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Pairwise monotonically normal spaces

Josefa Maŕın, Salvador Romaguera

Abstract. We introduce and study the notion of pairwise monotonically normal space as
a bitopological extension of the monotonically normal spaces of Heath, Lutzer and Zenor.
In particular, we characterize those spaces by using a mixed condition of insertion and
extension of real-valued functions. This result generalizes, at the same time improves,
a well-known theorem of Heath, Lutzer and Zenor. We also obtain some solutions to the
quasi-metrization problem in terms of the pairwise monotone normality.
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1. Introduction.

Throughout this paper, all topologies are T1 and the letter N will denote the set
of positive integers. Terms and concepts which are not defined, are used as in [8].
The investigation of the metrization problem has motivated, in the last thirty

years, the introduction and study of several types of topological spaces called gen-
eralized metric spaces (see [10, p. 425]). Stratifiable spaces [1], [4], form one of the
more interesting classes of generalized metric spaces. This notion has been general-
ized to bitopological spaces [9], [12], [18], and several properties have been extended.
Monotonically normal spaces are a useful generalization of stratifiable spaces. The
property of monotone normality appears firstly in [1]. Later, Heath, Lutzer and
Zenor [14] presented a systematized study of monotonically normal spaces, obtain-
ing excellent results. Other contributions to the research of these spaces may be
found in [2], [10], [11], [23], [25], etc.
In this paper, we introduce and study the notion of monotonically normal bito-

pological space. We will show that this class of spaces provides several satisfactory
results and permits us to state appropriate generalizations of well-known theorems.
In fact, in Section 2, we prove that a bitopological space is pairwise stratifiable
if and only if it is pairwise monotonically normal and pairwise semi-stratifiable.
In Section 3, we characterize pairwise monotonically normal spaces in terms of
a mixed condition of insertion and extension of semi-continuous functions. This
characterization provides an extension and, at the same time, an improvement of
a well-known theorem of Heath, Lutzer and Zenor [14, Theorem 3.3]. Finally, in
Section 4, we present some solutions to the quasi-metrization problem in terms of
pairwise monotonically normal spaces.
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A quasi-metric on a set X is a non-negative real-valued function d on X × X
such that, for all x, y, z ∈ X : (i) d(x, y) = 0 if and only if x = y, and (ii)
d(x, y) ≤ d(x, z) + d(z, y).
Every quasi-metric on X induces a T1 topology T (d) on X which has as a base

the family {Bd(x, r) : x ∈ X, r > 0} where Bd(x, r) = {y ∈ X : d(x, y) < r}.
A topological space (X, τ) is called quasi-metrizable, if there is a quasi-metric d
on X such that τ = T (d). The Niemytzki plane, the Sorgenfrey line, the Michael
line and the Kofner plane are relevant examples of quasi-metrizable topological
spaces which are not metrizable. Every quasi-metric d on X induces a conjugate
quasi-metric d−1 on X , defined by d−1(x, y) = d(y, x). Then the pair of topologies
induced from a quasi-metric and its conjugate originate the following notion: a bi-
topological space is [17] and ordered triple (X, τ1, τ2) such that X is a nonempty
set and τ1 and τ2 are topologies on X . The space (X, τ1, τ2) is said to be quasi-
metrizable, if there is a quasi-metric d on X such that τ1 = T (d) and τ2 = T (d−1).

2. Definitions and basic properties.

In the rest of the paper, when we are concerned at the topologies τi and τj , we
suppose i, j = 1, 2, and i 6= j. If τi is a topology for a set X and A is a subset of X ,
we write τi cl A for the closure of A in the topological space (X, τi). Similarly, we
write τi int A for the interior of A in (X, τi).

Definition 1. A bitopological space (X, τ1, τ2) is called pairwise monotonically
normal, if to each pair (H, K) of disjoint subsets of X such that H is τi-closed and
K is τj -closed, one can assign a τi-open set D(K, H) and a τj -open set D(H, K)
such that:

(i) H ⊂ D(H, K) ⊂ τi cl D(H, K) ⊂ X − K,
K ⊂ D(K, H) ⊂ τj cl D(K, H) ⊂ X − H

and

(ii) if the pairs (H, K) and (H ′, K ′) satisfyH ⊂ H ′ andK ′ ⊂ K, thenD(H, K) ⊂
D(H ′, K ′) and D(K ′, H ′) ⊂ D(K, H).

The function D defined in this way is called a pairwise monotone normality
operator for (X, τ1, τ2). Note that (X, τ1, τ2) is pairwise monotonically normal if
and only if (X, τ2, τ1) is pairwise monotonically normal.

Remark 1. It is not a restriction to assume thatD(H, K)∩D(K, H) = ∅. In fact, if
D does not satisfy this condition, just letD′(H, K) = D(H, K)∩(X−τj cl D(K, H))
and D′(K, H) = D(K, H) ∩ (X − τi cl D(H, K)). Thus, we will suppose in the
following that the operator D satisfies the condition in remark 1.

Remark 2. Let (X, τ1, τ2) be a space such that τ1 (or τ2) is the discrete topology
on X . Then it is immediate to show that (X, τ1, τ2) is pairwise monotonically
normal.

