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Weak uniform rotundity of Musielak–Orlicz spaces

Ma lgorzata Doman

Abstract. We give necessary and sufficient conditions for weak uniform rotundity of Musie-
lak–Orlicz spaces Lϕ with the Luxemburg norm. The result is a generalization of a theorem
by Kamińska and Kurc.
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Introduction.

Let T be a set,
∑

a σ-algebra of subsets of T , µ a non-negative atomless σ-finite
complete measure on

∑

. A function ϕ : R+ × T → R+, where R+ = [0, +∞), is
said to be a Musielak–Orlicz function if ϕ(0, t) = 0 for µ-almost every t ∈ T , ϕ( , t)
is a convex function on R+ for µ-almost every t ∈ T and ϕ(u, ) is a

∑

-measurable
function on T for every u ≥ 0. The complementary function to a function ϕ is
defined by ϕ∗(v, t) = supu>0(vu−ϕ(u, t)) for v ≥ 0, t ∈ T . We denote by M the set
of all

∑

-measurable functions x : T → R. The functions which are different only
on a null-set are considered as identical. The Musielak–Orlicz space Lϕ is a subset
of M such that Iϕ(λx) =

∫

T ϕ(λ|x(t)|, t) dµ < +∞ for some λ > 0 dependent on x.

The functionals ‖x‖ϕ = inf{r > 0 : Iϕ(x
r ) ≤ 1} and ‖x‖0ϕ = sup{

∫

T x(t)y(t) dµ :

y ∈ Lϕ∗ , Iϕ∗(y) ≤ 1} are norms in this space, called the Luxemburg and the Orlicz
norm, respectively. We say that a function ϕ satisfies the condition ∆α, for some
α > 1, if there are a constant Kα > 0 and a function hα : T → R+, such that
∫

T hα(t) dµ < +∞ and ϕ(αu, t) ≤ Kαϕ(u, t) + hα(t) for almost every t ∈ T and
for u ≥ u0 (u0-some positive constant), when µ(T ) < +∞, or for all u ∈ R+, when
µ(T ) = +∞. Recall that a function ϕ is called strictly convex, if for all u, v ∈
R+, u 6= v, α, β ∈ R+ \ {0}, α + β = 1, we have ϕ(αu + βv, t) < αϕ(u, t) + βϕ(v, t)
outside of some null-set. For further details concerning Musielak–Orlicz spaces
see [7].

We say that a Banach space (X, ‖ ‖) is weakly uniformly rotund (WUR), if for
every x∗ ∈ X, x∗ 6= 0 and ε > 0 there exists δ(x∗, ε) > 0, such that if ‖x‖ = ‖y‖ = 1

and x∗(x − y) ≥ ε, then ‖x+y
2 ‖ ≤ 1 − δ(x∗, ε) (cf. [1]). If for all x, y ∈ X such that

‖x‖ = ‖y‖ = 1 we have ‖x+y
2 ‖ < 1, then we say that (X, ‖ ‖) is rotund.

The aim of this paper is to give necessary and sufficient conditions for WUR of
Musielak–Orlicz spaces. The result is a generalization of a theorem by Kamińska
and Kurc ([6, Theorem 2.8]).

I am greatly indebted to Professor Anna Kamińska for suggesting the problem discussed here
to me. I wish to thank also Professor Henryk Hudzik for his help in preparing this paper
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Results.

For the proof of the main theorem, we need some lemmas.

Lemma 1 (cf. [6]). If an arbitrary Banach space contains an isomorphic copy of l1,
then X is not WUR.

Lemma 2. If ϕ is a strictly convex Musielak–Orlicz function, then for every ε > 0
and every

∑

-measurable functions p, q : T → (0, +∞), p(t) < q(t) for µ-almost
every t ∈ T , there exists a

∑

-measurable function r : T → (0, 1) such that

ϕ(
u + v

2
, t) ≤

1 − r(t)

2
{ϕ(u, t) + ϕ(v, t)}

for µ-almost every t ∈ T whenever |u − v| ≥ ε max{|u|, |v|} and max{|u|, |v|} ∈
[p(t), q(t)].

