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A characterization of Corson-compact spaces

Ingo Bandlow

Abstract. We characterize Corson-compact spaces by means of countable elementary sub-
structures.
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First, let us review some definitions and facts concerning elementary substruc-
tures.
Let H be an arbitrary non-empty set. A non-empty subset M of H is said

to be an elementary substructure of H (M ≺ H, for short), if for any formula
ϕ(x1, . . . , xn) of the language of set theory with the only free variables x1, . . . , xn

and for any a1, . . . , an ∈ M ϕ[a1, . . . , an] is true iff it is true in H.
A frequently used argument is the following fact which is known as Tarski Cri-

terion for elementary substructures:

A subsetM of H forms an elementary substructure of H if and only if for
every formula ϕ(x0, x1, . . . , xn) and every a1, . . . , a1 ∈ M such that there
exists an a ∈ H such that ϕ(a, a1, . . . , an) is true in H, there is a b ∈ M
such that ϕ(b, a1, . . . , an) is true in H (and therefore inM).

Remark that if there is a unique a ∈ H satisfying ϕ(a, a1, . . . , an) (in H), then a
belongs toM providedM ≺ H and ai ∈ M, i = 1, . . . , n. For a cardinal Θ, H(Θ)
denotes the set of all sets whose transitive closure has size less Θ (see Kunen [7]). For
any sentence ϕ which is true (in V ), there exist sufficiently large regular cardinals Θ
such that ϕ is true in H(Θ). This is the reason why we are interested in elementary
substructures ofH(Θ), where Θ is regular and uncountable. When we investigate an
object, say a topological space, we always assume Θ to be “large enough” without
discussion how large it needs to be. Throughout the paper, we make the following
assumption. If M is an elementary substructure, M contains all sets we need for
the investigation of our object – for example, the set X , the set of all open subsets
of X and the family C(X) of all real-valued continuous functions defined on X .
This will be expressed by saying that “M is a suitable elementary substructure”.
The base of all our considerations is the following

Theorem 1 (Löwenheim–Skolem–Tarski). For each infinite set H and each subset
X ⊆ H, there exists an elementary substructure M of H such that X ⊆ M and

|M| ≤ max{|X |, ω}.

The following facts are well known.
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Fact 2. If Θ is a regular uncountable cardinal, M ≺ H(Θ) and A is a countable
set, A ∈ M, then A ⊆ M.

For any uncountable set H, [H]ω denotes the set of all countable subsets of H.
A family C ⊆ [H]ω is said to be unbounded if for every X ∈ [H]ω there is a Y ∈ C
with X ⊆ Y . We say C is closed if, whenever Xn ∈ C and Xn ⊆ Xn+1 for each
n ∈ ω, then

⋃
{Xn : n ∈ ω} ∈ C.

Fact 3. {M ∈ [H]ω :M ≺ H} is a closed unbounded subset of [H]ω.

Fact 4. If C1, C2 are closed unbounded subsets of [H]
ω , then C1∩C2 is also a closed

unbounded subset of [H]ω .

The reader is referred to Kunen [7] or Dow [4] for more information on elementary
substructures.
Now we are going to construct for each Hausdorff compact space X and each

suitable elementary substructure M (of H(Θ)) a relatively small compact space
X(M) and a mapping ϕX

M
from X onto X(M).1 Let C(X) denote the set of all

real-valued continuous functions defined on X . ϕX
M
corresponds to the mapping

which relates each point x ∈ X to the point (fx)C(X)∩M from the product space

R
C(X)∩M. That is, X(M) is the continuous image of X with the property that

for any pair of distinct points x1, x2 ∈ X , we have ϕX
M
(x1) 6= ϕX

M
(x2) iff there is

a function f ∈ C(X) ∩M with f(x1) 6= f(x2). Hence, ϕ
X
M
(x1) 6= ϕX

M
(x2) iff there

exist open subsets U, V ∈ M of X such that x ∈ U, y ∈ V and cl(U) ∩ cl(V ) = ∅.

Lemma 5. Let i : X → R
T be a continuous embedding of the Hausdorff compact

space X into R
T . Then ϕX

M
is isomorphic to the composition of i and πM, where

πM denotes the projection mapping R
T → R

T∩M.