Definition 2. Given a space (X, τ1, τ2), we say that a pair (H, K) of subsets of X
is (1, 2)-separated, if K ∩ τ1 cl H = ∅ and H ∩ τ2 cl K = ∅. Similarly we define the
notion of a (2, 1)-separated pair.
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The next result is useful in Section 4. We omit the proof because it is similar to
[14, Lemma 2.2].

Lemma 1. A space (X, τ1, τ2) is pairwise monotonically normal if and only if
there is a function D which assigns to each (i, j)-separated pair (H, K) a τj -open
set D(H, K) such that

(a) H ⊂ D(H, K) ⊂ τi cl D(H, K) ⊂ X − K,
(b) if the (i, j)-separated pairs (H, K) and (H ′, K ′) satisfyH ⊂ H ′ andK ′ ⊂ K,
then D(H, K) ⊂ D(H ′, K ′).

A space (X, τ1, τ2) is called τ1-semi-stratifiable with respect to τ2, if to each τ1-
open set U ⊂ X , one can assign a sequence (Un)n∈N of τ2-closed sets such that:
(i) U =

⋃

∞

n=1 Un and (ii) if U ⊂ V then Un ⊂ Vn for all n ∈ N , where (Vn)n∈N is
the sequence assigned to the τ1-open set V . If also: (iii) U =

⋃

∞

n=1 τ1 int Un, then
(X, τ1, τ2) is called τ1-stratifiable with respect to τ2. A space (X, τ1, τ2) is called
pairwise (semi-)stratifiable ([19]), [9], [12], [18], if it is τ1-(semi-)stratifiable with
respect to τ2 and τ2-(semi-)stratifiable with respect to τ1.
It immediately follows from the preceding definitions that a space (X, τ1, τ2) is

pairwise semi-stratifiable if and only if to each τi-closed set H ⊂ X , one can assign
a sequence (Hn)n∈N of τj -open sets such that: (i) H =

⋂

∞

n=1Hn and (ii) if
H ⊂ K, then Hn ⊂ Kn for all n ∈ N , where (Kn)n∈N is the sequence assigned
to the τi-closed set K. Similarly, (X, τ1, τ2) is pairwise stratifiable if and only if
to each τi-closed set H ⊂ X , one can assign a sequence (Hn)n∈N of τj -open sets
satisfying the above conditions (i) and (ii) and (iii): H =

⋂

∞

n=1 τi cl Hn.
Our next result provides a relation between pairwise stratifiable and pairwise

monotonically normal spaces (compare [14, Theorem 2.5]).

Proposition 1. A space (X, τ1, τ2) is pairwise stratifiable if and only if it is a pair-
wise monotonically normal pairwise semi-stratifiable space.

Proof: Suppose that (X, τ1, τ2) is pairwise stratifiable. Let (H, K) be a pair of
disjoint subsets of X such that H is τi-closed and K is τj -closed. Then there
exists a decreasing sequence (Hn)n∈N of τj -open sets such that H =

⋂

∞

n=1Hn =
⋂

∞

n=1 τi cl Hn. Similarly, there exists a decreasing sequence (Kn)n∈N of τi-open
sets such that K =

⋂

∞

n=1Kn =
⋂

∞

n=1 τj cl Kn. Put

D(H, K) =

∞
⋃

n=1

(Hn − τj cl Kn)

and

D(K, H) =

∞
⋃

n=1

(Kn − τi cl Hn).

Then, D(H, K) is a τj -open set which containsH becauseH∩K = ∅. It is easy to see
that τi cl D(H, K) ⊂ X − K. Furthermore, if the pair (H ′, K ′) (with H ′ τi-closed,
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K ′ τj -closed and H ′ ∩ K ′ = ∅) satisfies H ⊂ H ′ and K ′ ⊂ K, then D(H, K) ⊂
D(H ′, K ′). We deduce in a similar way that K ⊂ D(K, H) ⊂ τj cl D(K, H) ⊂
X − H and D(K ′, H ′) ⊂ D(K, H). Therefore, (X, τ1, τ2) is pairwise monotonically
normal. Conversely, suppose that D is a pairwise monotone normality operator for
(X, τ1, τ2) and let H be a τi-closed set. Then there exists a sequence (Hn)n∈N of
τj -open sets such that H =

⋂

∞

n=1Hn. Since, for each n ∈ N , H ∩ (X −Hn) = ∅ we
have H ⊂ D(H, X−Hn) ⊂ τi cl D(H, X−Hn) ⊂ Hn. Define H ′

n = D(H, X−Hn).
Thus, H =

⋂

∞

n=1H ′
n =

⋂

∞

n=1 τi cl H
′
n. Finally, if H ⊂ G (with H and G τi-closed

sets), it follows D(H, X−Hn) ⊂ D(G, X−Gn) and, hence, H
′
n ⊂ G′

n for all n ∈ N .
This completes the proof. �

Given two bitopological spaces (X, τ1, τ2), (Y, τ ′1, τ
′

2) and a mapping f from X
onto Y , we say that f is continuous (closed) from (X, τ1, τ2) onto (Y, τ ′1, τ

′

2), if f is
a continuous (closed) mapping from (X, τi) onto (Y, τ ′i), i = 1, 2.

