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A characterization of Corson-compact spaces

INGO BANDLOW

Abstract. We characterize Corson-compact spaces by means of countable elementary sub-
structures.
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First, let us review some definitions and facts concerning elementary substruc-
tures.

Let H be an arbitrary non-empty set. A non-empty subset M of H is said
to be an elementary substructure of H (M < H, for short), if for any formula
o(x1,...,xy) of the language of set theory with the only free variables z1, ...,z
and for any aj,...,an € M ¢@la,...,ap] is true iff it is true in H.

A frequently used argument is the following fact which is known as Tarski Cri-
terion for elementary substructures:

A subset M of H forms an elementary substructure of H if and only if for
every formula ¢(xg,1,...,2n) and every aq,...,a; € M such that there
exists an a € H such that ¢(a,a1,...,an) is true in H, there is a b € M
such that p(b,ai,...,ay) is true in H (and therefore in M).

Remark that if there is a unique a € H satisfying ¢(a,a1,...,an) (in H), then a
belongs to M provided M < H and a; € M, i =1,...,n. For a cardinal ©, H(©)
denotes the set of all sets whose transitive closure has size less © (see Kunen [7]). For
any sentence ¢ which is true (in V'), there exist sufficiently large regular cardinals ©
such that ¢ is true in H(®©). This is the reason why we are interested in elementary
substructures of H(©), where O is regular and uncountable. When we investigate an
object, say a topological space, we always assume © to be “large enough” without
discussion how large it needs to be. Throughout the paper, we make the following
assumption. If M is an elementary substructure, M contains all sets we need for
the investigation of our object — for example, the set X, the set of all open subsets
of X and the family C(X) of all real-valued continuous functions defined on X.
This will be expressed by saying that “M is a suitable elementary substructure”.
The base of all our considerations is the following

Theorem 1 (Léwenheim—Skolem—Tarski). For each infinite set H and each subset
X C 'H, there exists an elementary substructure M of H such that X C M and
M| < max{|X| w}.

The following facts are well known.

545



546

1. Bandlow

Fact 2. If O is a regular uncountable cardinal, M < H(©) and A is a countable
set, A € M, then A C M.

For any uncountable set H, [H]“ denotes the set of all countable subsets of H.
A family C C [H]¥ is said to be unbounded if for every X € [H]“ thereisa Y € C
with X C Y. We say C is closed if, whenever X,;,, € C' and X;,, C X, 41 for each
n € w, then | J{X, :new} e C.

Fact 3. {M € [H]¥ : M < H} is a closed unbounded subset of [H]“.

Fact 4. If Cq, Cy are closed unbounded subsets of [H]*, then C1NCY is also a closed
unbounded subset of [H]“.

The reader is referred to Kunen [7] or Dow [4] for more information on elementary
substructures.

Now we are going to construct for each Hausdorff compact space X and each
suitable elementary substructure M (of H(©)) a relatively small compact space
X (M) and a mapping goj)\{/l from X onto X (M).! Let C(X) denote the set of all

real-valued continuous functions defined on X. cpi(/l corresponds to the mapping
which relates each point x € X to the point (ff)C(X)mM from the product space

RECONM - That is, X (M) is the continuous image of X with the property that
for any pair of distinct points z1,x9 € X, we have npj\(/l (1) # npj\(/l (z2) iff there is
a function f € C(X)NM with f(x1) # f(z2). Hence, Lpﬁ (1) # <P/)\(/1 (z2) iff there
exist open subsets U,V € M of X such that z € U,y € V and cl(U) Ncl(V) = 0.

