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Degree polynomial for vertices in a graph

and its behavior under graph operations

Reza Jafarpour-Golzari

Abstract. We introduce a new concept namely the degree polynomial for the
vertices of a simple graph. This notion leads to a concept, namely, the degree
polynomial sequence which is stronger than the concept of degree sequence. After
obtaining the degree polynomial sequence for some well-known graphs, we prove
a theorem which gives a necessary condition for the realizability of a sequence
of polynomials with positive integer coefficients. Also we calculate the degree
polynomial for the vertices of the join, Cartesian product, tensor product, and
lexicographic product of two simple graphs and for the vertices of the comple-
ment of a simple graph. Some examples, counterexamples, and open problems
concerning these subjects is given as well.
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1. Introduction

The degree sequence of a graph is one of the interesting invariants of a graph.

In recent decades, many mathematicians have investigated the various aspects

and applications of this invariant. Especially, several studies have been done

for testing whether a non-increasing sequence of nonnegative integers is a degree

sequence or not (the realizability of the sequence) and some interesting criterions

have been obtained, see [1], [3], [5], [6], [7], [8], [10], [11], [12].

The degree sequence of a graph, is not the only descriptive parameter on the

degrees of the vertices of that graph. A.N. Patrinos and S. L. Hakimi in [9]

introduced another parameter named the integer-pair sequence for a simple graph

and studied some aspect concerning this parameter. Y. Amanatidis, B. Green, and

M. Mihail have introduced and studied a reformulation of integer-pair sequences

named the join degree matrix.

The integer-pair sequence and also the join degree matrix give more informa-

tion about a graph than a degree sequence does. More recently, M.D. Barrus and
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E.A. Donovan in [2] have introduced another degree-related parameter known as

the neighborhood degree list (NDL) that yields still more. They studied several

various aspects about the neighborhood degree list. Specially, they prove a theo-

rem which gives a necessary and sufficient condition for a given feasible tableau

to be the neighborhood degree list of a simple graph [2, Theorem 2.1].

In this paper we introduce a concept, called the “degree polynomial” for the

vertices of a simple graph. This notion leads to the concept of degree polyno-

mial sequence which contains precisely the same information as the neighborhood

degree list.

Although the degree polynomial sequence is only a reformulation of the neigh-

borhood degree list, there are many advantages arising from recording the infor-

mations in polynomial form. Some of these advantages will be revealed in the

following.

After obtaining the degree polynomial sequence for some well-known graphs

as the cycles, the complete graphs, the complete bipartite graphs, etc., we prove

a theorem which gives a necessary condition for the realizability of a sequence of

polynomials with positive integer coefficients. Also we study the behavior of the

degree polynomial, under several graph operations. More precisely, we calculate

the degree polynomial for the vertices of the join, Cartesian product, tensor prod-

uct, and lexicographic product of two simple graphs and also for the vertices of

the complement of a simple graph. Some important examples, counterexamples,

and open problems are presented, as well.

2. Preliminaries

In the following, we use [4] for the basic terminologies and notation in graph

theory.

Let G be a simple graph. For two vertices u, v ∈ V (G), if u is adjacent to v,

we write u ∼ v.

Let G be a simple graph of order n. A non-increasing sequence of nonnegative

integers q = (d1, . . . , dn) is said to be the degree sequence of G, whenever there

exists an ordering V1, . . . , Vn of the vertices of G, such that di is the degree of vi

for 1 ≤ i ≤ n. A sequence q = (d1, . . . , dn) of integers is realizable, if there

exists a simple graph G, such that q is the degree sequence of G. Since adding

a finite number of isolated vertices to a graph, and deleting a finite number of

such vertices from a nonempty graph makes no change in the degree of the other

vertices, we can consider only the case in which each di, 1 ≤ i ≤ n, is positive.