Proposition 2. Let f be a continuous and closed mapping from the pairwise mono-
tonically normal space (X, τ1, τ2) onto the space (Y, τ ′1, τ

′

2). Then (Y, τ ′1, τ
′

2) is pair-
wise monotonically normal.

Proof: Let D be a pairwise monotone normality operator for (X, τ1, τ2). For each
pair (H ′, K ′) of disjoint subsets of Y such that H ′ is τ ′i -closed and K ′ is τ ′j -closed,

define
D′(H ′, K ′) = Y − f(X − D(f−1(H ′), f−1(K ′))).

Then D′ is a pairwise monotone normality operator for (Y, τ ′1, τ
′

2). �

It is proved in [19] that pairwise semi-stratifiable spaces are preserved by con-
tinuous closed mappings. From this result and Propositions 1 and 2, we derive the
following result.

Corollary [12], [18]. Let f be a continuous and closed mapping from the pairwise
stratifiable space (X, τ1, τ2) onto the space (Y, τ ′1, τ

′

2). Then, (Y, τ ′1, τ
′

2) is pairwise
stratifiable.

In [4], Ceder defined the class of Nagata spaces and showed that a topological
space is a Nagata space if and only if it is stratifiable and first countable. Later,
Borges [3] obtained a characterization of stratifiable spaces which generalizes the
notion of a Nagata space. A similar characterization for monotonically normal
spaces is also proved by Borges in [2, Theorem 1.2]. Our next results provide the
bitopological counterpart of these characterizations.

Proposition 3. A space (X, τ1, τ2) is pairwise stratifiable if and only if for each x ∈
X there exist two bases {Ui(αi, n, x) : αi ∈ Di(x), n ∈ N} and {Si(αi, n, x) : αi ∈
Di(x), n ∈ N} of τi-neighbourhoods of x such that if Si(αi, n, x) ∩ Sj(αj , n, y) 6= ∅,
then x ∈ Uj(αj , n, y) and y ∈ Ui(αi, n, x).

Proof: Necessary condition. Given x ∈ X , let Mi(x) = {Mi(αi, x) : αi ∈
Di(x)} be a base of τi-neighbourhodds of x, i = 1, 2. Now let U be a τi-open set.
Then there exists a sequence (Un)n∈N of τj-closed sets satisfying U =

⋃

∞

n=1 Un =
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⋃

∞

n=1 τi int Un and Un ⊂ Vn whenever U ⊂ V , with U, V, τi-open sets. For each
αi ∈ Di(x) and each n ∈ N define

Ui(αi, n, x) =
⋂

{U : U is τi-open and Mi(αi, x) ⊂ Un},

S′

i(αi, n, x) =
⋂

{Un :Mi(αi, x) ⊂ Un} −
⋃

{Vn : x /∈ V, V τj-open}

and

Si(αi, n, x) =

n
⋂

k=1

S′

i(αi, k, x).

One can easily verify that the collections {Ui(αi, n, x) : αi ∈ Di(x), n ∈ N} and
{Si(αi, n, x) : αi ∈ Di(x), n ∈ N} satisfy the required conditions.

Sufficient condition. It is enough to define, for each τi-open set U and each
n ∈ N ,

Un = τj cl [
⋃

{τi int Si(αi, n, x) : Ui(αi, n, x) ⊂ U}].

�

Proposition 4. A space (X, τ1, τ2) is pairwise monotonically normal if and only
if for each τi-open set U and each x ∈ U there exists a τi-open neighbourhood Ux

of x such that if Ux ∩ Vy 6= ∅, then x ∈ V or y ∈ U , where V is a τj -open set with
y ∈ V .

Proof: Necessary condition. Let D be a pairwise monotone normality operator
for (X, τ1, τ2). Given a τi-open set U and an x ∈ U , we have {x} ⊂ D({x}, X−U) ⊂
τj cl D({x}, X −U) ⊂ U . Define Ux = D({x}, X −U). Then, x ∈ Ux ⊂ U . Now let
Ux∩Vy 6= ∅, where U is a τi-open set with x ∈ U and V is a τj -open set with y ∈ V .
Assume x /∈ V and y /∈ U . Then, D({y}, X−V ) ⊂ D({y}, {x}) andD({x}, X−U) ⊂
D({x}, {y}). From Remark 2, it follows D({y}, X − V ) ∩ D({x}, X − U) = ∅, this
is, Vy ∩ Ux = ∅, a contradiction.

Sufficient condition. For each pair (H, K) of disjoint subsets of X such that H
is τi-closed and K is τj -closed, define

D(H, K) =
⋃

x∈H

{Vx : x ∈ V, V ∩ K = ∅, V τj -open}

and

D(K, H) =
⋃

x∈K

{Ux : x ∈ U, U ∩ H = ∅, Uτi-open}.

Then, the function D defined in this way is a pairwise monotone normality operator
for (X, τ1, τ2). �
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Corollary. Pairwise monotone normality is a hereditary property.

3. Pairwise monotone normality and real-valued functions.

In this section we mean by function a real-valued function. The upper(lower)
semicontinuous functions are abbreviated to u.s.c. (l.s.c.) functions.