Proof: It is enough to show that for every function f ∈ C(X) ∩M and any pair
of distinct points x1, x2 ∈ X with f(x1) 6= f(x2), we have πM(ix1) 6= πM(ix2).
Since X is compact, we may find – by means of some elementary observations –
a continuous function g : RT → R such that f = g·i. Since i, f ∈ M, we may assume
that g ∈ M. It is well known (see Engelking [5, 3.4.H]) that g depends on countably
many coordinates, i.e. there exists a countable set A ⊆ T and a continuous function
h : RA → R such that g = h·πA. We may assume that A ∈ M. Since A is countable,
it follows from Fact 2 that A ⊂ M. Now it is easy to derive the existence of an
index α ∈ A with πα(ix1) 6= πα(ix2). Consequently, πM(ix1) 6= πM(ix2). �

The following definition plays the decisive role in this paper.

Definition 6. Let X be a Hausdorff compact space andM a suitable elementary
substructure (of H(Θ)). ϕX

M
is called an M-retraction, if ϕX

M
maps cl(X ∩ M)

homeomorphic on X(M).

A compact space X is called Corson-compact, if X is homeomorphic to a subset
of

Σ(RT ) = {x ∈ R
T : supp(x) is countable},

1This construction may be defined for arbitrary uniform spaces as will be shown in Bandlow [2].
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where supp(x) = {t ∈ T : xt 6= 0} for x ∈ R
T , for some set T . Of course, Σ(RT ) is

a subspace of RT with the usual product topology. Our main result is the following

Theorem 7. Let X be a Hausdorff compact space. The following assertions are
equivalent:

(a) X is Corson-compact.
(b) There are a sufficiently large regular uncountable cardinal Θ and a closed
unbounded family C ⊆ [H(Θ)]ω of countable elementary substructures of
H(Θ) such that ϕX

M
is anM-retraction for everyM ∈ C.

(c) For every sufficiently large regular uncountable cardinalΘ there exists a closed
unbounded family C ⊆ [H(Θ)]ω of countable elementary substructures of
H(Θ) such that ϕX

M
is anM-retraction for everyM ∈ C.

Remark. Other characterizations of Corson-compact spaces were given by Gul’ko
[6] and Shapirovskii [7]. I believe that our concept is more convenient for appli-
cations. In a subsequent paper, we will use our characterization to investigate the
space of all real-valued continuous functions defined on a Corson-compact space in
the topology of pointwise convergence.

The proof of the theorem breaks in several lemmas.

Lemma 8. (a) → (b).

Proof: Let i : X → Σ(RT ) be an embedding of the Hausdorff compact space X

into Σ(RT ). Suppose M is a suitable elementary substructure (of H(Θ)). It is
enough to show that ϕX

M
is anM-retraction. For the sake of simplicity, we identify

X with i(X). If x ∈ X ∩M, then it follows from Fact 2 that supp(x) ⊆ M. Hence,
supp(X ∩M) ⊆ M and, consequently, supp(cl(X ∩M)) ⊆ M. Now it follows from
Lemma 5 that ϕX

M
restricted to cl(X ∩ M) is a one-to-one mapping. Since ϕX

M

always maps cl(X ∩M) onto X(M), this implies that ϕX
M
is anM-retraction. �

Lemma 9. (b) → (c).

The idea of the proof of this implication is standard and is based on the following

Fact 10 (Devlin [3]). Let A and B be uncountable sets, A ⊆ B.

(a) If C ⊆ [B]ω is closed and unbounded, then {X ∩ A : X ∈ C} contains
a closed unbounded subfamily of [A]ω .

(b) If C ⊆ [A]ω is closed and unbounded, then {X ∈ [B]ω : X ∩ A ∈ C} is
a closed unbounded subfamily of [B]ω.

Proof of Lemma 9: LetX be a Hausdorff compact space, Θ a regular uncountable
cardinal and C0 a closed unbounded set of countable elementary substructures of
H(Θ), such that ϕX

M
is anM-retraction for everyM ∈ C0.

