A characterization of Corson-compact spaces

INGO BANDLOW

Abstract. We characterize Corson-compact spaces by means of countable elementary substructures.

Keywords: Corson-compact spaces, elementary substructures Classification: Primary 54D

First, let us review some definitions and facts concerning elementary substructures.

Let \mathcal{H} be an arbitrary non-empty set. A non-empty subset \mathcal{M} of \mathcal{H} is said to be an elementary substructure of \mathcal{H} ($\mathcal{M} \prec \mathcal{H}$, for short), if for any formula $\varphi(x_1, \ldots, x_n)$ of the language of set theory with the only free variables x_1, \ldots, x_n and for any $a_1, \ldots, a_n \in \mathcal{M}$ $\varphi[a_1, \ldots, a_n]$ is true iff it is true in \mathcal{H} .

A frequently used argument is the following fact which is known as Tarski Criterion for elementary substructures:

A subset \mathcal{M} of \mathcal{H} forms an elementary substructure of \mathcal{H} if and only if for every formula $\varphi(x_0, x_1, \ldots, x_n)$ and every $a_1, \ldots, a_1 \in \mathcal{M}$ such that there exists an $a \in \mathcal{H}$ such that $\varphi(a, a_1, \ldots, a_n)$ is true in \mathcal{H} , there is a $b \in \mathcal{M}$ such that $\varphi(b, a_1, \ldots, a_n)$ is true in \mathcal{H} (and therefore in \mathcal{M}).

Remark that if there is a unique $a \in \mathcal{H}$ satisfying $\varphi(a, a_1, \ldots, a_n)$ (in \mathcal{H}), then abelongs to \mathcal{M} provided $\mathcal{M} \prec \mathcal{H}$ and $a_i \in \mathcal{M}$, $i = 1, \ldots, n$. For a cardinal Θ , $\mathcal{H}(\Theta)$ denotes the set of all sets whose transitive closure has size less Θ (see Kunen [7]). For any sentence φ which is true (in V), there exist sufficiently large regular cardinals Θ such that φ is true in $\mathcal{H}(\Theta)$. This is the reason why we are interested in elementary substructures of $\mathcal{H}(\Theta)$, where Θ is regular and uncountable. When we investigate an object, say a topological space, we always assume Θ to be "large enough" without discussion how large it needs to be. Throughout the paper, we make the following assumption. If \mathcal{M} is an elementary substructure, \mathcal{M} contains all sets we need for the investigation of our object – for example, the set X, the set of all open subsets of X and the family C(X) of all real-valued continuous functions defined on X. This will be expressed by saying that " \mathcal{M} is a suitable elementary substructure".

The base of all our considerations is the following

Theorem 1 (Löwenheim–Skolem–Tarski). For each infinite set \mathcal{H} and each subset $X \subseteq \mathcal{H}$, there exists an elementary substructure \mathcal{M} of \mathcal{H} such that $X \subseteq \mathcal{M}$ and $|\mathcal{M}| \leq \max\{|X|, \omega\}$.

The following facts are well known.

Fact 2. If Θ is a regular uncountable cardinal, $\mathcal{M} \prec \mathcal{H}(\Theta)$ and A is a countable set, $A \in \mathcal{M}$, then $A \subseteq \mathcal{M}$.

For any uncountable set \mathcal{H} , $[\mathcal{H}]^{\omega}$ denotes the set of all countable subsets of \mathcal{H} . A family $C \subseteq [\mathcal{H}]^{\omega}$ is said to be unbounded if for every $X \in [\mathcal{H}]^{\omega}$ there is a $Y \in C$ with $X \subseteq Y$. We say C is closed if, whenever $X_n \in C$ and $X_n \subseteq X_{n+1}$ for each $n \in \omega$, then $\bigcup \{X_n : n \in \omega\} \in C$.

Fact 3. $\{\mathcal{M} \in [\mathcal{H}]^{\omega} : \mathcal{M} \prec \mathcal{H}\}$ is a closed unbounded subset of $[\mathcal{H}]^{\omega}$.

Fact 4. If C_1, C_2 are closed unbounded subsets of $[\mathcal{H}]^{\omega}$, then $C_1 \cap C_2$ is also a closed unbounded subset of $[\mathcal{H}]^{\omega}$.

The reader is referred to Kunen [7] or Dow [4] for more information on elementary substructures.