Lemma 2. Let (X, τ1, τ2) be a pairwise monotonically normal space. Then to
each pair of sequences {(Fn)n∈N , (Gn)n∈N} such that, for each n ∈ N , Fn is τi-
closed, Gn is τj -open, τi cl F ⊂ G and F ⊂ τj int G (where F =

⋃

∞

n=1 Fn and
G =

⋂

∞

n=1Gn), there is H ⊂ X satisfying

(a) F ⊂ τj int H ⊂ τi cl H ⊂ G.

(b) If H and H ′ are the sets associated by (a) to the pairs of sequences
{(Fn)n∈N , (Gn)n∈N} and {(F ′

n)n∈N , (G′
n)n∈N} respectively, and, for each

n ∈ N , Fn ⊂ F ′
n and Gn ⊂ G′

n, then H ⊂ H ′.

Proof: Let D be a pairwise monotone normality operator for (X, τ1, τ2) and
{(Fn)n∈N , (Gn)n∈N} a pair of sequences satisfying the hypotheses. Since F1 ⊂
τj int G, there is a τj -openD(F1, X−τj int G) such that F1 ⊂ D(F1, X−τj int G) ⊂
τi cl D(F1, X − τj int G) ⊂ G. Put C1 = D(F1, X − τj int G). Then, (τi cl F ) ∪
(τi cl C1) ⊂ G1 and then there is a τj -open set A1 = D((τi cl F )∪(τi cl C1), X−G1)
such that (τi cl F ) ∪ (τi cl C1) ⊂ A1 ⊂ τi cl A1 ⊂ G1. Now let us suppose that, for
k = 2, . . . , n, we have obtained τi-closed sets Ck = D(Fk ∪ τi cl Ck−1, X − (Ak−1 ∩
τj int G)) and τj-open sets Ak = D((τi cl F )∪(τi cl Ck), X−(Ak−1∩Gk)) such that
Fk ⊂ Ck ⊂ τi cl Ck ⊂ Ak ⊂ τi cl Ak ⊂ Gk and τi cl Ck ⊂ τj int G, τi cl F ⊂ Ak.
Given n + 1, since (Fn+1 ∪ τi cl Cn) ⊂ (An ∩ τj int G), we obtain the τj -open set
Cn+1 = D(Fn+1 ∪ τi cl Cn, X − (An ∩ τj int G)) such that (Fn+1 ∪ τi cl Cn) ⊂
Cn+1 ⊂ τi cl Cn+1 ⊂ (An ∩ τj int G). As (τi cl F ) ∪ (τi cl Cn+1) ⊂ (An ∩ Gn+1),
we obtain the τj -open set An+1 = D((τi cl F ) ∪ (τi cl Cn+1), X − (An ∩ Gn+1))
satisfying (τi cl F ) ∪ (τi cl Cn+1) ⊂ An+1 ⊂ τi cl An+1 ⊂ (An ∩ Gn+1). Hence,
we can construct, inductively, the sequences (Cn)n∈N and (An)n∈N of τj -open
sets satisfying the above relations. Put H =

⋃

∞

n=1Cn. Since H is τj -open and
Fn ⊂ Cn for all n ∈ N , it follows that F ⊂ τj int H . On the other hand, since
Cn ⊂ Cn+k ⊂ τi cl An+k ⊂ τi cl Ak ⊂ Gk for all n, k ∈ N , we have H ⊂ Gk for
all k ∈ N . This proves the part (a). In order to prove (b), note that if, for each
n ∈ N , Fn ⊂ F ′

n and Gn ⊂ G′
n we have, from the condition (ii) in Definition 1,

C1 ⊂ C′

1 and A1 ⊂ A′

1. Inductively we obtain Cn ⊂ C′
n (and An ⊂ A′

n) for all
n ∈ N . Therefore, H ⊂ H ′. �

Lemma 3. Let (X, τ1, τ2) be a pairwise monotonically normal space and D a dense
countable subset of ]0, 1[ . Then to each pair of families {F (α) : α ∈ D}, {G(α) :
α ∈ D} of subsets of X such that: (i) for each α ∈ D, F (α) =

⋃

∞

n=1 Fn(α) and
G(α) =

⋂

∞

n=1Gn(α), where Fn(α) is τi-closed and Gn(α) is τj -open for all n ∈ N ;
(ii) τi cl F (α) ⊂ G(α) and F (α) ⊂ τj int G(α) for all α ∈ D, and (iii) τi cl F (α) ⊂
F (β) and G(α) ⊂ τj int G(β) for α < β, there is a family {H(α) : α ∈ D} of subsets
of X satisfying

(a) F (α) ⊂ τj int H(α) ⊂ τi cl H(α) ⊂ G(α) for all x ∈ D and τi cl H(α) ⊂
τj int G(β) for α < β.
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(b) If {H(α) : α ∈ D} and {H ′(α) : α ∈ D} are the families associated by (a)
to the pairs of families {F (α) : α ∈ D}, {G(α) : α ∈ D}, and {F ′(α) :
α ∈ D}, {G′(α) : α ∈ D} respectively, and, for each α ∈ D and n ∈ N ,
Fn(α) ⊂ F ′

n(α) and Gn(α) ⊂ G′
n(α), then H(α) ⊂ H ′(α).