The proof of this lemma is analogous to that of Lemma 1 in [5], so it is omitted
here. �

Lemma 3. Assume that ϕ is a Musielak–Orlicz function satisfying the∆2-condition.
Then for every α > 1 and ε > 0, there is a set T0 of measure 0, a constant Kα,ε > 0
and a

∑

-measurable function hα,ε : T → [0, +∞) such that
∫

T hα,ε(t) dµ ≤ ε and
ϕ(αu, t) ≤ Kα,εϕ(u, t) + hα,ε(t) for any t ∈ T \ T0 and any u ∈ R.

The proof for α = 2 is given in [4]. The proof for an arbitrary α > 1 can proceed
in the same way, if we notice that ϕ satisfies the ∆2-condition if and only if it
satisfies the ∆α-condition for every α > 1. �

Lemma 4 (cf. [4]). Let ϕ be a Musielak–Orlicz function that satisfies the ∆2-
condition. Then

(i) there is a function β : (0, 1) → (0, 1) such that ‖x‖ϕ ≤ 1 − β(ε) whenever
Iϕ(x) ≤ 1 − ε.

(ii) ‖x‖ϕ = 1 if and only if Iϕ(x) = 1.

Lemma 5. Assume that ϕ is a Musielak–Orlicz function vanishing only at 0 and
that ϕ and ϕ∗ satisfy the ∆2-condition. Let x∗ ∈ (Lϕ)∗ be regular and nontrivial
(i.e. there exists z ∈ Lϕ∗ , z 6= 0 such that x∗(x) =

∫

T x(t)z(t) dµ for every x ∈ Lϕ).
Let (Bn)∞n=1 be an increasing sequence of sets with finite and positive measures

such that
⋃

n Bn = supp z. Denote Cn = {t ∈ T : 1n ≤ |z(t)| ≤ n} and put
Dn = Cn ∩ Bn. Then (Dn)∞n=1 is increasing,

⋃

n Dn = supp z and

∫

Dn

y(t)z(t) dµ →

∫

T
y(t)z(t) dµ

uniformly with respect to y in every bounded set in Lϕ.
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Proof: In virtue of B. Levi theorem and the ∆2-condition for ϕ∗, we have
‖z − zn‖

0
ϕ∗ → 0 as n → +∞, where zn = zχDn

. Then

0 ≤

∣

∣

∣

∣

∫

T
y(t)z(t) dµ −

∫

Dm

y(t)z(t) dµ

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∫

T
y(t)z(t) dµ −

∫

T
y(t)zm(t) dµ

∣

∣

∣

∣

≤

≤ ‖y‖ϕ ‖z − zm‖0ϕ∗ ≤ C‖z − zm‖0ϕ∗ .

Hence the desired result follows. �

The next two lemmas are analogs of Lemma 2.5 and Lemma 2.6 of [6].

Lemma 6. Let µ(T ) < +∞ and ϕ be a Musielak–Orlicz function such that for

every t ∈ T
ϕ(u,t)

u → +∞ as u → +∞. Then for every ε > 0, there exist
∑

-

measurable functions p, q : T → (0, +∞) such that for every x, y ∈ Lϕ satisfying

Iϕ(x) = Iϕ(y) = 1 and
∫

T |x(t) − y(t)| dµ ≥ ε, we have
∫

A |x(t) − y(t)| dµ ≥ ε
4

whenever

A = {t ∈ T : p(t) ≤ max(|x(t)|, |y(t)|) ≤ q(t)} .

Proof: Define for any n ∈ N pn(t) = inf{u > 0 :
ϕ(u,t)

u ≥ n}. Then pn is
a

∑

-measurable function and ϕ(u, t) ≥ nu for every u ≥ pn(t). Define

An = {t ∈ T : |x(t)| ≤ pn(t)}, A1n = {t ∈ T : |y(t)| ≤ pn(t)}. We have

∫

T\An

|x(t)| dµ ≤
1

n

∫

T\An

ϕ(|x(t)|, t) dµ ≤
1

n
.

In the same way, we can obtain
∫

T\A1
n

|y(t)| dµ ≤ 1
n . Moreover,

∫

T\An

|y(t)| dµ =

∫

(T\An)∩(T\A1
n
)
|y(t)| dµ +

∫

A1
n
\An

|y(t)| dµ ≤

≤

∫

T\A1n

|y(t)| dµ +

∫

T\An

|x(t)| dµ ≤
2

n
.