Now we are going to construct for each Hausdorff compact space X and each suitable elementary substructure \mathcal{M} (of $\mathcal{H}(\Theta)$) a relatively small compact space $X(\mathcal{M})$ and a mapping $\varphi_{\mathcal{M}}^X$ from X onto $X(\mathcal{M})$.¹ Let C(X) denote the set of all real-valued continuous functions defined on X. $\varphi_{\mathcal{M}}^X$ corresponds to the mapping which relates each point $x \in X$ to the point $(fx)_{C(X)\cap\mathcal{M}}$ from the product space $\mathbb{R}^{C(X)\cap\mathcal{M}}$. That is, $X(\mathcal{M})$ is the continuous image of X with the property that for any pair of distinct points $x_1, x_2 \in X$, we have $\varphi_{\mathcal{M}}^X(x_1) \neq \varphi_{\mathcal{M}}^X(x_2)$ iff there is a function $f \in C(X) \cap \mathcal{M}$ with $f(x_1) \neq f(x_2)$. Hence, $\varphi_{\mathcal{M}}^X(x_1) \neq \varphi_{\mathcal{M}}^X(x_2)$ iff there exist open subsets $U, V \in \mathcal{M}$ of X such that $x \in U, y \in V$ and $cl(U) \cap cl(V) = \emptyset$.

Lemma 5. Let $i: X \to \mathbb{R}^T$ be a continuous embedding of the Hausdorff compact space X into \mathbb{R}^T . Then $\varphi_{\mathcal{M}}^X$ is isomorphic to the composition of i and $\pi_{\mathcal{M}}$, where $\pi_{\mathcal{M}}$ denotes the projection mapping $\mathbb{R}^T \to \mathbb{R}^{T \cap \mathcal{M}}$.

PROOF: It is enough to show that for every function $f \in C(X) \cap \mathcal{M}$ and any pair of distinct points $x_1, x_2 \in X$ with $f(x_1) \neq f(x_2)$, we have $\pi_{\mathcal{M}}(ix_1) \neq \pi_{\mathcal{M}}(ix_2)$. Since X is compact, we may find – by means of some elementary observations – a continuous function $g : \mathbb{R}^T \to \mathbb{R}$ such that $f = g \cdot i$. Since $i, f \in \mathcal{M}$, we may assume that $g \in \mathcal{M}$. It is well known (see Engelking [5, 3.4.H]) that g depends on countably many coordinates, i.e. there exists a countable set $A \subseteq T$ and a continuous function $h : \mathbb{R}^A \to \mathbb{R}$ such that $g = h \cdot \pi_A$. We may assume that $A \in \mathcal{M}$. Since A is countable, it follows from Fact 2 that $A \subset \mathcal{M}$. Now it is easy to derive the existence of an index $\alpha \in A$ with $\pi_{\alpha}(ix_1) \neq \pi_{\alpha}(ix_2)$. Consequently, $\pi_{\mathcal{M}}(ix_1) \neq \pi_{\mathcal{M}}(ix_2)$.

The following definition plays the decisive role in this paper.

Definition 6. Let X be a Hausdorff compact space and \mathcal{M} a suitable elementary substructure (of $\mathcal{H}(\Theta)$). $\varphi_{\mathcal{M}}^X$ is called an \mathcal{M} -retraction, if $\varphi_{\mathcal{M}}^X$ maps $cl(X \cap \mathcal{M})$ homeomorphic on $X(\mathcal{M})$.

A compact space X is called Corson-compact, if X is homeomorphic to a subset of

$$\Sigma(\mathbb{R}^T) = \{x \in \mathbb{R}^T : \operatorname{supp}(x) \text{ is countable}\},\$$

¹This construction may be defined for arbitrary uniform spaces as will be shown in Bandlow [2].

where $\operatorname{supp}(x) = \{t \in T : x_t \neq 0\}$ for $x \in \mathbb{R}^T$, for some set T. Of course, $\Sigma(\mathbb{R}^T)$ is a subspace of \mathbb{R}^T with the usual product topology. Our main result is the following

Theorem 7. Let X be a Hausdorff compact space. The following assertions are equivalent:

- (a) X is Corson-compact.
- (b) There are a sufficiently large regular uncountable cardinal Θ and a closed unbounded family C ⊆ [H(Θ)]^ω of countable elementary substructures of H(Θ) such that φ^X_M is an M-retraction for every M ∈ C.
 (c) For every sufficiently large regular uncountable cardinal Θ there exists a closed
- (c) For every sufficiently large regular uncountable cardinal Θ there exists a closed unbounded family $C \subseteq [\mathcal{H}(\Theta)]^{\omega}$ of countable elementary substructures of $\mathcal{H}(\Theta)$ such that $\varphi_{\mathcal{M}}^X$ is an \mathcal{M} -retraction for every $\mathcal{M} \in C$.