Proof: Put D = {dn : n ∈ N}. Take d1. By Lemma 2 there exists H(d1) ⊂
X such that F (d1) ⊂ τj int H(d1) ⊂ τi cl H(d1) ⊂ G(d1). Now let us suppose
that, for k = 2, . . . , n, we have obtained subsets H(d2), . . . , H(dn), satisfying the
conditions (a) and (b). Given n+ 1, define sets F and G as

F =F (dn+1) ∪
[

⋃

{τi cl H(dr) : dr < dn+1, 1 ≤ r ≤ n}
]

and

G =G(dn+1) if dr < dn+1 for r = 1, . . . , n,

G =G(dn+1) ∩
[

⋂

{τj int H(dr) : dr > dn+1, 1 ≤ r ≤ n}
]

otherwise.

Following the proof of [13, Corollary 1.1] we obtain, inductively, the family {H(α) :
α ∈ D} satisfying (a). The part (b) also follows inductively from Lemma 2 (b). �

Note that the necessary conditions of the above lemmas also are sufficient con-
ditions for the pairwise monotone normality of the space (X, τ1, τ2).
In order to help with reading, we include the following well-known observations

which we use in the proof of the main result of this section.

Remark 3. Let X be a non-empty set and f : X →]0, 1[ . If D is a dense countable
subset of ]0, 1[ and {F (α) : α ∈ D} a family of subsets of X such that, for each α ∈
D, f−1]0, α[⊂ F (α) ⊂ f−1]0, α], then f(x) = sup{α ∈ D : x /∈ F (α)} = inf{α ∈
D : x ∈ F (α)} for all x ∈ X . We say that f is determined by {F (α) : α ∈ D}.
Conversely, given an expansive family {F (α) : α ∈ D} of subsets of X , we may
define f : X → [0, 1] by

f(x) =

{

sup{α ∈ D : x /∈ F (α)} if {α ∈ D : x /∈ F (α)} 6= ∅,

0 if {α ∈ D : x ∈ F (α)} = ∅.

In particular, f(x) > 0, for all x ∈ X , if
⋂

{F (α) : α ∈ D} = ∅ and f(x) < 1, for all
x ∈ X , if

⋃

{F (α) : α ∈ D} = X .

Remark 4. Let (X, τ1, τ2) be a bitopological space and f : X →]0, 1[ determined
by the family {F (α) : α ∈ D}. Then f is τi-l.s.c. if and only if τi cl F (α) ⊂ F (β)
whenever α < β and f is τi-u.s.c. if and only if F (α) ⊂ τi int F (β) whenever α < β.
Furthermore, if g is determined by {G(α) : α ∈ D}, then g ≤ f if and only if
F (α) ⊂ G(β) whenever α < β.
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Theorem 1. A space (X, τ1, τ2) is pairwise monotonically normal if and only if for
each pair of functions f and g defined on X such that g ≤ f , f is τi-l.s.c. on X , g is
τj -u.s.c. on X and f is τj -u.s.c. on the τj-closed set C ⊂ X , one assigns a τi-l.s.c.
and τj-u.s.c. function h on X such that

(a) g ≤ h ≤ f on X and h = f on C,
(b) if h and h′ are the functions associated, by (a), to the pairs of functions f, g,
and f ′, g′, respectively, and f ≤ f ′ and g ≤ g′ on X , then h ≤ h′.

Proof: Necessary condition. It is enough to take functions from X into ]0, 1[ .
Let D be a dense countable subset of ]0, 1[ . Given f, g : X →]0, 1[ satisfying
the hypotheses, define, similarly to [13, Theorem 2], F (α) = f−1]0, α[ and G(α) =
g−1]0, α]

⋂

(f−1]0, α]
⋃

(X−C)) for all α ∈ D. Clearly, F (α) =
⋃

β<α f−1]0, β] and

G(α) =
⋂

α<β{g
−1]0, β[

⋂

(f−1]0, β[
⋃

(X −C))}. Then, F (α) is a countable union

of τi-closed sets and G(α) is a countable intersection of τj -open sets. Furthermore,
τi cl F (α) ⊂ G(α), F (α) ⊂ τj int G(α) and, for α < β, τi cl F (α) ⊂ F (β) and
G(α) ⊂ τj int G(β). Consequently, the conditions (i), (ii) and (iii) of Lemma 3 are
satisfied and, hence, there is a family {H(α) : α ∈ D} of subsets of X such that
F (α) ⊂ τj int H(α) ⊂ τi cl H(α) ⊂ G(α) for all α ∈ D and τi cl H(α) ⊂ τj int H(β)
for α < β. By Remark 3, the function h determinated by {H(α) : α ∈ D}, is τi-
l.s.c. and τj -u.s.c. on X and h ≤ f . If G denotes the function determinated by
{G(α) : α ∈ D}, we deduce, by Remarks 2 and 3, that g ≤ G. Since G ≤ h, it follows
g ≤ h. Furthermore, h = f on C (see [13, Theorem 2]). This proves the part (a).
In order to prove (b), note that for each α ∈ D, we have (f ′)−1]0, β] ⊂ f−1]0, β] for
β < α and (g′)−1]0, β]

⋂

(f−1]0, β[
⋃

(X − C′)) ⊂ g−1]0, β]
⋂

(f−1]0, β[
⋃

(X − C))
for α < β. Therefore, we can apply Lemma 3 (b). Thus, H ′(α) ⊂ H(α). So,
H ′(α) ⊂ H(β) for α < β, and, by Remark 3, h ≤ h′. This proves the part (b).