Let µ be an arbitrary sufficiently large regular uncountable cardinal. “Sufficiently
large” means, for instance, that X and C(X) are elements of H(µ) and, therefore,
C(X) ⊆ H(µ) and X ⊆ H(µ). Suppose that µ < Θ. By Facts 10 (a) and 4, we can
find a closed unbounded subset C of [H(µ)]ω , consisting of elementary substructures
of H(µ) and satisfying the property that for each N ∈ C there exists an elementary
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substructure M ∈ C0 with N = M ∩ H(µ). This implies N ∩ X = M ∩ X and

N ∩ C(X) = M ∩ C(X). Hence, ϕX
M
and ϕX

N
are isomorphic and cl(X ∩ M) =

cl(X ∩ N ). Thus ϕX
N
is an N -retraction.

The proof for the case µ > Θ is quite similar. �

Lemma 11. Let the Hausdorff compact space X be as in Theorem 7 (b). Then
t(X) = ω.

Proof: Let x be a point of X and A a subset of X such that x ∈ cl(A) \ A. Let

M ≺ H(Θ) be such that x, A ∈ M and ϕX
M
is an M-retraction. We claim that

x ∈ cl(A∩M). Otherwise, by the construction of ϕX
M
, for every point y ∈ cl(A∩M),

there exists a function fy ∈ C(X) ∩ M with fy(x) 6= fy(y). Since cl(A ∩ M) is
compact andM ≺ H(Θ), we can find a function g ∈ C(X) ∩M which separates x
and cl(A ∩M). Hence, there exists an open subset U ∈ M of X with x ∈ U and
U ∩ A ∩M = ∅. Since U and A are elements of M, this implies that U ∩ A = ∅,
i.e. x /∈ cl(A). This contradiction proves the lemma. �

Lemma 12. LetX be a Hausdorff compact space, Θ a regular uncountable cardinal
and C0 ⊆ [ϕ

X
M
]ω a closed unbounded family of countable elementary substructures

of H(Θ) such that ϕX
M
is an M-retraction for every M ∈ C0. Furthermore let

ϑ > Θ be a regular uncountable cardinal and N an elementary substructure of

H(ϑ) with X, C0 ∈ N . Then ϕX
N
is an N -retraction.

Proof: The assertion “(∀x ∈ X)(∃M ∈ C0)(x ∈ M)” holds in H(ϑ), hence in N ,
since X, C0 ∈ N . Therefore, for every point x ∈ X∩N , there exists anM ∈ C0∩N
with x ∈ M. From Fact 2, it follows thatM ⊆ N . Since C0 is closed, there exists
for every countable set A ⊆ X ∩ N anM ∈ C0 with A ⊆ M ⊆ N .
Let x1, x2 be a pair of distinct points of cl(X ∩ N ). We have to show that

ϕX
N
(x1) 6= ϕX

N
(x2), i.e. there must exist a function f ∈ C(X) ∩ N with f(x1) 6=

f(x2). Since t(X) = ω, there exists a countable set A ⊆ X∩N such that x1 ∈ cl(A)
and x2 ∈ cl(A). LetM ∈ C0 be such that A ⊆ M ⊆ N . Then x1, x2 ∈ cl(X ∩M)
and we find a function f ∈ C(X) ∩M with f(x1) 6= f(x2). �

Lemma 13. Let f : X → Y be a continuous mapping from the Hausdorff compact
space X onto the Hausdorff compact space Y . Suppose further that M is an

elementary substructure (of H(Θ)) such that f ∈ M and ϕX
M
is anM-retraction.

Then ϕY
M
is also anM-retraction.

Proof: One readily sees that f(X ∩M) = Y ∩M. Let x, y be a pair of distinct
points of cl(Y ∩ M) and choose open subsets U, V of Y such that x ∈ U, y ∈
V and U ∩ V = ∅. Since ϕX

M
|cl(X∩M) is a homeomorphism onto X(M) and

cl(X ∩ M) \ f−1(U) is compact, there exists a function f ∈ C(X) ∩ M which
separates f−1{x}∩ cl(X ∩M) and cl(X ∩M) \ f−1(U). Thus there exists a closed
subset F ∈ M of X such that f−1{x} ∩ cl(X ∩M) ⊆ F ∩ cl(X ∩M) ⊆ f−1(U).
Analogously we can find a closed subset H ∈ M of X satisfying

f−1{y} ∩ cl(X ∩M) ⊆ H ∩ cl(X ∩M) ⊆ f−1(V ).
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We claim that f(F )∩ f(H) = ∅. Assume, on the contrary, f(F )∩ f(H) 6= ∅. Since
F, H ∈ M, there exist points x′ ∈ F ∩M and y′ ∈ H ∩M with f(x′) = f(y′). This
contradicts F ∩ cl(X ∩M) ⊆ f−1(U) and H ∩ cl(X ∩M) ⊆ f−1(V ). Of course,
f(F ) ∈ M and f(H) ∈ M. Therefore we can find a function h ∈ C(Y ) ∩M which

separates f(F ) and f(H). This implies ϕY
M
(x) 6= ϕY

M
(y). �

We have arrived at the final assertion.