Remark. Other characterizations of Corson-compact spaces were given by Gul'ko [6] and Shapirovskii [7]. I believe that our concept is more convenient for applications. In a subsequent paper, we will use our characterization to investigate the space of all real-valued continuous functions defined on a Corson-compact space in the topology of pointwise convergence.

The proof of the theorem breaks in several lemmas.

Lemma 8. (a) \rightarrow (b).

PROOF: Let $i: X \to \Sigma(\mathbb{R}^T)$ be an embedding of the Hausdorff compact space Xinto $\Sigma(\mathbb{R}^T)$. Suppose \mathcal{M} is a suitable elementary substructure (of $\mathcal{H}(\Theta)$). It is enough to show that $\varphi_{\mathcal{M}}^X$ is an \mathcal{M} -retraction. For the sake of simplicity, we identify X with i(X). If $x \in X \cap \mathcal{M}$, then it follows from Fact 2 that $\sup(x) \subseteq \mathcal{M}$. Hence, $\sup(X \cap \mathcal{M}) \subseteq \mathcal{M}$ and, consequently, $\sup(cl(X \cap \mathcal{M})) \subseteq \mathcal{M}$. Now it follows from Lemma 5 that $\varphi_{\mathcal{M}}^X$ restricted to $cl(X \cap \mathcal{M})$ is a one-to-one mapping. Since $\varphi_{\mathcal{M}}^X$ always maps $cl(X \cap \mathcal{M})$ onto $X(\mathcal{M})$, this implies that $\varphi_{\mathcal{M}}^X$ is an \mathcal{M} -retraction. \Box

Lemma 9. (b) \rightarrow (c).

The idea of the proof of this implication is standard and is based on the following

Fact 10 (Devlin [3]). Let \mathcal{A} and \mathcal{B} be uncountable sets, $\mathcal{A} \subseteq \mathcal{B}$.

- (a) If $C \subseteq [\mathcal{B}]^{\omega}$ is closed and unbounded, then $\{X \cap \mathcal{A} : X \in C\}$ contains a closed unbounded subfamily of $[\mathcal{A}]^{\omega}$.
- (b) If $C \subseteq [\mathcal{A}]^{\omega}$ is closed and unbounded, then $\{X \in [\mathcal{B}]^{\omega} : X \cap \mathcal{A} \in C\}$ is a closed unbounded subfamily of $[\mathcal{B}]^{\omega}$.

PROOF OF LEMMA 9: Let X be a Hausdorff compact space, Θ a regular uncountable cardinal and C_0 a closed unbounded set of countable elementary substructures of $\mathcal{H}(\Theta)$, such that $\varphi_{\mathcal{M}}^X$ is an \mathcal{M} -retraction for every $\mathcal{M} \in C_0$. Let μ be an arbitrary sufficiently large regular uncountable cardinal. "Sufficiently

Let μ be an arbitrary sufficiently large regular uncountable cardinal. "Sufficiently large" means, for instance, that X and C(X) are elements of $\mathcal{H}(\mu)$ and, therefore, $C(X) \subseteq \mathcal{H}(\mu)$ and $X \subseteq \mathcal{H}(\mu)$. Suppose that $\mu < \Theta$. By Facts 10 (a) and 4, we can find a closed unbounded subset C of $[\mathcal{H}(\mu)]^{\omega}$, consisting of elementary substructures of $\mathcal{H}(\mu)$ and satisfying the property that for each $\mathcal{N} \in C$ there exists an elementary substructure $\mathcal{M} \in C_0$ with $\mathcal{N} = \mathcal{M} \cap \mathcal{H}(\mu)$. This implies $\mathcal{N} \cap X = \mathcal{M} \cap X$ and $\mathcal{N} \cap C(X) = \mathcal{M} \cap C(X)$. Hence, $\varphi_{\mathcal{M}}^X$ and $\varphi_{\mathcal{N}}^X$ are isomorphic and $cl(X \cap \mathcal{M}) = cl(X \cap \mathcal{N})$. Thus $\varphi_{\mathcal{N}}^X$ is an \mathcal{N} -retraction.

