On Szymański theorem on hereditary normality of $\beta \omega$

Sergei Logunov

Abstract. We discuss the following result of A. Szymański in "Retracts and nonnormality points" (2012), Corollary 3.5.: If F is a closed subspace of ω^* and the π -weight of F is countable, then every nonisolated point of F is a non-normality point of ω^* .

We obtain stronger results for all types of points, excluding the limits of countable discrete sets considered in "Some non-normal subspaces of the Čech–Stone compactification of a discrete space" (1980) by A. Błaszczyk and A. Szymański. Perhaps our proofs look "more natural in this area".

Keywords: Čech–Stone compactification; non-normality point; butterfly-point; countable π -weight

Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

We investigate hereditary normality of Čech–Stone compactification βX of a completely regular space X.

Is $X^* \setminus \{p\}$ non-normal for any point p of the remainder $X^* = \beta X \setminus X$?

If so, then p is called a non-normality point of X^* . Usually, in order to answer this question positively, we have to show that p is a butterfly-point or a b-point of βX , see [4], i.e. to construct sets $F, G \subset X^* \setminus \{p\}$, which are closed in $\beta X \setminus \{p\}$, so that $\{p\} = [F] \cap [G]$, see also [6]. A. Szymański in [7] gave a different approach.

Particularly this question is intriguing for countable discrete space $\omega = \{0, 1, 2, ...\}$.

A. Błaszczyk and A. Szymański in [2] proved in 1980 that p is a non-normality point of ω^* , if p is a limit point of some countable discrete set $P \subset \omega^*$.

A point p is called a *Kunen point*, if there exists a discrete set $P \subset \omega^*$ of cardinality ω_1 , that is, no more than countable outside any neighbourhood of p. Every Kunen point is a non-normality point of ω^* (E. K. van Douwen, unpublished).

Some other more technical results were obtained in [3].

DOI 10.14712/1213-7243.2023.011

The answer is known and positive under CH (continuum hypothesis), see

N. Warren [8] and M. Rajagopalan, [5] 1972, or even MA (Martin's axiom), see A. Bešlagić and E. van Douwen, [1] 1990.

In 2012 A. Szymański in [7] obtained the following result:

Corollary 3.5. If F is a closed subspace of ω^* and the π -weight of F is countable, then every nonisolated point of F is a non-normality point of ω^* .

Let D be all isolated points of F. If $p \in [D]$, then Corollary 3.5. reduces to the well known result of A. Błaszczyk and A. Szymański in [2]. Otherwise, we can assume F to be crowded.

Theorem 1. If F is a closed crowded subspace of ω^* and the π -weight of F is countable, then every point of F is a non-normality point of F.

We show that F has a π -base \mathcal{B} with the following property:

(*) If
$$\mathcal{D}, \mathcal{C} \subset \mathcal{B}$$
 and $\left(\bigcup \mathcal{D}\right) \cap \left(\bigcup \mathcal{C}\right) = \emptyset$, then $\left[\bigcup \mathcal{D}\right] \cap \left[\bigcup \mathcal{C}\right] = \emptyset$.

Then we obtain Theorem 1 as a corollary of the next

Theorem 2. Let a normal realcompact crowded space X have a weakly embedded σ -cellular π -base \mathcal{B} with the property (*). Then every point $p \in X^*$ is a b-point of βX . Hence $\beta X \setminus \{p\}$ is not normal.

2. Preliminaries

A space X is crowded, if X has no isolated points, $3 = \{0, 1, 2\}$. By [] we always denote the closure operator in βX . Let \mathcal{B} be a family of nonempty open sets. Then \mathcal{B} is weakly embedded, if any two sets of \mathcal{B} are either disjoint or one of them contains the other and σ -cellular, if $\mathcal{B} = \bigcup_{n < \omega} \mathcal{B}_n$ and every \mathcal{B}_n is cellular. A set $U \in \mathcal{B}$ is a maximal set of \mathcal{B} , if U is a proper subset of V for no $V \in \mathcal{B}$. Moreover, \mathcal{B} is a π -base of X, if any nonempty open set O contains some $U \in \mathcal{B}, \mathcal{B}(O) = \{U \in \mathcal{B} : U \cap O \neq \emptyset\}.$