Let G and H be simple graphs with disjoint vertex sets. The join of G and H ,

denoted by G ∨H , is a simple graph with vertex set V (G) ∪ V (H), in which for

two vertices u and v, u ∼ v if and only if
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(1) u, v ∈ V (G) and u ∼ v (in G), or

(2) u, v ∈ V (H) and u ∼ v (in H), or

(3) one of the vertices u and v is in V (G), and the other is in V (H).

Let G and H be two simple graphs. The Cartesian product of G and H ,

denoted by G×H , is a simple graph with vertex set V (G) × V (H), in which for

two vertices (u1, v1) and (u2, v2), (u1, v1) ∼ (u2, v2) if and only if

(1) u1 = u2 and v1 ∼ v2 (in H), or

(2) v1 = v2 and u1 ∼ u2 (in G).

Also, the tensor product of G and H , denoted by G ⊗ H , is a simple graph

with vertex set V (G) × V (H), in which for two vertices (u1, v1) and (u2, v2),

(u1, v1) ∼ (u2, v2) if and only if u1 ∼ u2 (in G) and v1 ∼ v2 (in H). Finally, the

lexicographic product of G andH , denoted by G[H ], is a simple graph with vertex

set V (G)×V (H), in which for two vertices (u1, v1) and (u2, v2), (u1, v1) ∼ (u2, v2),

if and only if

(1) u1 ∼ u2 (in G), or

(2) u1 = u2 and v1 ∼ v2 (in H).

For a simple graph G, the complement of G, denoted by Gc, is a simple graph

with vertex set V (G), in which for two vertices u and v, u ∼ v if and only if u is

not adjacent with v in G.

3. Neighborhood degree list (NDL)

Definition 3.1. Let G be a simple graph without any isolated vertex. The

neighborhood degree list (NDL) of G is a list

τ(G) = ((τ11 , . . . , τ
1
d1
), (τ21 , . . . , τ

2
d2
), . . . , (τn1 , . . . , τ

n
dn
))

for which there exists an ordering V1, . . . , Vn of the vertices of G, such that

(τ i1, . . . , τ
i
di
) is the list of degrees of the neighbors of vi for 1 ≤ i ≤ n, and

d1 ≥ d2 ≥ · · · ≥ dn while τ1 ≥ · · · ≥ τdi
for 1 ≤ i ≤ n, see [2].

Example 3.2. Consider the graph G with the following representation.

a

b

c
d

G

The NDL of G is

((2, 2, 1), (3, 2), (3, 2), (3)).
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Definition 3.3. A tableau is a list

T = ((τ11 , . . . , τ
1
d1
), . . . , (τn1 , . . . , τ

n
dn
))

of n lists of nonnegative integers, where d1 ≥ · · · ≥ dn and τ1 ≥ · · · ≥ τdi
for

1 ≤ i ≤ n, see [2].

A tableau T is called feasible whenever each integer in any list of T is equal

to one of the lengths of the lists of T , see [2].

For example, the list

((3, 2, 1), (2, 1, 1), (2, 1), (1))

is a feasible tableau.

It is clear that for a simple graph G, if

τ(G) = ((τ11 , . . . , τ
1
d1
), (τ21 , . . . , τ

2
d2
), . . . , (τn1 , . . . , τ

n
dn
)),

then the degree sequence of G is d1, d2, . . . , dn.

4. Degree polynomial

Definition 4.1. For a simple graph G, the degree polynomial of G, denoted by

dp(G), is the polynomial
∑

i tix
i in R[x], in which ti is the number of vertices

of G, each of degree i (specially, t0 is the number of isolated vertices of G). If ∆

is the maximum degree of G, dp(G) is of degree ∆.

Remark 4.2. It is obvious that if n is the order of G, then the sum of all

coefficients of dp(G) (which is dp(G)(1)) equals n. Also, if m is the size of G,

then the sum of all coefficients of the derivative of f with respect to x (which is

(dp(G))
′

(1)) equals 2m. Therefore some important parameters of a graph G can

be achieved by the evaluation process on dp(G).