The proof for the case $\mu > \Theta$ is quite similar.

Lemma 11. Let the Hausdorff compact space X be as in Theorem 7 (b). Then $t(X) = \omega$.

 \square

PROOF: Let x be a point of X and A a subset of X such that $x \in cl(A) \setminus A$. Let $\mathcal{M} \prec \mathcal{H}(\Theta)$ be such that $x, A \in \mathcal{M}$ and $\varphi_{\mathcal{M}}^X$ is an \mathcal{M} -retraction. We claim that $x \in cl(A \cap \mathcal{M})$. Otherwise, by the construction of $\varphi_{\mathcal{M}}^X$, for every point $y \in cl(A \cap \mathcal{M})$, there exists a function $f_y \in C(X) \cap \mathcal{M}$ with $f_y(x) \neq f_y(y)$. Since $cl(A \cap \mathcal{M})$ is compact and $\mathcal{M} \prec \mathcal{H}(\Theta)$, we can find a function $g \in C(X) \cap \mathcal{M}$ which separates x and $cl(A \cap \mathcal{M})$. Hence, there exists an open subset $U \in \mathcal{M}$ of X with $x \in U$ and $U \cap A \cap \mathcal{M} = \emptyset$. Since U and A are elements of \mathcal{M} , this implies that $U \cap A = \emptyset$, i.e. $x \notin cl(A)$. This contradiction proves the lemma. \Box

Lemma 12. Let X be a Hausdorff compact space, Θ a regular uncountable cardinal and $C_0 \subseteq [\varphi_{\mathcal{M}}^X]^{\omega}$ a closed unbounded family of countable elementary substructures of $\mathcal{H}(\Theta)$ such that $\varphi_{\mathcal{M}}^X$ is an \mathcal{M} -retraction for every $\mathcal{M} \in C_0$. Furthermore let $\vartheta > \Theta$ be a regular uncountable cardinal and \mathcal{N} an elementary substructure of $\mathcal{H}(\vartheta)$ with $X, C_0 \in \mathcal{N}$. Then $\varphi_{\mathcal{N}}^X$ is an \mathcal{N} -retraction.

PROOF: The assertion " $(\forall x \in X)(\exists \mathcal{M} \in C_0)(x \in \mathcal{M})$ " holds in $\mathcal{H}(\vartheta)$, hence in \mathcal{N} , since $X, C_0 \in \mathcal{N}$. Therefore, for every point $x \in X \cap \mathcal{N}$, there exists an $\mathcal{M} \in C_0 \cap \mathcal{N}$ with $x \in \mathcal{M}$. From Fact 2, it follows that $\mathcal{M} \subseteq \mathcal{N}$. Since C_0 is closed, there exists for every countable set $A \subseteq X \cap \mathcal{N}$ an $\mathcal{M} \in C_0$ with $A \subseteq \mathcal{M} \subseteq \mathcal{N}$.

Let x_1, x_2 be a pair of distinct points of $cl(X \cap N)$. We have to show that $\varphi_{\mathcal{N}}^X(x_1) \neq \varphi_{\mathcal{N}}^X(x_2)$, i.e. there must exist a function $f \in C(X) \cap N$ with $f(x_1) \neq f(x_2)$. Since $t(X) = \omega$, there exists a countable set $A \subseteq X \cap N$ such that $x_1 \in cl(A)$ and $x_2 \in cl(A)$. Let $\mathcal{M} \in C_0$ be such that $A \subseteq \mathcal{M} \subseteq \mathcal{N}$. Then $x_1, x_2 \in cl(X \cap \mathcal{M})$ and we find a function $f \in C(X) \cap \mathcal{M}$ with $f(x_1) \neq f(x_2)$.

Lemma 13. Let $f: X \to Y$ be a continuous mapping from the Hausdorff compact space X onto the Hausdorff compact space Y. Suppose further that \mathcal{M} is an elementary substructure (of $\mathcal{H}(\Theta)$) such that $f \in \mathcal{M}$ and $\varphi_{\mathcal{M}}^X$ is an \mathcal{M} -retraction. Then $\varphi_{\mathcal{M}}^Y$ is also an \mathcal{M} -retraction.