Let π and σ be any maximal cellular families of open sets. We write $\pi \prec \sigma$ if $U \cap V \neq \emptyset$ implies $U \supseteq V$ for any $U \in \pi$ and $V \in \sigma$. Set $\mathcal{P}(\pi) = \{F : F \subseteq \pi\}$. We define a projection $f_{\sigma}^{\pi} : \mathcal{P}(\pi) \to \mathcal{P}(\sigma)$ by

$$f_{\sigma}^{\pi}F = \Big\{ V \in \sigma \colon \bigcup F \cap V \neq \emptyset \Big\}.$$

Let $p \in X^*$. Then $\mathcal{F} \subset \mathcal{P}(\pi)$ is called a *p*-filter on π , if any finite subcollection $\{F_0, \ldots, F_n\} \subset \mathcal{F}$ satisfies $p \in [\bigcup \bigcap_{k=0}^n F_k]$. We denote $\bigcap \mathcal{F}^* = \bigcap \{[\bigcup F]: F \in \mathcal{F}\}$ and $\pi \succ_{\mathcal{F}} \sigma$, if there is $F \in \mathcal{F}$ with $F \succ \sigma$. The image $f_{\sigma}^{\pi}(\mathcal{F}) = \{f_{\sigma}^{\pi}F \colon F \in \mathcal{F}\}\$ is a *p*-filter on σ . Obviously, the union of every increasing family of *p*-filters is also a *p*-filter. So by Zorn's lemma there are maximal *p*-filters or *p*-ultrafilters \mathcal{F} on π , that is $\mathcal{F} = \mathcal{G}$ for any *p*-filter \mathcal{G} with $\mathcal{F} \subset \mathcal{G}$.

3. Proofs

Lemma 1. Let a closed subspace F of ω^* have a countable π -base $\{V_i\}_{i < \omega}$ and let p be a nonisolated point of F. Then there is a countable family $\{U_i\}_{i < \omega}$ of clopen subsets of ω^* with the following properties for all $i < \omega$:

- 1) $p \notin U_i$;
- 2) $U_i \cap F$ is a nonempty subset of V_i ;
- 3) $\{U_i\}_{i < \omega}$ is weakly embedded.

PROOF: Assume $\{U_0, \ldots, U_{n-1}\}$ have been constructed for some $n < \omega$ so that 1)-3) hold. To get U_n we need one more induction on $k \leq n-1$.

Let U_n^k be constructed so that $\{U_0, \ldots, U_{k-1}, U_n^k\}$ satisfies 1)-3). We put either $U_n^{k+1} = U_n^k \cap U_k$ if $U_n^k \cap U_k \cap F \neq \emptyset$ or $U_n^{k+1} = U_n^k \setminus U_k$ otherwise. Then $\{U_0, \ldots, U_k, U_n^{k+1}\}$ satisfies 1)-3) and, finally, $U_n = U_n^n$. The family $\{U_n\}_{n < \omega}$ is as required.

Lemma 2. Theorem 2 implies Theorem 1.

PROOF: In the notation of Lemma 1 we put $X = \bigcup_{i < \omega} (U_i \cap F)$ and $\mathcal{B} = \{U_i \cap X\}_{i < \omega}$. If the conditions of Theorem 1 hold, then X and \mathcal{B} satisfy the conditions of Theorem 2. Indeed, if $\mathcal{D}, \mathcal{C} \subset \mathcal{B}$ and $(\bigcup \mathcal{D}) \cap (\bigcup \mathcal{C}) = \emptyset$, then $\mathcal{D}' = \{U_i : U_i \cap X \in \mathcal{D}\}$ and $\mathcal{C}' = \{U_i : U_i \cap X \in \mathcal{C}\}$ satisfy $(\bigcup \mathcal{D}') \cap (\bigcup \mathcal{C}') = \emptyset$ by our construction. Since $\bigcup \mathcal{D}'$ and $\bigcup \mathcal{C}'$ are open in ω^* and σ -compact, then $[\bigcup \mathcal{D}'] \cap [\bigcup \mathcal{C}'] = \emptyset$. Since X is σ -compact and everywhere dense in F, then $F = \beta X$ is a Čech–Stone compactification of X and $p \in X^*$.

Now we only have to prove Theorem 2. To a certain extent, we follow the notation and proof scheme of [4].