Remark 4.3. For two simple graphs G and H , the degree polynomials of the

graphs G∨H , G×H , G⊗H , and Gc can be obtained by clear formulas only from

dp(G) and dp(H). Therefore working with polynomials is certainly convenient in

illustrating the effect of graph operations on degree information.

Remarks 4.2 and 4.3 provided motivation for reformulating the concept of

neighborhood degree list, with use of polynomials.

Before this, we introduce some notations for convenience. For a polynomial

f(x) =
∑n

i=1 aix
i ∈ R[x] with an 6= 0, we denote the sum of ai’s for 1 ≤ i ≤ n,

by sc(f). Also sec(f) and soc(f), are used for the sum of ai’s for even i, and sum

of ai’s for odd i, respectively. We define sc(0) = 0, as well.
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We introduce a total order “<pol” on the set of all nonzero polynomials with

coefficients in nonnegative integers such that “<pol” compares two distinct poly-

nomials f =
∑n

i=0 aix
i and g =

∑m

i=0 bix
i with nonnegative integer coefficients,

and with an, bm 6= 0, as follows:

If sc(f) 6= sc(g), then which one of f and g has the sum of coefficients greater

(as an integer), will be greater.

If sc(f) = sc(g), i1 = max{i : ai 6= 0 or bi 6= 0} and ai1 6= bi1 , then whichever

of f and g has greater coefficient in xi1 , will be greater.

If sc(f) = sc(g), ai1 = bi1 , i2 = max{i : i < i1, ai 6= 0 or bi 6= 0}, and

ai2 6= bi2 , then whichever of f and g has greater coefficient in xi2 , will be greater;

and so on.

For example,

2x4 + 12x3 >pol 3x
5 + x2,

2x4 + 12x2 <pol 2x
5 + 12x2, x5 + 13x2,

2x4 + 12x2 >pol 2x
4 + 11x2 + x.

Let f =
∑

ai 6=0 aix
i be a nonzero polynomial in R[x] with nonnegative integer

coefficients where aix
i’s are the nonzero terms of f . For n ∈ N, we denote the

polynomial
∑

ai 6=0 aix
in by ff×n. Also we set 0f×n = 0. If deg f ≤ n, we

denote the polynomial
∑

ai 6=0 aix
n−i by ffn−. Also we set 0fn− = 0.

Definition 4.4. Let f =
∑

ai 6=0 aix
i, g =

∑
bj 6=0 bjx

j be two nonzero polynomi-

als in R[x] with nonnegative integer coefficients where aix
i’s and bjx

j ’s are the

nonzero terms of f and g, respectively. The tensor product of f and g, denoted

by f ⊗ g, is the polynomial
∑

ctx
t in which t’s are the distinct products of i’s

and j’s, and

ct =
∑

i.j=t

aibj.

Also we set 0⊗ 0 = 0, 0⊗ f = 0, where 0 is the zero polynomial.

Under the conditions of Definition 4.4., it is observed simply that, first, f ⊗ g

can be achieved by tensor-multiplying the nonzero terms of f by the nonzero

terms of g, one by one, and secondly for each f and g with variable x and

nonnegative integer coefficients, f ⊗ g = g ⊗ f .

Now we introduce a new concept, that is the concept of degree polynomial.

Definition 4.5. Let G be a simple graph. For a vertex v of G, the degree

polynomial of v, denoted by dp(v), is a polynomial with nonnegative integer

coefficients, in which the coefficient of xi is the number of neighbors of v, each

of degree i. Especially, for an isolated vertex v, dp(v) = 0.
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Example 4.6. For the graph G with representation

a

b

c
d

G

we have

dp(a) = x2 + x3,

dp(b) = x2 + x3,

dp(c) = 2x2 + x,

dp(d) = x3.

Since adding a finite number of isolated vertices to a simple graph, and deleting

a finite number of such vertices from a nonempty simple graph makes no change

in the degree polynomials of the other vertices, we will consider only the graphs

which has no isolated vertices.