PROOF: One readily sees that $f(X \cap \mathcal{M}) = Y \cap \mathcal{M}$. Let x, y be a pair of distinct points of $\operatorname{cl}(Y \cap \mathcal{M})$ and choose open subsets U, V of Y such that $x \in U, y \in V$ and $U \cap V = \emptyset$. Since $\varphi_{\mathcal{M}}^X|_{\operatorname{cl}(X \cap \mathcal{M})}$ is a homeomorphism onto $X(\mathcal{M})$ and $\operatorname{cl}(X \cap \mathcal{M}) \setminus f^{-1}(U)$ is compact, there exists a function $f \in C(X) \cap \mathcal{M}$ which separates $f^{-1}\{x\} \cap \operatorname{cl}(X \cap \mathcal{M})$ and $\operatorname{cl}(X \cap \mathcal{M}) \setminus f^{-1}(U)$. Thus there exists a closed subset $F \in \mathcal{M}$ of X such that $f^{-1}\{x\} \cap \operatorname{cl}(X \cap \mathcal{M}) \subseteq F \cap \operatorname{cl}(X \cap \mathcal{M}) \subseteq f^{-1}(U)$. Analogously we can find a closed subset $H \in \mathcal{M}$ of X satisfying

$$f^{-1}{y} \cap \operatorname{cl}(X \cap \mathcal{M}) \subseteq H \cap \operatorname{cl}(X \cap \mathcal{M}) \subseteq f^{-1}(V).$$

We claim that $f(F) \cap f(H) = \emptyset$. Assume, on the contrary, $f(F) \cap f(H) \neq \emptyset$. Since $F, H \in \mathcal{M}$, there exist points $x' \in F \cap \mathcal{M}$ and $y' \in H \cap \mathcal{M}$ with f(x') = f(y'). This contradicts $F \cap \operatorname{cl}(X \cap \mathcal{M}) \subseteq f^{-1}(U)$ and $H \cap \operatorname{cl}(X \cap \mathcal{M}) \subseteq f^{-1}(V)$. Of course, $f(F) \in \mathcal{M}$ and $f(H) \in \mathcal{M}$. Therefore we can find a function $h \in C(Y) \cap \mathcal{M}$ which separates f(F) and f(H). This implies $\varphi^Y_{\mathcal{M}}(x) \neq \varphi^Y_{\mathcal{M}}(y)$.

We have arrived at the final assertion.

Lemma 14. Let X be as in Theorem 7 (b). Then there exists a set T and a homeomorphic embedding from X into $\Sigma(\mathbb{R}^T)$.

PROOF: By induction on $\tau = w(X)$. For $\tau = \omega$, this is trivial. Suppose the assertion holds for the Hausdorff compact spaces of weight $< \tau$. Using Lemma 12, one can find a regular uncountable cardinal ϑ and an increasing sequence $\langle \mathcal{N}_{\alpha} : \omega \leq \alpha < w(X) \rangle$ of elementary substructures of $\mathcal{H}(\vartheta)$, such that

- (1) $|\mathcal{N}_{\alpha}| < \tau$ for all $\alpha, \omega \leq \alpha < \tau$,
- (2) $\varphi_{\mathcal{N}_{\alpha}}^{X}$ is an \mathcal{N}_{α} -retraction for all $\alpha, \omega \leq \alpha < \tau$,
- (3) $\mathcal{N}_{\alpha} = \bigcup \{ \mathcal{N}_{\beta} : \omega \leq \beta < \alpha \}$ for all limit ordinals $\alpha, \omega \leq \alpha < \tau$,
- (4) $C(X) \cap (\bigcup \{\mathcal{N}_{\alpha} : \omega \leq \alpha < \tau\})$ separates an arbitrary pair of distinct points of X.

Now we make use of the inductive assumption. By Lemma 13, there exist a set T_{α} and a homeomorphic embedding

$$q_{\alpha}: X(\mathcal{N}_{\alpha}) \to \Sigma(\mathbb{R}^T \alpha)$$

for every $\alpha, \omega \leq \alpha < \tau$. Of course, one may assume that the T_{α} are pairwise disjoint. We set $Z_{\alpha} = \operatorname{cl}(X \cap \mathcal{N}_{\alpha})$ and identify Z_{α} with $X(\mathcal{N}_{\alpha})$. Instead of $\varphi_{\mathcal{N}_{\alpha}}^X$, we consider a mapping $\varphi_{\alpha} : X \to X$, where $\varphi_{\alpha}(X) = Z_{\alpha}, \omega \leq \alpha < \tau$.