Similarly
∫

T\A1n
|x(t)| dµ ≤ 2

n . Hence
∫

T\(An∩A1n)
|x(t)−y(t)| dµ ≤

∫

T\An
|x(t)| dµ+

∫

T\An
|y(t)| dµ+

∫

T\A1
n

|x(t)| dµ+
∫

T\A1
n

|y(t)| dµ ≤ 6
n . Since

∫

T |x(t)− y(t)| dµ ≥ ε

by the assumptions, we have
∫

An∩A1
n

|x(t) − y(t)| dµ ≥ ε − 6
n ≥ ε

2 if n is such

that 6n ≤ ε
2 . Define A2n = {t ∈ T : ε

8µ(T )
≤ max(|x(t)|, |y(t)|)}. If t /∈ A2n,

then |x(t)| < ε
8µ(T )

and |y(t)| < ε
8µ(T )

. Therefore
∫

(An∩A1
n
)\A2

n

|x(t) − y(t)| dµ ≤
ε

8µ(T )
µ(T \A2n)+ ε

8µ(T )
µ(T \A2n) ≤ ε

4 . Thus
∫

An∩A1
n
∩A2

n

|x(t)−y(t)| dµ ≥ ε
2−

ε
4 = ε

4 .

Putting A = An ∩ A1n ∩ A2n, p(t) = ε
8µ(T )

and q(t) = pn(t), we get the desired

inequality. �
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Lemma 7. Let ϕ be a Musielak–Orlicz function satisfying the ∆2-condition and

let B ∈
∑

, ε > 0 and σ ∈ (0, 1) be such that Iϕ((x − y)χB) ≥ ε and Iϕ(x+y
2 ) ≤

1 − σ
2 (Iϕ(xχB) + Iϕ(yχB)), where x, y are arbitrary measurable functions with

Iϕ(x) = Iϕ(y) = 1. Then there exists a constant q ∈ (0, 1), such that Iϕ(x+y
2 ) ≤

1 − q.

Proof: Let K = K2, ε

2

, where K2, ε

2

is the constant from Lemma 3. Then

ε ≤ Iϕ((x − y)χB) ≤
K

2
(Iϕ(xχB) + Iϕ(yχB)) +

ε

2
.

Hence Iϕ(xχB) + Iϕ(yχB) ≥ ε
2 · 2K = ε

K . Therefore Iϕ(x+y
2 ) ≤ 1 − σε

2K , and it
suffices to put q = σε

2K �

Theorem 1. A Musielak–Orlicz space Lϕ is WUR if and only if

(i) ϕ is strictly convex,
(ii) ϕ satisfies the ∆2-condition,

(iii) ϕ∗ satisfies the ∆2-condition.

Proof: Sufficiency. Assume that the conditions (i), (ii), (iii) are satisfied. Let
x, y ∈ Lϕ, ‖x‖ϕ = ‖y‖ϕ = 1, x∗ ∈ ( Lϕ)∗ and x∗(x − y) ≥ ε, where ε ∈ (0, 1).
In virtue of the representation of x∗, we have

∫

T (x(t) − y(t))z(t) dµ ≥ ε for some
z ∈ Lϕ∗ . Define zn as in the proof of Lemma 5. Then in view of this lemma, there is
n0 ∈ N (n0 independent of x and y) such that

∫

T (x(t) − y(t))zn0(t) dµ ≥ ε
2 . Since

|zn0(t)| < n0, denoting T0 = supp zn0 , we get
∫

T0
|x(t) − y(t)| dµ ≥ ε

2n0
. Since,

according to Lemma 2.4 of [6], (iii) implies ϕ(u, t)/u → +∞ when u → +∞ for
every t ∈ T , it follows from Lemma 6 that there exist two

∑

-measurable functions
p, q : T0 → (0, +∞), such that denoting

A = {t ∈ T0 : p(t) ≤ max(|x(t), y(t)|) ≤ q(t)}, we have
∫

A
|x(t) − y(t)| dµ ≥

ε

8n0
.

Define B = {t ∈ A : |x(t) − y(t)| ≥ ε
8n0K

max(|x(t)|, |y(t)|)}, where K = K
α, 1
2

is

the constant from Lemma 3 corresponding to α = max{64n0ε ‖χT0‖ϕ∗ , 1}. In virtue
of Lemma 2 there is a function r : B → (0, 1) such that

ϕ(
|x(t) + y(t)|

2
, t) ≤

1 − r(t)

2
{ϕ(|x(t)|, t) + ϕ(|y(t)|, t)}.