Definition 4.7. For a simple graph G of order n without any isolated vertex,

a sequence q = (f1, f2, . . . , fn) of polynomials is said to be the degree polynomial

sequence of G, if

(a) f1 ≥pol · · · ≥pol fn,

(b) There exists an ordering V1, . . . , Vn of the vertices of G, such that fi be

the degree polynomial of vi for 1 ≤ i ≤ n.

Example 4.8. For the graph G in Example 4.6, the degree polynomial sequence

is

2x2 + x, x2 + x3, x2 + x3, x3.

Proposition 4.9. Let G be a nonempty simple graph. Graph G is r-regular if

and only if each term of the degree polynomial sequence of G be in the form rxr .

If G is a nontrivial complete graph,Kn, it is obvious that the degree polynomial

sequence of G is

(n− 1)xn−1, . . . , (n− 1)xn−1

where the number of terms is n. If G is a path with n vertices, Pn, then if n = 2,

the degree polynomial sequence of G is

x, x,

if n = 3, that will be

2x, x2, x2,
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if n = 4, that will be

x+ x2, x+ x2, x2, x2,

and finally, if n ≥ 5, that will be

2x2, . . . , 2x2, x+ x2, x+ x2, x2, x2

where the number of terms 2x2 is n− 4.

If G is a cycle Cn (n ≥ 3), then the degree polynomial sequence of G is

2x2, . . . , 2x2,

where the number of terms is n.

If G is a complete bipartite graph, Kr,s where r ≥ s, then the degree polyno-

mial sequence of G is

rxs, . . . , rxs, sxr, . . . , sxr,

where s terms are rxs and r terms are sxr.

Remark 4.10. In the following, we will see that the reformulation of the concept

of the neighborhood degree list in polynomial form has benefits similar to those

described in Remarks 4.2 and 4.3.

Remark 4.11. Supposing that q = (f1, . . . , fn) is the degree polynomial sequence

of a simple graph G, and fi is the degree polynomial of the vertex vi, the degree

sequence for G is

sc(f1), . . . , sc(fn),

since sc(fi) is the degree of vi. Consequently, if a sequence q = (f1, . . . , fn) of

nonzero polynomials is realizable, then the sequence

sc(f1), sc(f2), . . . , sc(fn),

that is, the sequence

f1(1), . . . , fn(1)

of integers is realizable. The following example shows that the inverse case is not

true in general.

Example 4.12. Consider the sequence

2x, x2, x, x, x

of nonzero polynomials with nonnegative integer coefficients. Although the se-

quence

sc(2x), sc(x2), sc(x), sc(x), sc(x)

is realized by the simple graph with representation
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but the sequence

2x, x2, x, x, x

is not realizable, by Theorem 4.14 (part c).

Remark 4.13. Considering that the concept of degree polynomial sequence is

a reformulation for the concept of NDL, the following facts can be extracted

from [2]:

◦ Two simple graphs with the same degree sequence, can have different

degree polynomial sequences.

◦ Two non-isomorphic graphs can have the same degree polynomial se-

quences.

Now we prove a theorem which gives a necessary condition for the realizability

of a sequence of polynomials with nonnegative integer coefficients.

Theorem 4.14. If G is a simple graph without any isolated vertices, and q =

(f1, . . . , fn) where f1 ≥pol · · · ≥pol fn is the degree polynomial sequence of G,

then

(a)
∑n

i=1 sc(fi) is even,

(b) for each nonzero coefficient k of a term kxi in the degree polynomial of

a vertex v, there are at least k distinct vertices v1, . . . , vk, all distinct

from v, such that

sc(dp(v1)) = · · · = sc(dp(vk)) = i,

(c)
∑

sc(fj) is odd
sec(fj) and

∑
sc(fj) is even

sec(fj) are even.

Proof: (a) Let fi = dp(vi) for 1 ≤ i ≤ n. We have
∑n

i=1 sc(fi) =
∑n

i=1 deg(vi).