Lemma 3. Under the conditions of Theorem 2 the π -base \mathcal{B} satisfying (*) can be represented as $\mathcal{B} = \bigcup_{n < \omega} \mathcal{B}_n$ so that:

- (1) every \mathcal{B}_n is maximal and cellular in X;
- (2) $\mathcal{B}_{n+1} \succ \mathcal{B}_n$;
- (3) for every $U \in \mathcal{B}_n$ there is $\{U(\nu) \colon \nu < 3\} \subset \mathcal{B}_{n+1}$ with $\bigcup_{\nu < 3} U(\nu) \subset U$.

PROOF: Let $\mathcal{B} = \bigcup_{n < \omega} \mathcal{D}_n$ be weakly embedded and every \mathcal{D}_n be cellular. We can choose maximal cellular $\mathcal{B}_0 \subset \mathcal{B}$ so that $\mathcal{D}_0 \subset \mathcal{B}_0$. 509

Assume $\mathcal{B}_n \subset \mathcal{B}$ has been constructed for some $n < \omega$. We can choose maximal cellular family $\mathcal{B}_{n+1} \subset \mathcal{B}$ so that $\mathcal{B}_{n+1} \succ \mathcal{B}_n$, $\mathcal{B}_{n+1} \succ \mathcal{D}_{n+1}$ and for every $U \in \mathcal{B}_n$ there is $\{U(\nu) : \nu < 3\} \subset \mathcal{B}_{n+1}$ with $\bigcup_{\nu < 3} U(\nu) \subset U$.

Finally, $\mathcal{B} = \bigcup_{n < \omega} \mathcal{B}_n$ is as required.

In what follows the π -base \mathcal{B} satisfies the conditions of Lemma 3,

 $\Sigma = \{ \sigma \subset \mathcal{B} \colon \sigma \text{ maximal cellular in } X \}$

and $\sigma(\nu) = \{U(\nu) \colon U \in \sigma\}$ for every $\sigma \in \Sigma$ and $\nu < 3$.

Lemma 4. There is $\sigma \in \Sigma$ with the following property: If \mathcal{F} is a *p*-filter on σ , then $\bigcap \mathcal{F}^* \subset X^*$.

PROOF: We have $p \in \bigcap_{i < \omega} O_i \subset X^*$ for some open $O_i \subset \beta X$. If $O_1 = X$ and $[O_{i+1}] \subset O_i$ for every $i < \omega$, then $\bigcup_{i < \omega} (O_i \setminus [O_{i+2}]) = X$. Denote by σ all maximal sets of the family

 $\{U \in \mathcal{B}: U \subset O_i \setminus O_{i+2} \text{ for some } i < \omega\}.$

If $x \in X$ and $x \notin [O_i]$, then $F = \{U \in \sigma : U \cap [O_{i+2}] \neq \emptyset\}$ satisfies both $\bigcup F \subset O_i$ and $F \in \mathcal{F}$ for any *p*-filter \mathcal{F} .

Lemma 5. There are both a well-ordered chain $\{\sigma_{\alpha} : \alpha < \lambda\} \subset \Sigma$ and a *p*-ultrafilter \mathcal{F}_{α} on every σ_{α} with the following properties for all $\alpha < \beta < \lambda$:

(1) $\bigcap \mathcal{F}_0^* \subset X^*;$

(2)
$$\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma_{\beta};$$

(3)
$$f^{\sigma_{\alpha}}_{\sigma_{\beta}}\mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta}$$

(4) for any $\sigma \in \Sigma \setminus \{\sigma_{\alpha} : \alpha < \lambda\}$ there is $\alpha_0 < \lambda$ with $\neg(\sigma_{\alpha_0} \prec_{\mathcal{F}_{\alpha_0}} \sigma)$.

PROOF: Let \mathcal{F}_0 be any *p*-ultrafilter on σ_0 , constructed in Lemma 4.

For some ordinal β assume σ_{α} and \mathcal{F}_{α} have been constructed for all $\alpha < \beta$. If there is $\sigma \in \Sigma$ with $\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma$ for every σ_{α} , then we put $\sigma_{\beta} = \sigma$ and embed the *p*-filter $\bigcup_{\alpha < \beta} f_{\sigma_{\beta}}^{\sigma_{\alpha}} \mathcal{F}_{\alpha}$ into some *p*-ultrafilter \mathcal{F}_{β} on σ_{β} . Otherwise $\lambda = \beta$ and the proof is complete.

Denote $f^{\alpha}_{\beta} = f^{\sigma_{\alpha}}_{\sigma_{\beta}}$ from now on.