Lemma 14. Let X be as in Theorem 7 (b). Then there exists a set T and a home-

omorphic embedding from X into Σ(RT ).

Proof: By induction on τ = w(X). For τ = ω, this is trivial. Suppose the assertion
holds for the Hausdorff compact spaces of weight< τ . Using Lemma 12, one can find
a regular uncountable cardinal ϑ and an increasing sequence 〈Nα : ω ≤ α < w(X)〉
of elementary substructures of H(ϑ), such that

(1) |Nα| < τ for all α, ω ≤ α < τ ,

(2) ϕX
Nα

is an Nα-retraction for all α, ω ≤ α < τ ,

(3) Nα =
⋃
{Nβ : ω ≤ β < α} for all limit ordinals α, ω ≤ α < τ ,

(4) C(X) ∩ (
⋃
{Nα : ω ≤ α < τ}) separates an arbitrary pair of distinct points

of X .

Now we make use of the inductive assumption. By Lemma 13, there exist a set Tα

and a homeomorphic embedding

qα : X(Nα)→ Σ(R
T α)

for every α, ω ≤ α < τ . Of course, one may assume that the Tα are pairwise disjoint.
We set Zα = cl(X ∩Nα) and identify Zα with X(Nα). Instead of ϕ

X
Nα

, we consider

a mapping ϕα : X → X , where ϕα(X) = Zα, ω ≤ α < τ .

Now we define the mapping q : X → Σ(RT ), where T =
⋃
{Tα+1 : ω ≤ α < τ}

by setting
(q(x))t = (qα+1(ϕα+1(x)))t − (qα+1(ϕα(x)))t

for all x ∈ X and t ∈ Tα+1, ω ≤ α < τ , and

(q(x))t = (qα(ϕω(x)))t

for all x ∈ X and t ∈ Tω.
(Remark that the idea of this definition is due to Amir and Lindenstrauss [1].)

q is obviously a continuous mapping from X into R
T . First, let us check that q

is injective. Suppose we are given two points x, y ∈ X , x 6= y. Then there exists an
ordinal β, ω ≤ β < τ„ such that ϕβ(x) 6= ϕβ(y) and ϕγ(x) = ϕγ(y) for all γ with
ω ≤ γ < β. If β = ω, then (q(x))t 6= (q(y))t for any t ∈ Tω and hence q(x) 6= q(y).
If β > ω, then, by the condition (3), β is a successor ordinal, i.e. β = α + 1 for
an α, ω ≤ α < τ . From ϕα(x) = ϕα(y) and ϕα+1(x) 6= ϕα+1(y), it follows that
(q(x))t 6= (q(y))t for any t ∈ Tα+1.
To complete the proof, we have to show that for every point x ∈ X the set

Bx = {t ∈ T : (q(x))t 6= 0} is at most countable. Assume, on the contrary, that
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Bx is uncountable. Then we can choose a subset B ⊆ Bx such that µ = supB
satisfies cf(µ) > ω. Since t(X) = ω (see Lemma 11), we have Zµ =

⋃
{Zα : ω ≤

α < τ}. Therefore, one can find an ordinal α0 < µ such that ϕµ(x) ∈ Zα0 and,
consequently, ϕα(x) = ϕµ(x) for every α with α0 < α < µ. Hence (q(x))t = 0 for
every t ∈ Tα+1, α0 < α < µ, which contradicts B ⊆ Bx; B is countable.
This concludes the proof of the lemma and of the theorem. �

Remark. The proof of Lemma 13 is a new proof of the fact that a Hausdorff
continuous image of a Corson-compact space is Corson-compact (Gul’ko [6]).
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