Thus
∑n

i=1 sc(fi) is even.

(b) Let k(6= 0) be the coefficient of kxi in dp(v). Therefore v has exactly k

neighbors v1, . . . , vk of degree i. Now, v1, . . . , vk are distinct from v, and

sc(dp(v1)) = · · · = sc(dp(vk)) = i.

(c) Let {a1, . . . , as} be the set of odd vertices of G. Then
∑n

j=1 deg(aj) is even.

That is,
∑s

j=1 sc(dp(aj)) is even. Thus
∑s

j=1 sec(dp(aj)) +
∑s

j=1 soc(dp(aj))

is even. For each aj , 1 ≤ j ≤ s, if aj′ is an odd neighbor of aj , then aj is

an odd neighbor of aj′ , as well. Therefore the edge between aj and aj′ , ac-

curs two times in calculating
∑s

j=1 soc(dp(aj)), once in soc(dp(aj)) and again in
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soc(dp(aj′ )). Thus
∑s

j=1 soc(dp(aj)) is even and so is
∑s

j=1 sec(dp(aj)). Hence∑
sc(fj) is odd sec(fj), is an even integer.

The argument for second part is similar, with the difference that we should

start with the set of all even vertices, {b1, . . . , bt}. �

Example 4.15. The sequence

s1 = (2x, x2, x, x, x)

of polynomials satisfies (a) and (b), but not (c); the sequence

s2 = (2x, x2, x2, x, x, x)

satisfies (b) and (c), but not (a). Finally the sequence

s3 = (2x2, x, x, x, x)

satisfies (a) and (c), but not (b). Therefore by Theorem 4.14, the sequences s1, s2
and s3 are not realizable. Meanwhile it is possible that a non-increasing sequence

q = (f1, f2, . . . , fn) of nonzero polynomials with nonnegative integer coefficients

satisfies (a), (b) and (c), but it is not realizable yet. Consider for example, the

sequence

2x2, 2x, 2x, x, x.

Note that if the sequence was realizable, then any vertex v for which dp(v) = 2x,

should be adjacent only with two vertices with degree polynomials x and x (name

(a) and (b)). But in this case, the degree polynomial of (a) and (b) will not be x.

Remark 4.16. Of course, one can examine the non-realizability of the sequences

in Example 4.15 by Theorem 2.1 in [2]. But note that the use of this theorem

practically requires a long process but Theorem 4.14 uses only polynomial invari-

ants.

Now we study the behavior of the degree polynomial under graph operations.

Theorem 4.17. Let G and H be two simple graphs with disjoint vertex sets,

and u be a vertex in G. Then

dpG∨H(u) = xn2dpG(u) + xn1dp(H),

where n1 and n2 are the orders of G and H , respectively.

Proof: If u is an isolated vertex in G, then dpG(u) = 0. In this case, u is

adjacent to all vertices of H in G ∨ H (by definition of G ∨ H) and u is not

adjacent to any vertex of G. If H has t0 vertices of degree 0, t1 vertices of
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degree 1, . . . , t∆ vertices of degree ∆ (∆ is the maximum degree of H), then the

neighbors of u in G ∨H are restricted to

t0 vertices of degree n1 + 0,

t1 vertices of degree n1 + 1,

...

t∆ vertices of degree n1 +∆,

and therefore the degree polynomial of u in G ∨H is

t0x
n1 + t1x

n1+1 + · · ·+ t∆x
n1+∆ = xn1dp(H),

and the conclusion holds.

Now let u be non-isolated vertex in G. Suppose that dpG(u) =
∑k

s=1 cisx
is

where cis ’s are positive integers and is’s are the distinct degrees of neighbors of u

in G. It means that the neighbors of u in G are restricted to

ci1 vertices of degree i1,

...

cik vertices of degree ik.