Lemma 6. If $\alpha < \beta < \lambda$, then $\bigcap \mathcal{F}^*_{\beta} \subset \bigcap \mathcal{F}^*_{\alpha}$.

PROOF: There is $F \in \mathcal{F}_{\alpha}$ with $F \prec \sigma_{\beta}$ by (2). For any $G \in \mathcal{F}_{\alpha}$ we have $G \cap F \in \mathcal{F}_{\alpha}$ and $G \cap F \prec \sigma_{\beta}$. But then $\bigcup f_{\beta}^{\alpha}(G \cap F) \in \mathcal{F}_{\beta}$ implies

$$\bigcap \mathcal{F}_{\beta}^{*} \subset \left[\bigcup f_{\beta}^{\alpha}(G \cap F)\right] \subset \left[\bigcup (G \cap F)\right] \subset \left[\bigcup G\right].$$

Lemma 7. For any neighbourhood O of p there is $\alpha < \lambda$ with $\bigcap \mathcal{F}^*_{\alpha} \subset O$.

PROOF: Let σ be all maximal members of the family $\{U \in \mathcal{B} \colon U \subset O \text{ or } U \cap O = \emptyset\}$. Then $\sigma \in \Sigma$. For any σ_{α} with $\neg(\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma)$ we get $\sigma_{\alpha}(O) \in \mathcal{F}_{\alpha}$. Denote $\pi = \{U \in \sigma_{\alpha}(O) \colon V \subsetneq U \text{ for some } V \in \sigma\}$ and $\delta = \{U \in \sigma_{\alpha}(O) \colon U \subset V \text{ for some } V \in \sigma\}$. Since \mathcal{B} is weakly embedded, $\sigma_{\alpha}(O) = \pi \cup \delta$. Since \mathcal{F}_{α} is maximal, then either $\pi \in \mathcal{F}_{\alpha}$ or $\delta \in \mathcal{F}_{\alpha}$. But if $\pi \in \mathcal{F}_{\alpha}$, then $\pi \prec \sigma$ implies $\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma$. Hence $\delta \in \mathcal{F}_{\alpha}$ and

$$\bigcap \mathcal{F}_{\alpha}^* \subset \left[\bigcup \delta\right] \subset \left[\bigcup \sigma(O)\right] \subset [O]_{\beta X}.$$

Lemma 8. The set $B_{\alpha}(\nu) = \bigcap \mathcal{F}_{\alpha}^* \cap \left(\bigcap_{\beta \in \lambda \setminus \alpha} \left[\bigcup \sigma_{\beta}(\nu)\right]\right)$ is not empty for any $\alpha < \lambda$ and $\nu < 3$.

PROOF: Let $F \in \mathcal{F}_{\alpha}$ and let $\alpha < \beta_0 < \cdots < \beta_i < \cdots < \beta_n < \lambda$ be any finite sequence of indexes. Our goal is to find by induction $U \in \mathcal{B}$ so that $U \subset \bigcup F$ and $U \subset \bigcup \sigma_{\beta_i}(\nu)$ and every $i \leq n$.

We may assume $F \prec \sigma_{\beta_0}$, choose $G_i \in \mathcal{F}_{\beta_i}$ so that $G_i \prec \sigma_{\beta_{i+1}}$ for each i < nand put $G_n = \sigma_{\beta_n}$. Then the sets $F_0 = f^{\alpha}_{\beta_0}F \cap G_0$ and $F_{i+1} = f^{\beta_i}_{\beta_{i+1}}F_i \cap G_{i+1}$ satisfy the following conditions: $F_i \in \mathcal{F}_{\beta_i}, F_i \prec F_{i+1}$ and $\bigcup F_{i+1} \subset \bigcup F_i$. For any $U_n \in F_n$ we find $U_i \in F_i$ so that $U_n \subset U_i$ to get the sequence

$$U_n \subsetneq \cdots \subsetneq U_i \subsetneq \cdots \subsetneq U_1 \subsetneq U_0 \subset \bigcup F$$

and put $\Delta_0 = \{\sigma_{\beta_0}, \ldots, \sigma_{\beta_n}\}, \Theta_0 = \emptyset$ and $W_0 = U_0$.