Now we define the mapping $q: X \to \Sigma(\mathbb{R}^T)$, where $T = \bigcup \{T_{\alpha+1} : \omega \leq \alpha < \tau\}$ by setting

$$(q(x))_t = (q_{\alpha+1}(\varphi_{\alpha+1}(x)))_t - (q_{\alpha+1}(\varphi_{\alpha}(x)))_t$$

for all $x \in X$ and $t \in T_{\alpha+1}$, $\omega \leq \alpha < \tau$, and

$$(q(x))_t = (q_\alpha(\varphi_{\omega(x)}))_t$$

for all $x \in X$ and $t \in T_{\omega}$.

(Remark that the idea of this definition is due to Amir and Lindenstrauss [1].)

q is obviously a continuous mapping from X into \mathbb{R}^T . First, let us check that q is injective. Suppose we are given two points $x, y \in X$, $x \neq y$. Then there exists an ordinal $\beta, \omega \leq \beta < \tau$, such that $\varphi_{\beta}(x) \neq \varphi_{\beta}(y)$ and $\varphi_{\gamma}(x) = \varphi_{\gamma}(y)$ for all γ with $\omega \leq \gamma < \beta$. If $\beta = \omega$, then $(q(x))_t \neq (q(y))_t$ for any $t \in T_\omega$ and hence $q(x) \neq q(y)$. If $\beta > \omega$, then, by the condition (3), β is a successor ordinal, i.e. $\beta = \alpha + 1$ for an $\alpha, \omega \leq \alpha < \tau$. From $\varphi_{\alpha}(x) = \varphi_{\alpha}(y)$ and $\varphi_{\alpha+1}(x) \neq \varphi_{\alpha+1}(y)$, it follows that $(q(x))_t \neq (q(y))_t$ for any $t \in T_{\alpha+1}$.

To complete the proof, we have to show that for every point $x \in X$ the set $B_x = \{t \in T : (q(x))_t \neq 0\}$ is at most countable. Assume, on the contrary, that

 B_x is uncountable. Then we can choose a subset $B \subseteq B_x$ such that $\mu = \sup B$ satisfies $\operatorname{cf}(\mu) > \omega$. Since $t(X) = \omega$ (see Lemma 11), we have $Z_\mu = \bigcup \{Z_\alpha : \omega \le \alpha < \tau\}$. Therefore, one can find an ordinal $\alpha_0 < \mu$ such that $\varphi_\mu(x) \in Z_{\alpha_0}$ and, consequently, $\varphi_\alpha(x) = \varphi_\mu(x)$ for every α with $\alpha_0 < \alpha < \mu$. Hence $(q(x))_t = 0$ for every $t \in T_{\alpha+1}, \alpha_0 < \alpha < \mu$, which contradicts $B \subseteq B_x$; B is countable. This concludes the proof of the lemma and of the theorem.

Remark. The proof of Lemma 13 is a new proof of the fact that a Hausdorff continuous image of a Corson-compact space is Corson-compact (Gul'ko [6]).

References

- Amir D., Lindenstrauss J., The structure of weakly compact sets in Banach spaces, Ann. Math. Ser. 2 88:1 (1968), 35–46.
- [2] Bandlow I., A construction in set theoretic topology by means of elementary substructures, Zeitschr. f. Math. Logik und Grundlagen d. Math., submitted.
- [3] Devlin J., The Yorkshireman's guide to proper forcing, Proc. 1978 Cambridge Summer School in Set Theory.
- [4] Dow A., An introduction to applications of elementary submodels to topology, Topology Proceedings, vol. 13, no. 1, 1988.
- [5] Engelking R., General Topology, Warsaw, 1977.
- [6] Gul'ko S.P., On properties of subsets of σ-products, Dokl. Akad. Nauk SSSR 237:3 (1977), 505–508.
- [7] Kunen K., Set Theory, Studies in Logic 102, North-Holland, 1980.
- [8] Shapirovskii B.E., Special types of embeddings in Tychonoff cubes, Coll. Math. Soc. Janos Bolyai, 23. Topology Budapest, 1978, 1055–1086.

ERNST-MORITZ-ARNDT-UNIVESITÄT, GREIFSWALD, FACHBEREICH MATHEMATIK, GREIFSWALD 2200, FEDERAL REPUBLIC OF GERMANY

(Received September 3, 1990)