Now by definition of G ∨ H , u will be adjacent in G ∨ H to all of the above

vertices, and also with any vertex in H . Thus the neighbors of u in G ∨ H are

restricted to

ci1 vertices of degree n2 + i1,

...

cik vertices of degree n2 + ik,

t0 vertices of degree n1 + 0,

t1 vertices of degree n1 + 1,

...

t∆ vertices of degree n1 +∆,

where dp(H) =
∑∆

i=0 tix
i. Therefore

dp(G ∨H) = ci1x
n2+i1 + · · ·+ cikx

n2+ik + t0x
n1 + t1x

n1+1 + · · ·+ t∆x
n1+∆

= xn2dpG(u) + xn1dp(H).

�
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Remark 4.18. Since for every two simple graphs G and H , G∨H = H ∨G, the

above theorem, in practice, provides a tool for calculating the degree polynomial

of any vertex of G ∨H .

Theorem 4.19. If G and H are two simple graphs, and u and v are vertices

of G and H , respectively, then

dpG×H((u, v)) = xdeg udp(v) + xdeg vdp(u).

Proof: If u in G and v in H are isolated, then by definition of G × H, (u, v)

in G ×H is an isolated vertex and therefore dp((u, v)) = 0. On the other hand,

dp(u) = 0 and dp(v) = 0. Therefore the conclusion holds.

If u is isolated in G but v is non-isolated in H , supposing that dp(v) =∑
rj 6=0 rjx

j where rj ’s are positive integers and j’s are the disjoint degrees of

the neighbors of v in H , by definition of G×H , each neighbor of (u, v) in G×H

is in the form (u, v′) with v′ ∼ v since u has not any adjacent vertex in G. Mean-

while the degree of such (u, v′) in G×H is deg u+deg v′. Since for each j, v has

rj neighbors of degree j, the number of neighbors of (u, v) of degree deg u+ j will

be rj . Thus

dpG×H((u, v)) =
∑

rj

rjx
deg u+j = xdeg udp(v).

But in this case, dp(u) = 0 and therefore the conclusion holds.

The argument in the case that v is isolated but u is not, is similar to the

argument in the previous case.

Now let neither of u and v be isolated. Suppose that dp(u) =
∑k

s=1 cisx
is ,

and dp(v) =
∑k′

t=1 rjtx
jt , where cis ’s and rjt ’s are positive integers, and is’s and

jt’s are the disjoint degrees of the neighbors of u and v, respectively. This means

that the neighbors of u in G are restricted to

ci1 vertices of degree i1,

...

cik vertices of degree ik,

and the neighbors of v in H are restricted to

rj1 vertices of degree j1,

...

rjk′
vertices of degree jk′ .
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By definition of G×H , the adjacent vertices of (u, v) in G×H are of two kinds

below:

(i) the vertices in the form (u, b) where b is adjacent to v in H ,

(ii) the vertices in the form (a, v) where a is adjacent to u in G.

Since, for all vertices of kind (i), u is fixed, such vertices are restricted to

rj1 vertices of degree deg u+ j1,

...

rjk′
vertices of degree deg u+ jk′ .

Also, since, for the vertices of kind (ii), v is fixed, such vertices are restricted to

ci1 vertices of degree i1 + deg v,

...

cik vertices of degree ik + deg v.

Note that the degree of each vertex, (x, y), in G×H is degG x+degH y. Therefore

dpG×H((u, v)) = (rj1x
deg u+j1 + · · ·+ rjk′

xdeg u+jk′ )

+ (ci1x
i1+deg v + · · ·+ cikx

ik+deg v)

= xdeg udp(v) + xdeg vdp(u).

�

Theorem 4.20. If G and H are two simple graphs, and u and v are vertices

of G and H , respectively, then

dpG⊗H((u, v)) = dp(u)⊗ dp(v).

Proof: If at least one of u and v are isolated, then by definition of G⊗H , (u, v)

is an isolated vertex in the graph G ⊗ H , and therefore dp((u, v)) = 0. On the

other hand, in this case, at least one of dp(u) and dp(v) is zero. Therefore by

definition of the tensor product of polynomials, dp(u)⊗ dp(v) is zero as well, and

the conclusion holds.