Lemma 5. Let i : X — RT be a continuous embedding of the Hausdorff compact
space X into RT. Then goj)\{/t is isomorphic to the composition of i and w4, where

maq denotes the projection mapping RT — RTOM,

PROOF: It is enough to show that for every function f € C(X) N M and any pair
of distinct points x1, 29 € X with f(x1) # f(z2), we have ma((iz1) # maq(iz2).
Since X is compact, we may find — by means of some elementary observations —
a continuous function ¢ : RT — R such that f = g-i. Since, f € M, we may assume
that g € M. It is well known (see Engelking [5, 3.4.H]) that g depends on countably
many coordinates, i.e. there exists a countable set A C T and a continuous function
h: R4 = R such that g = h-m4. We may assume that A € M. Since A is countable,
it follows from Fact 2 that A C M. Now it is easy to derive the existence of an
index o € A with mq(iz1) # ma(iza). Consequently, maq(ix1) # maq(ix2). O

The following definition plays the decisive role in this paper.

Definition 6. Let X be a Hausdorff compact space and M a suitable elementary
substructure (of H(©)). <P/)\(/1 is called an M-retraction, if <P/)\(/( maps cl(X N M)
homeomorphic on X (M).
A compact space X is called Corson-compact, if X is homeomorphic to a subset
of
S(RT) = {2 € RT : supp(z) is countable},

I This construction may be defined for arbitrary uniform spaces as will be shown in Bandlow [2].
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where supp(z) = {t € T : 2 # 0} for z € RT, for some set T. Of course, B(RT) is
a subspace of RT with the usual product topology. Our main result is the following

Theorem 7. Let X be a Hausdorff compact space. The following assertions are
equivalent:

(a) X is Corson-compact.

(b) There are a sufficiently large regular uncountable cardinal © and a closed
unbounded family C' C [H(©)]“ of countable elementary substructures of
H(©) such that ‘Pﬁ\(/l is an M-retraction for every M € C.

(¢c) For every sufficiently large regular uncountable cardinal © there exists a closed
unbounded family C' C [H(©)]“ of countable elementary substructures of
H(®) such that cpi(/l is an M-retraction for every M € C.

Remark. Other characterizations of Corson-compact spaces were given by Gul’ko
[6] and Shapirovskii [7]. I believe that our concept is more convenient for appli-
cations. In a subsequent paper, we will use our characterization to investigate the
space of all real-valued continuous functions defined on a Corson-compact space in
the topology of pointwise convergence.

The proof of the theorem breaks in several lemmas.
Lemma 8. (a) — (b).

PROOF: Let i : X — X(RT) be an embedding of the Hausdorff compact space X
into X(RT). Suppose M is a suitable elementary substructure (of H(©)). It is
enough to show that goj)\{/t is an M-retraction. For the sake of simplicity, we identify
X with i(X). If £ € X N M, then it follows from Fact 2 that supp(xz) C M. Hence,
supp(X N M) C M and, consequently, supp(cl(X NM)) C M. Now it follows from
Lemma 5 that 30/)\{4 restricted to cl(X N M) is a one-to-one mapping. Since goj)\{/t
always maps cl(X N M) onto X (M), this implies that cpi(/l is an M-retraction. [J

Lemma 9. (b) — (c).
The idea of the proof of this implication is standard and is based on the following

Fact 10 (Devlin [3]). Let A and B be uncountable sets, A C B.

(a) If C C [B]* is closed and unbounded, then {X N A : X € C} contains
a closed unbounded subfamily of [A]“.

(b) If C C [A]¥ is closed and unbounded, then {X € [B]Y : XN A € C} is
a closed unbounded subfamily of [B]“.

PROOF OF LEMMA 9: Let X be a Hausdorff compact space, © a regular uncountable
cardinal and Cj a closed unbounded set of countable elementary substructures of
H(©), such that 30/)\{4 is an M-retraction for every M € Cj.

Let p be an arbitrary sufficiently large regular uncountable cardinal. “Sufficiently
large” means, for instance, that X and C(X) are elements of H(u) and, therefore,
C(X) C H(u) and X C H(p). Suppose that p < ©. By Facts 10 (a) and 4, we can
find a closed unbounded subset C' of [H(u)]“, consisting of elementary substructures
of H(u) and satisfying the property that for each N € C there exists an elementary
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substructure M € Cp with N' = M N H(p). This implies N N X = M N X and
NNC(X)=MnC(X). Hence, cp/)\(/( and goj)\(/ are isomorphic and cl(X N M) =
cl(X NN). Thus ¢ is an A-retraction.