Sufficient condition. For each pair (H, K) of disjoint subsets of X such that H
is τi-closed and K is τj -closed, we define f(x) = 1, if x ∈ X − H and f(x) = 0, if
x ∈ H , and g(x) = 1, if x ∈ K and g(x) = 1, if x ∈ X −K. Therefore, g is τj -u.s.c.,
f is τi-l.s.c. and g ≤ f . So, taking C = ∅, there is a τi-l.s.c. and τj -u.s.c. function

h : X → [0, 1] such that g ≤ h ≤ f . Finally, if we put D(H, K) = h−1[0, 1/2[
and D(K, H) = h−1]1/2, 1], then it is easy to show that D is a pairwise monotone
normality operator for (X, τ1, τ2). The proof is complete. �

Putting C = ∅ in the above theorem, we obtain an analogue of the celebrated
Katětov–Tong’s insertion theorem [16], [24], to pairwise monotonically normal bi-
topological spaces. For the sake of brevity we omit its statement.

We now give another consequence of Theorem 1.

Corollary. Let (X, τ1, τ2) be a pairwise monotonically normal space. Then, for
each τ1-closed and τ2-closed set H ⊂ X and each τi-l.s.c. and τj -u.s.c. function
f : H → [0, 1], one can assign a τi-l.s.c. and τj -u.s.c. extension Φ(f) : X → [0, 1]
such that if g and f are τi-l.s.c and τj -u.s.c. from H into [0, 1] satisfying g ≤ f ,
then Φ(g) ≤ Φ(f).
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Proof: Given the τ1-closed and τ2-closed set H ⊂ X and the functions f and g sat-
isfying the hypotheses, we define the functions f1, f2, g1 and g2 as follows: f1(x) =
0, if x /∈ C and f1(x) = f(x), if x ∈ C; f2(x) = 1, if x /∈ C and f2(x) = f(x),
if x ∈ C; g1(x) = 0, if x /∈ C and g1(x) = g(x), if x ∈ C; g2(x) = 1, if x /∈ C
and g2(x) = g(x), if x ∈ C. Clearly, f1 is τj -u.s.c. on X and f2 is τi-l.s.c. on X
and τj -u.s.c. on C. Since f1 ≤ f2 on X it follows from Theorem 1 (a) that there is
a τi-l.s.c. and τj -u.s.c. function Φ(f) from X into [0, 1] such that f1 ≤ Φ(f) ≤ f2
on X and Φ(f) = f2 = f on C. Similarly, there is a τi-l.s.c. and τj -u.s.c. function
Φ(g) from X into [0, 1] such that g1 ≤ Φ(g) ≤ g2 on X and Φ(g) = g on C. Finally,
if g ≤ f we deduce, by Theorem 1 (b), that Φ(g) ≤ Φ(f). This completes the proof.

�

Note that if in the preceding corollary we put τ1 = τ2, then [14, Theorem 3.3] is
obtained.

4. Pairwise monotone normality and quasi-metrization.

In Section 4 of [14], Heat, Lutzer and Zenor characterized metrizable spaces by
assuming monotone normality of cartesian products. The key of these character-
izations is Theorem 4.1 of their paper which says that if X × Y is monotonically
normal, then either no countable subset of X has a limit point or Y is stratifiable.
The bitopological situation is described in our next result. (It seems interesting to
compare these results with those of Katětov [15] about the hereditary normality of
cartesian products. See also [21, Proposition 3].)

Proposition 5. Let (X, τ1, τ2) and (Y, τ ′1, τ
′

2) be two spaces such that the space
(X×Y, τ1×τ ′1, τ2×τ ′2) is pairwise monotonically normal. Then, either no countable
subset of X has τi-accumulation point or Y is τ ′i -stratifiable with respect to τ ′j .

Proof: We adopt the technique of [14, Theorem 4.1] and so we omit the details.
Suppose thatM ′ = {mn : n ∈ N} is a subset of X having a τi-accumulation point p.
We assume that p ∈ X−M ′. LetM =M ′∪{p}. By the Corollary of Proposition 4,
the space (M ×Y, (τ1 |M )× τ ′1, (τ2 |M )× τ ′2) is pairwise monotonically normal. We
will show that Y is τ ′i -stratifiable with respect to τ ′j . Given a τ ′i -closed set F ⊂ Y ,

put HF =M ′×F and KF = {p}× (Y −F ). If we write (τi |M )× τ ′i = τ ′′i , i = 1, 2,
then the pair (HF , KF ) is (i, j)-separated in (M×Y, τ ′′1 , τ

′′

2 ). Therefore, ifD denotes
the function for M × Y described in Lemma 1, we have HF ⊂ D(HF , KF ) ⊂
(M × Y ) − KF . Now for each n ∈ N , we define T (F, n) = {y ∈ Y : (mn, y) ∈
D(HF , KF )}. Then, it is easily seen that each T (F, n) is τ ′j -open. Furthermore,

F =
⋂

∞

n=1 T (F, n) =
⋂

∞

n=1 τ ′i cl T (F, n). Finally, if the τ ′i -closed set F ′ contains F ,
it follows from Lemma 1 (b) that T (F, n) ⊂ T (F ′, n) for all n ∈ N . The proof is
complete. �

Corollary. A space (X, τ1, τ2) is pairwise stratifiable if and only if (X × Y, τ1 ×
T, τ2×T ) is pairwise monotonically normal, where Y = {0}∪ {1/n : n ∈ N} and T
is the restriction to Y of the usual topology.