Now let none of u and v be isolated. Suppose that dp(u) =
∑

i cix
i and

dp(v) =
∑

j rjx
j , where ci’s and rj ’s are positive integers, and i’s and j’s are

the disjoint degrees of the neighbors of u and v, respectively. By definition of

G ⊗H , first, each neighbor of (u, v) in G ⊗H is in the form (u′, v′) where u′ is

a neighbor of u, and v′ is a neighbor of v, and secondly if u′ is a neighbor of u of

degree i and v′ is a neighbor of v of degree j, then (u′, v′) is a neighbor of (u, v)
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of degree i · j. Since for each i, u has exactly ci neighbors of degree i, and for

each j, v has exactly rj neighbors of degree j, the number cirj is calculated in

the coefficient of xi·j in the degree polynomial of (u, v). This implies that

dpG⊗H((u, v)) = dp(u)⊗ dp(v)

by definition of dp(u)⊗ dp(v). �

Theorem 4.21. If G and H are two simple graphs and u and v are vertices

of G and H , respectively, then

dpG[H]((u, v)) = (dp(u))f×n2dp(H) + x(deg u)n2dp(v)

( = dp(u)(xn2 )dp(H) + x(deg u)n2dp(v)),

in which n2 is the order of H .

Proof: If u and v are both isolated, by definition of G[H ], (u, v) is isolated

in G[H ], and therefore dpG[H]((u, v)) = 0. But in this case, both dp(u) and dp(v)

are zero polynomials, and therefore the conclusion holds.

If u is isolated in G, but v is not isolated in H , supposing that dp(v) =∑k′

t=1 rjtx
jt , in which rjt ’s are positive integers and jt’s are the disjoint degrees

of the neighbors of v in H , the neighbors of v in H are restricted to

rj1 vertices of degree j1,

...

rjk′
vertices of degree jk′ .

Since u has no any neighbor in G, by definition of G[H ], every neighbors of

(u, v) is of the form (u, b) with degree (deg u)n2 + deg b, where b is a neighbor

of v in H . Hence since u is fixed, the neighbors of (u, v) are restricted to

rj1 vertices of degree (deg u)n2 + j1,

...

rjk′
vertices of degree (deg u)n2 + jk′ .

Thus

dpG[H]((u, v)) = rj1x
(deg u)n2+j1 + · · ·+ rjk′

x(deg u)n2+jk′ = x(deg u)n2dp(v),

and since dp(u) = 0, the conclusion in this case holds.

If v is isolated in H but u is not isolated in G, since v has not any neighbor

in H , each neighbor of (u, v) is in the form (a, b) such that a is a neighbor

of u, and b is a vertex of H , and the degree of (a, b) in G[H ] is (deg a)n2 +
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deg b. Suppose that dp(u) =
∑k

s=1 cisx
is where cis ’s are positive integers and

is’s are the distinct degrees of the neighbors of u in G. Supposing that dp(H) =∑∆
p=0 lpx

p where lp’s are the number of vertices of H , each one of degree p, and

∆ is the maximum degree of H , for each p, the neighbors of (u, v) whose second

components are of degree p, are restricted to

lpci1 vertices of degree i1n2 + p,

...

lpcik vertices of degree ikn2 + p.

Therefore each lpcis is calculated in the coefficient of xisn2+p in dp((u, v)). Thus

dpG[H]((u, v)) =

∆∑

p=0

k∑

s=1

lpcisx
isn2+p =

k∑

s=1

cisx
isn2

∆∑

p=0

lpx
p

=

k∑

s=1

cisx
isn2dp(H) = (dp(u))fn2dp(H),

and since dp(v) = 0, the conclusion holds.