The proof for the case p > O is quite similar. 0

Lemma 11. Let the Hausdorff compact space X be as in Theorem 7 (b). Then
tHX) = w.

PROOF: Let x be a point of X and A a subset of X such that z € cl(4) \ A. Let
M < H(O) be such that z, A € M and <P/)\(/( is an M-retraction. We claim that
x € cl(ANM). Otherwise, by the construction of <p/)\</(, for every point y € cl(ANM),
there exists a function f, € C(X)N M with fy(z) # fy(y). Since cl(AN M) is
compact and M < H(O), we can find a function g € C'(X) N M which separates z
and cl(A N M). Hence, there exists an open subset U € M of X with 2 € U and
UNANM = 0. Since U and A are elements of M, this implies that U N A = (),
i.e. x ¢ cl(A). This contradiction proves the lemma. O

Lemma 12. Let X be a Hausdorff compact space, © a regular uncountable cardinal
and Cy C [gpﬁ]“’ a closed unbounded family of countable elementary substructures
of H(©) such that gpﬁ is an M-retraction for every M € Cy. Furthermore let
Y > O be a regular uncountable cardinal and N an elementary substructure of
H(9) with X,Co € N. Then %)\(/ is an N -retraction.

PROOF: The assertion “(Vz € X)(IM € Cp)(x € M)” holds in H(1)), hence in N,
since X, Cy € N. Therefore, for every point z € X NN, there exists an M € CoNN
with z € M. From Fact 2, it follows that M C A/. Since Cy is closed, there exists
for every countable set A C X NN an M € Cy with AC M CN.

Let z1,79 be a pair of distinct points of cl(X N N). We have to show that
gof\{/(acl) # goj)\(/(:vg), i.e. there must exist a function f € C(X)NN with f(z1) #
f(z2). Since t(X) = w, there exists a countable set A C X NN such that z1 € cl(4)
and x9 € cl(A). Let M € Cy be such that A C M C N. Then x1,z9 € cl(X N M)
and we find a function f € C(X)NM with f(x1) # f(z2). O

Lemma 13. Let f: X — Y be a continuous mapping from the Hausdorff compact
space X onto the Hausdorff compact space Y. Suppose further that M is an
elementary substructure (of H(©)) such that f € M and goj)\{/t is an M-retraction.

Then cp% is also an M-retraction.

PROOF: One readily sees that f(X N M) =Y N M. Let z,y be a pair of distinct
points of cl(Y N M) and choose open subsets U,V of Y such that x € U,y €
Vand UNV = (. Since 30/)\{4 lei(xnam) 18 @ homeomorphism onto X (M) and
(X N M)\ f~YU) is compact, there exists a function f € C(X) N M which
separates f 1z} Ncl(X N M) and cl(X N M)\ f~1(U). Thus there exists a closed
subset F' € M of X such that f~{z}Nnc(X N M) C Fnecl(X N M) C f~HU).
Analogously we can find a closed subset H € M of X satisfying

FTHyynd(XNnM)C HNe(X N M) C f~HV).
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We claim that f(F)N f(H) = (. Assume, on the contrary, f(F)N f(H) # (. Since
F, H € M, there exist points 2’ € FNM and y' € HNM with f(2') = f(v/). This
contradicts F N cl(X N M) C f~YU) and H Ncl(X N M) C f~YV). Of course,
f(F) e M and f(H) € M. Therefore we can find a function h € C(Y) N M which

separates f(F) and f(H). This implies ‘PX/I (x) # gp}\//l (y). O
We have arrived at the final assertion.

Lemma 14. Let X be as in Theorem 7 (b). Then there exists a set T and a home-
omorphic embedding from X into Z(RT).

