 122–132.
- [34] Wojtaszczyk P., Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991.

I. Ghenciu:

MATHEMATICS DEPARTMENT, UNIVERSITY OF WISCONSIN-RIVER FALLS, 410 S 3rd ST, RIVER FALLS, WISCONSIN, 54022, U.S.A.

E-mail: ioana.ghenciu@uwrf.edu

(Received September 28, 2021, revised January 11, 2022)