Now let none of u and v be isolated. Suppose that dp(u) =
∑k

s=1 xisx
is and

dp(v) =
∑k′

t=1 rjtx
jt where cis ’s and rjt ’s are positive integers and is’s and jt’s

are the distinct degrees of the neighbors of u and v, respectively. The adjacent

vertices of (u, v) in G[H ] are of two kinds below:

(i) the vertices in the form (a, b) where a is a neighbor of u in G, and b is

a vertex of H ,

(ii) the vertices in the form (u, b) where b is a neighbor of v in H .

Let dp(H) =
∑∆

p=0 lpx
p where ∆ be the maximum degree of H . For each p,

the neighbors of (u, v) of kind (i) whose second components are of degree p, are

restricted to

lpci1 vertices of degree i1n2 + p,

...

lpcik vertices of degree ikn2 + p.

Therefore each lpcis is calculated in the coefficient of xisn2+p. On the other hand,

since in all neighbors of kind (ii), u is fixed, such vertices are restricted to
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rj1 vertices of degree (deg u)n2 + j1,

...

rjk′
vertices of degree (deg u)n2 + jk′ .

Thus

dpG[H]((u, v)) =

∆∑

p=0

k∑

s=1

lpcisx
isn2+p +

k′∑

t=0

rjtx
(deg u)n2+jt

= (dp(u))fn2dp(H) + x(deg u)n2dp(v).

�

As we saw above, having the degree polynomial sequence of graphs G and H

without access to G and H , the degree polynomial sequences of G ∨H , G×H ,

G⊗H , and G[H ] are calculatable. The following theorem shows that the degree

polynomial sequence of the complement of a graph can be calculated having the

degree polynomial sequence of that graph without access to the graph itself.

Theorem 4.22. Let G be a simple graph and u be a vertex of G. Then

dpGc(u) = (dp(G)− dpG(u)− xdegu G)f(n−1)−

where n is the order of G.

Proof: For each integer i ≥ 0, the coefficient of xi in dp(G) is the total number

of the vertices of G, each one of degree i, and the coefficient of the same xi

in dp(u) is exactly the number of the vertices of G, each one of degree i, which

are adjacent to u in G. Therefore the coefficient of each xi in the polynomial

dp(G)− dpG(u)

is the number of the vertices of degree i (in G) which are non-adjacent to u. Since

u itself is non-adjacent to u, the coefficient of xi in the polynomial

dp(G)− dpG(u)− xdegG u

is exactly the number of the vertices of G, other than u, which are of degree i

and non-adjacent to u (in G), and by definition of Gc, this number is exactly

the number of the vertices of Gc which are of degree (n − 1) − i and adjacent

to u (in Gc). Therefore for each i, the coefficient of x(n−1)−i in the polynomial

dp(G) − dpG(u) − xdegG u equals exactly the number of the vertices of degree i

in Gc, which are adjacent to u (in Gc). Thus (based on the meaning of the
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notation (dp(G)− dpG(u)− xdegG u)f(n−1)−) the coefficient of xi in

(dp(G)− dpG(u)− xdegG u)f(n−1)−

is exactly the number of the neighbors of u in Gc whose degree is i. �

5. Some open problems

Many new questions and open problems can arise from the above topics. Some

of them are:

(1) Classify all degree polynomial sequences of connected graphs and trees.

(2) Characterize all graphs whose degree polynomial sequences are formed by

polynomials with only one term.
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477—480 (Czech. Russian, German summary).
[9] Patrinos A.N., Hakimi S. L., Relations between graphs and integer-pair sequences, Discrete

Math. 15 (1976), no. 4, 347–358.
[10] Ritchie M., Berthouse L., Kiss I. Z., Generation and analysis of networks with a prescribed

degree sequence and subgraph family: higher-order structure matters, J. Complex Netw. 5
(2017), no. 1, 1–31.



Degree polynomial for vertices in a graph and its behavior under graph operations 413

[11] Tripathi A., Tyagi H., A simple criterion on degree sequence of graphs, Discrete Appl.
Math. 156 (2008), no. 18, 3513–3517.
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