PRrOOF: By induction on 7 = w(X). For 7 = w, this is trivial. Suppose the assertion
holds for the Hausdorff compact spaces of weight < 7. Using Lemma 12, one can find
a regular uncountable cardinal ¥ and an increasing sequence (N : w < a < w(X))
of elementary substructures of H(¢#), such that

(1) |./\/a|<7'forallo¢w<o¢<7’,

(2) ¢ /\/’ is an Ny-retraction for all o,w < o < 7,
(3) No =U{Np : w < 8 < o} for all limit ordinals o, w < a < 7,
(4) C(X)n (U{Na :w < a < 7}) separates an arbitrary pair of distinct points

of X.

Now we make use of the inductive assumption. By Lemma 13, there exist a set Ty
and a homeomorphic embedding

o X(NVy) — SR a)

for every a,w < a < 7. Of course, one may assume that the Ty, are pairwise disjoint.
We set Zo = cl(X NNy) and identify Z, with X (V). Instead of wj)\(/a, we consider
a mapping ¢q : X — X, where 9o (X) = Zp, w < a < 7.

Now we define the mapping ¢ : X — X(RT), where T = J{Tnt1:w < a < 7}

by setting
(@(2)t = (dat1(Pat1(2))t = (Gar1(pal@)))t

forallz € X and t € To41, w < < 7, and

(Q(x))t = (CIa (‘Pw(z)))t

forallz € X and t € T,.
(Remark that the idea of this definition is due to Amir and Lindenstrauss [1].)

q is obviously a continuous mapping from X into RT. First, let us check that ¢
is injective. Suppose we are given two points z,y € X, x # y. Then there exists an
ordinal 3,w < B < 7, such that pg(z) # wg(y) and oy () = @, (y) for all v with
w<~vy< B If f=w, then (¢(x)): # (q(y)): for any ¢t € T, and hence ¢(z) # q(y).
If 8 > w, then, by the condition (3), § is a successor ordinal, i.e. 8 = a + 1 for
an a,w < a < 7. From ¢o(x) = va(y) and @ar1(x) # ©a+1(y), it follows that
(q(x))e # (q(y))t for any t € Tp41.

To complete the proof, we have to show that for every point x € X the set
By = {t € T : (q(z))t # 0} is at most countable. Assume, on the contrary, that
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B is uncountable. Then we can choose a subset B C By such that gy = sup B
satisfies cf(p) > w. Since t(X) = w (see Lemma 11), we have Z,, = [J{Za : w <
a < 7}. Therefore, one can find an ordinal ag < p such that ¢, (z) € Zy, and,
consequently, @q(x) = ¢, () for every a with ag < a < pu. Hence (¢(z))r = 0 for
every t € Ty+1, 00 < a < p, which contradicts B C Bg; B is countable.

This concludes the proof of the lemma and of the theorem. O

Remark. The proof of Lemma 13 is a new proof of the fact that a Hausdorff
continuous image of a Corson-compact space is Corson-compact (Gul’ko [6]).

REFERENCES

[1] Amir D., Lindenstrauss J., The structure of weakly compact sets in Banach spaces, Ann.
Math. Ser. 2 88:1 (1968), 35-46.

[2] Bandlow 1., A construction in set theoretic topology by means of elementary substructures,
Zeitschr. f. Math. Logik und Grundlagen d. Math., submitted.

[3] Devlin J., The Yorkshireman’s guide to proper forcing, Proc. 1978 Cambridge Summer School
in Set Theory.

[4] Dow A., An introduction to applications of elementary submodels to topology, Topology
Proceedings, vol. 13, no. 1, 1988.

[5] Engelking R., General Topology, Warsaw, 1977.

[6] Gul’ko S.P., On properties of subsets of o-products, Dokl. Akad. Nauk SSSR 237:3 (1977),
505-508.

[7] Kunen K., Set Theory, Studies in Logic 102, North-Holland, 1980.

[8] Shapirovskii B.E., Special types of embeddings in Tychonoff cubes, Coll. Math. Soc. Janos
Bolyai, 23. Topology Budapest, 1978, 1055-1086.

ERNST-MORITZ—ARNDT—UNIVESITAT, GREIFSWALD, FACHBEREICH MATHEMATIK, GREIFSWALD
2200, FEDERAL REPUBLIC OF GERMANY

(Received September 3,1990)