Proof: Let (X, τ1, τ2) be a pairwise stratifiable space. In [12], it is proved that
the countable product of pairwise stratifiable is pairwise stratifiable. Hence, (X ×
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Y, τ1 × T, τ2 × T ) is pairwise stratifiable. Conversely, we have, by Proposition 5,
that (X, τ1, τ2) is pairwise stratifiable. �

Corollary. A space (X, τ1, τ2) is pairwise stratifiable if and only if for every quasi-
metric space (Y, d), the space (X × Y, τ1 × T (d), τ2 × T (d−1)) is pairwise monoton-
ically normal.

In [9], Fox obtains a very nice solution to the quasi-metrization problem. Exactly,
he proved that a space (X, τ1, τ2) is quasi-metrizable if and only if it is a pairwise
stratifiable space and (X, τ1) and (X, τ2) are γ-spaces. Fox’s theorem can be stated
in a more general form as follows.

Theorem 2. A space (X, τ1, τ2) is quasi-metrizable if and only if (X × X, τ1 ×
τ2, τ2 × τ1) is pairwise monotonically normal and (X, τ1) and (X, τ2) are γ-spaces.

Proof: Since the necessity is almost obvious, we only prove the sufficiency. Sup-
pose that τ1 has a nonisolated point. Since every γ-space is first countable, it follows
from Proposition 5 that (X, τ1, τ2) is τ2-stratifiable with respect to τ1. If τ2 has
also a nonisolated point,we deduce, similarly, that (X, τ1, τ2) is τ1-stratifiable with
respect to τ2. By Fox’s theorem, (X, τ1, τ2) is quasi-metrizable. Otherwise, τ2 is
the discrete topology on X and then it is clear that the space is τ1-stratifiable with
respect to τ2. Newly, Fox’s theorem proves the quasi-metrizability of (X, τ1, τ2).
Interchanging the roles of τ1 and τ2, we complete the proof. �

A slight modification of the proof of the above theorem permits us to state the
following variant of it.

Theorem 3. Let (X, τ1, τ2) be a space such that τ1 and τ2 have nonisolated points.
Then, (X, τ1, τ2) is quasi-metrizable if and only if (X×X, τ1×τ1, τ2×τ2) is pairwise
monotonically normal and (X, τ1) and (X, τ2) are γ-spaces.

Remark 5. Consider the space (R, τ1, τ2), where R is the real line, τ1 is the usual
topology on R and τ2 is the discrete topology on R. Then, (R×R, τ1×τ1, τ2×τ2) is
pairwise monotonically normal, (R, τ1) and (R, τ2) are γ-spaces, but it is well-known
that (R, τ1, τ2) is not quasi-metrizable.

In [7] Fletcher, Hoyle III and Patty introduced the notion of a pairwise (count-
ably) compact space. Recall that a space (X, τ1, τ2) is pairwise (countably) compact
if and only if every proper τi-closed set is τj -(countably) compact ([22]), [5].

Lemma 4 [19]. A space (X, τ1, τ2) is τ1-semi-stratifiable with respect to τ2, if there
is g : N × X → τ1 such that

(a) x ∈ g(n, x) for all x ∈ X and n ∈ N ,
(b) if, for each n ∈ N, x ∈ g(n, xn), then the sequence (xn)n∈N is τ2-convergent
to x.

A space (X, τ1, τ2) is said to be pairwise Hausdorff [17], if, for x 6= y, there is
a τi-neighbourhood of x and a disjoint τj-neighbourhood of y. On the other hand,
we say that (X, τ1, τ2) has a τ1× τ2-Gδ-diagonal, if there is a sequence (Gn)n∈N of
τ1 × τ2-open sets such that ∆ =

⋂

∞

n=1Gn, where ∆ = {(x, x) : x ∈ X}.
By using Lemma 4, we easily obtain the following result.
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Lemma 5. Every pairwise Hausdorff pairwise semi-stratifiable space (X, τ1, τ2) has
a τ1 × τ2-Gδ-diagonal.

In [21], it is proved that a pairwise Hausdorff pairwise compact space (X, τ1, τ2)
is quasi-metrizable if and only if it has a τ1 × τ2-Gδ-diagonal. From this result
and the preceding lemma, it follows that every pairwise Hausdorff pairwise compact
pairwise semi-stratifiable space is quasi-metrizable. However, it is possible to obtain
a better result as Theorem 4 shows. In order to prove this theorem, we will give
some previous lemmas.