Define Bm = {t ∈ B : r(t) ≥ 1
m}. We have Bm ր and

⋃∞
n=1Bm = B. Thus,

defining Cm = (A \ B) ∪ Bm, we obtain the increasing sequence of sets such that
⋃∞

n=1Cn = A. By Lemma 5 there is s ∈ N (s independent of x and y) such that

∫

Cs

|x(t) − y(t)| dµ ≥

∫

A
|x(t) − y(t)| dµ −

1

4
·

ε

8n0
.
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i.e.

(1)

∫

Cs

|x(t) − y(t)| dµ ≥
ε

32n0
.

For t ∈ Bs, we have

ϕ(
|x(t) + y(t)|

2
, t) ≤

1 − 1s
2

{ϕ(|x(t)|, t) + ϕ(|y(t)|, t)}.

Hence, using the convexity of ϕ and the fact that Iϕ(x) = Iϕ(y) = 1, we get

(2) Iϕ(
x + y

2
) ≤ 1 −

1

2s
{Iϕ(x)χBs

+ Iϕ(yχBs
)}.

If t ∈ A \ B, then

|x(t) − y(t)| <
ε

8n0K
max(|x(t)|, |y(t)|).

Hence

(3) Iϕ((x − y)χA\B) ≤
ε

8n0K
{Iϕ(xχA\B) + Iϕ(yχA\B)} ≤

ε

4n0K
.

Applying the inequality (1) and the Hölder inequality, we get

2‖(x − y)χCs
‖ϕ‖χT0‖ϕ∗ ≥

∫

Cs

|x(t) − y(t)| dµ ≥
ε

32n0
,

i.e.
64n0

ε
‖χT0‖ϕ∗‖(x − y)χCs

‖ϕ ≥ 1,

hence denoting α1 = 64n0
ε ‖χT0‖ϕ∗ , we have α1 ≤ α, and

1 ≤ Iϕ(α(x − y)χCs
) ≤ KIϕ((x − y)χCs

) +
1

2
.

Thus

Iϕ((x − y)χCs
) ≥

1

2K
.

Combining this with the inequality (3), we get

Iϕ((x − y)χBs
) ≥ Iϕ((x − y)χCs

) − Iϕ((x − y)χA\B) ≥
1

2K
−

ε

4n0K
= β.

Applying Lemma 7, the inequality (2) and the last inequality, we get

Iϕ(
x + y

2
) ≤ 1 − q.
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Now, in view of Lemma 4, we have

∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

ϕ

≤ 1 − β(q),

where β(q) ∈ (0, 1), and depends only on x∗, ε and ϕ.
Necessity. If ϕ does not satisfy the condition (i) or the condition (ii), then Lϕ is

not rotund (cf. [5]). Since WUR implies rotundity, Lϕ is not WUR as well. Assume
now that ϕ satisfies the condition (i) and it does not satisfy the condition (iii).
Then (Lϕ)∗ = Lϕ∗ , where Lϕ∗ is equipped with the Orlicz norm. Since ϕ∗ does not
satisfy the ∆2-condition, Lϕ∗ contains an isomorphic copy of l∞. Hence it follows
that Lϕ contains an isomorphic copy of l1. Therefore, in view of Lemma 1, Lϕ is
not WUR. The proof is finished. �

Theorem 1.2 of [3] and Theorem 1.2 of [2] imply the following version of our
result.

Theorem 2. A Musielak–Orlicz space Lϕ is WUR if and only if it is rotund and

reflexive.

References

[1] Diestel J., Geometry of Banach spaces—selected topics, Springer Lecture Notes in Mathe-
matics, vol. 485, 1983.

[2] Hudzik H., On some equivalent conditions in Musielak–Orlicz spaces, Comment. Math. 24
(1984), 57–64.

[3] Hudzik H., Strict convexity of Musielak–Orlicz spaces with Luxemburg’s norm, Bull. Acad.
Polon. Sci., Sér. Sci. Math., Astronom. et Phys. 29 (1981), 235–247.

[4] Hudzik H., Uniform convexity of Musielak–Orlicz spaces with Luxemburg’s norm, Comment.
Math. 23 (1983), 21–32.
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