Let us construct for some $m \in \omega$ a sequence

$$U_n \subseteq \cdots \subseteq U_{i+1} = W_m \subsetneq U_i(\nu) \subsetneq U_i \subsetneq \cdots \subsetneq U_0(\nu) \subsetneq U_0 \subset \bigcup F$$

of sets $U_i \in \sigma_{\beta_i}$. Then $\Delta_m = \{\sigma_{\beta_{i+1}}, \ldots, \sigma_{\beta_n}\}$ and $\Theta_m = \{\sigma_{\beta_0}, \ldots, \sigma_{\beta_i}\}$ satisfy the following conditions:

- (1) $\Delta_m \cap \Theta_m = \emptyset;$
- (2) $\Delta_m \cup \Theta_m = \Delta_0;$
- (3) $W_m \subset \bigcup F$;
- (4) $W_m \subseteq \bigcup \sigma(\nu)$ for any $\sigma \in \Theta_m$;
- (5) for any $\sigma \in \Delta_m$ there is $U_{\sigma} \in \sigma$ with $U_{\sigma} \subseteq W_m$.

Let $\Omega = \{ \sigma \in \Delta_m : U_\sigma = W_m \}.$

If $\Delta_m \neq \Omega$, then we put $\Delta_{m+1} = \Delta_m \setminus \Omega$ and $\Theta_{m+1} = \Theta_m \cup \Omega$. As $\sigma \in \Delta_{m+1}$ are nice, we can choose $U'_{\sigma} \in \sigma$ so that $\bigcap \{U'_{\sigma} : \sigma \in \Delta_{m+1}\} \cap W_m(\nu) \neq \emptyset$. Then $U_{\sigma} \subsetneq W_m$ implies $U'_{\sigma} \subseteq W_m(\nu)$ by our construction. We define W_{m+1} to be the maximal member of embedded sequence $\{U'_{\sigma} : \sigma \in \Delta_{m+1}\}$.

If, finally, $\Delta_m = \Omega$, then W_m is as required.

Lemma 9. The point p is a b-point in βX .

PROOF: Define $F_{\nu} = \{p_{\alpha}(\nu) : \alpha < \lambda\}$ for all $\nu < 3$, where $p_{\alpha}(\nu) \in B_{\alpha}(\nu)$. By our construction, $F_{\nu} \subset \bigcap \mathcal{F}_{0}^{*} \subset X^{*}$ and for any neighbourhood O of p there is $\alpha < \lambda$ with

$$\{p_{\beta}(\nu): \beta \in \lambda \setminus \alpha\} \subset \bigcap \mathcal{F}_{\alpha}^* \subset O.$$

Then the condition $\{p_{\beta}(\nu): \beta < \alpha\} \subset [\bigcup \sigma_{\alpha}(\nu)]$ implies that the sets $[F_{\nu}] \setminus \{p\}$ are pairwise disjoint and $p \in F_{\nu}$ for no more then one unique F_{ν} . The other two ensure that p is a b-point in βX . Our proof is complete.

References

- Bešlagić A., van Douwen E.K., Spaces of nonuniform ultrafilters in spaces of uniform ultrafilters, Topology Appl. 35 (1990), no. 2–3, 253–260.
- [2] Błaszczyk A., Szymański A., Some non-normal subspaces of the Čech-Stone compactification of a discrete space, Abstracta, 8th Winter School on Abstract Analysis, Praha, Czechoslovak Academy of Sciences, 1980, 35–38.
- [3] Gryzlov A. A., On the question of hereditary normality of the space βω \ ω, Topology and Set Theory Udmurt. Gos. Univ. Izhevsk (1982), 61–64 (Russian).
- [4] Logunov S., On non-normality points and metrizable crowded spaces, Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527.
- [5] Rajagopalan M., $\beta N N \{p\}$ is not normal, J. Indian Math. Soc. (N.S.) **36** (1972), 173–176.
- [6] Shapirovkij B., On embedding extremely disconnected spaces in compact Hausdorff spaces, b-points and weight of point-wise normal spaces, Dokl. Akad. Nauk SSSR 223 (1975), 1083–1086 (Russian).
- [7] Szymański A., Retracts and non-normality points, Topology Proc. 40 (2012), 195-201.
- [8] Warren N. M., Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer. Math. Soc. 33 (1972), 599–606.

S. Logunov:

Department for Algebra and Topology, Udmurt State University, Universitetskaya 1, Izhevsk 426034, Russia

E-mail: olla209@yandex.ru

(Received December 2021, revised February 16, 2022)