Lemma 6. Let (X, τ1, τ2) be a pairwise Hausdorff space such that τ1 ⊂ τ2. If it is
τ1-semi-stratifiable with respect to τ2 then (X, τ1) and (X, τ2) are semi-stratifiable
spaces and have a Gδ-diagonal.

Proof: Let g : N × X → τ1 be a mapping satisfying the conditions (a) and (b)
in Lemma 4. If, for each n ∈ N, x ∈ g(n, xn), then the sequence (xn)n∈N is τ2-
convergent to x. Since τ1 ⊂ τ2, then it also is τ1-convergent to x. Therefore,
(X, τ1) and (X, τ2) are semi-stratifiable spaces. Now, put, for each n ∈ N , Gn =
⋃

x∈X (g(n, x)×g(n, x)). Thus, ∆ =
⋂

∞

n=1Gn. This proves that (X, τ1) and (X, τ2)
have a Gδ-diagonal. �

Lemma 7 [20]. A pairwise countably compact space (X, τ1, τ2) such that each
proper τ1-countably compact set has a Gδ-diagonal, is pairwise compact.

Lemma 8. Let (X, τ1, τ2) be a pairwise Hausdorff pairwise countably compact
τ1-semi-stratifiable with respect to τ2 space. Then, it is pairwise compact.

Proof: Let g : N × X → τ1 be a mapping satisfying the conditions (a) and (b) in
Lemma 4. Take a proper τ1-countably compact set F ⊂ X . If, for each n ∈ N, xn ∈
F and x ∈ g(n, xn) ∩ F , then the sequence (xn)n∈N is τ2-convergent to x. But,
(xn)n∈N has also a τ1-cluster point y ∈ F . Since (X, τ1, τ2) is pairwise Hausdorff,
we deduce that x = y. Hence, (F, τ1 |F ) is a T1 countably compact semi-stratifiable
space. By [6, Corollary 2.9], we have that it is compact. Therefore, τ1 |F⊂ τ2 |F
[7, Theorem 10]. Thus, by Lemma 6, (F, τ1 |F ) has Gδ-diagonal and the result now
follows from Lemma 7. �

Recall that a topological space (X, τ) has a countable pseudo-character, if for each
x ∈ X there is a sequence (Vn(x))n∈N of open sets such that {x} =

⋂

∞

n=1 Vn(x).

Theorem 4. A pairwise Hausdorff pairwise countably compact space (X, τ1, τ2) is
quasi-metrizable if and only if it is τ1-semi-stratifiable with respect to τ2 and (X, τ2)
has a countable pseudo-character.

Proof: Since the necessity is almost obvious, we only prove the sufficiency. Fix
x ∈ X . Then, {x} =

⋂

∞

n=1 Vn(x), where each Vn(x) is τ2-open. By Lemma 8,
(X, τ1, τ2) is pairwise compact. Therefore, by [7, Theorem 12], there is a sequence
(Wn(x))n∈N of τ2-open sets such that x ∈ Wn(x) ⊂ τ1 cl Wn(x) ⊂ Vn(x) for all
n ∈ N . Put Fn = X − Wn(x). Then, Fn is a proper τ2-closed set and, hence,
it is τ1-compact. Since the subspace (Fn, τ1 |Fn

, τ2 |Fn
) is pairwise Hausdorff, it

follows from [7, Theorem 10] that τ1 |Fn
⊂ τ2 |Fn

. Consequently, Lemma 6 shows
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that (Fn, τ1 |Fn
) and (Fn, τ2 |Fn

) have a Gδ-diagonal. Thus, by [20, Corollary of
Theorem 3], (Fn, τ1 |Fn

, τ2 |Fn
) is quasi-metrizable. In particular, (Fn, τ1 |Fn

) has
a countable base. Similarly to the proof of [21, Proposition 5], we deduce that
(X, τ1) has a countable base. Finally, the quasi-metrizability of (X, τ1, τ2) follows
from [20, Lemma 5]. �

Corollary. A pairwise Hausdorff pairwise countably compact space (X, τ1, τ2) is
quasi-metrizable if and only if (X × X, τ1 × τ2, τ2 × τ1) is pairwise monotonically
normal.

Proof: Assume (X × X, τ1 × τ2, τ2 × τ1) to be a pairwise monotonically normal
space. Then it is pairwise Hausdorff and, thus, (X, τ1, τ2) is pairwise Hausdorff.
Now suppose that there is x ∈ X which is a τ1-nonisolated point. Take y 6= x. Then
there is a τ1-open neighbourhood U of x and a disjoint τ2-open neighbourhood V
of y. Since there is a sequence (xn)n∈N of distinct points of X satisfying xn ∈ U
for all n ∈ N and X − V is countably compact, it follows that this sequence has
a τ1-accumulation point in X − V . By Proposition 5, X is τ1-stratifiable with
respect to τ2. Similarly to the proof of Theorem 2, we conclude that (X, τ1, τ2) is
pairwise stratifiable. The quasi-metrizability of (X, τ1, τ2) is now a consequence of
Theorem 4. �

Several results in this section were presented by the authors on September 4, 1990
at the XV Jornadas Luso-Espanholas de Matematicas, Univ. Evora (Portugal).
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