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The endocenter and its applications

to quasigroup representation theory

J.D. Phillips, J.D.H. Smith

Abstract. A construction is given, in a variety of groups, of a “functorial center” called
the endocenter. The endocenter facilitates the identification of universal multiplication
groups of groups in the variety, addressing the problem of determining when combinatorial
multiplication groups are universal.
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The theory of quasigroup modules, or quasigroup representation theory, is equi-
valent to the representation theory of quotients of group algebras of certain groups
associated with quasigroups; namely, the stabilizers in the so-called universal mul-
tiplication groups (cf. [Sm, p. 56] and below). Universal multiplication groups give
functors from varieties of quasigroups to the variety of groups. To help identify
these universal multiplication groups we offer a construction (in varieties of groups)
of a subgroup we call the endocenter. This endocenter itself gives a functor from
varieties of groups to the variety of abelian groups. To a certain extent, the endo-
center may be regarded as a “functorial center”. We also identify some universal
multiplication groups, most notably in HSP{G}, the variety generated by a groupG.
For a quasigroup Q and for any q ∈ Q, the maps

R(q) : Q → Q; x 7→ x q

and L(q) : Q → Q; x 7→ q x

are set bijections. As such, they generate a subgroup of the symmetric group Q!
on Q. This subgroup is the (combinatorial) multiplication group MltQ of Q; i.e.
MltQ = 〈R(q), L(q) : q ∈ Q〉Q!. Unfortunately Mlt (which assigns MltQ to Q) does
not extend suitably to homomorphisms to give a functor [Sm, p. 28]. To overcome
this failure, consider the following construction.

Suppose we have a quasigroup Q and an arbitrary variety V of quasigroups con-
taining Q. The category whose objects are quasigroups in V and whose morphisms
are quasigroup homomorphisms will also be denoted by V. As an algebraic cate-
gory, V is complete and co-complete [HS, 13.12, 13.14]. In V, form the coproduct
of Q with 〈x〉, the free V-algebra on one generator. Denote this coproduct by
Q ∗ 〈x〉. Since Q may be identified with its image in Q ∗ 〈x〉 [Sm, p. 33], we can
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consider the subgroup of the combinatorial multiplication group of Q ∗ 〈x〉 gen-
erated by right and left multiplications by elements of Q. This subgroup is the
universal multiplication group U(Q;V) of Q in V; i.e. U(Q;V) = 〈R(q), L(q) : q ∈
Q〉(Q∗〈x〉)!.

Remarks. 1. The assignment of U(Q;V) to Q gives the promised functor from
the category V to the category Gp of all groups [Sm, p. 34].

2. U(Q;V) is variety dependent in the sense that, for a given quasigroup Q and
varieties V1 and V2 containing Q, it is not necessarily the case that U(Q;V1) =
U(Q;V2) [Sm, p.36].

3. IfV1 ⊆ V2 then there is a natural group epimorphism F : U(Q;V2)։ U(Q;V1)
[Sm, p. 55].

4. For any variety V of quasigroups containing Q, there is a natural group epimor-
phism H : U(Q;V)։ MltQ [Sm, p. 55].

Remark 3 can be phrased as: “The smaller the variety, the smaller the universal
multiplication group”. Remark 4 can be phrased as: “A universal multiplication
group can be no smaller than the combinatorial multiplication group”. Since the
smallest variety containing Q is just HSP{Q}, it would be natural to ask whether
U(Q;HSP{Q}) ∼= MltQ, i.e. whether the combinatorial multiplication group is
universal. Since lack of associativity leads to complications, we will concentrate
on the “easy” case of groups. Thus, from now on G will denote a group and V
an arbitrary variety of groups containing G. In particular, V could be HSP{G}
but it is not required to be so. Theorem 5 below gives a sufficient condition for
U(G;HSP{G}) ∼= MltG. On the other hand, Theorems 6 and 7 furnish examples
of groups with U(G;HSP{G}) 6∼= MltG.
For a group G, the combinatorial multiplication group MltG is given by the

exact sequence

1→ Z(G)
∆
→ G × G

F
→ MltG → 1,

where ∆ is the diagonal embedding given by ∆ : Z(G) → G × G; z 7→ (z, z),
and where F is the group epimorphism given by F : G × G ։ MltG; (g1, g2) 7→

L(g−11 )R(g2). Thus,

(1) MltG ∼= G × G/Ẑ,

where Ẑ = Z(G)∆. Next, we define the group epimorphism T : G × G →

U(G;V); (g1, g2) 7→ L(g−11 )R(g2). Clearly

(2) U(G;V) ∼= G × G/KerT.

The map T will play a prominent role throughout, as will its kernel, KerT . By (1)
and (2) it is clear that:

(3) If KerT = Ẑ, then U(G;V) ∼= MltG.

Thus, we note that since G embeds naturally in G ∗ 〈x〉, it is always the case that

(4) KerT ≤ Ẑ.

This discussion leads to two results:
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Proposition 1. If G is an abelian group and V is any variety of abelian groups

containing G, then KerT = Ẑ (and hence U(G;V) ∼= MltG by (3)).

Proposition 2. If G is a group such that Z(G) = 1 and V is any variety of groups

containing G, then KerT = Ẑ (and hence U(G;V) ∼= MltG by (3)).

In the study of these universal multiplication groups (of groups), attention fo-

cusses on the behavior of the subgroup KerT . If KerT = Ẑ then we have seen that

U(G;V) ∼= MltG. If KerT < Ẑ, and if G satisfies suitable finiteness conditions
(most trivially, if G is finite), then we will see that U(G;V) 6∼= MltG. An intrinsic
description of KerT would clearly be beneficial. Towards that end we offer the
following

Definition. The endocenter, Z(G;V), of a group G in a variety V of groups is
defined to be:

Z(G;V) =
⋂

G≤H∈V

Z(H).

The relevance of this definition to representation theory, especially to the study
of universal multiplication groups, is seen in

Theorem 3. Z(G;V)∆ = KerT .

Proof: First note that Z(G;V) ≤ Z(G ∗ 〈x〉) since G ∗ 〈x〉 ∈ V and G ≤ G ∗ 〈x〉.
This means that if g ∈ Z(G;V), then for every t ∈ G ∗ 〈x〉 we have g−1tg = t, i.e.
(g, g) ∈ KerT . Therefore, Z(G;V)∆ ≤ KerT .
Conversely, if (g, g) ∈ KerT and H ∈ V with G ≤ H we need to show that

g ∈ Z(H). So given h ∈ H , we need to show g−1hg = h. If we let f : G → H be the
inclusion map, and k : 〈x〉 → H be determined by mapping x 7→ h, then since G∗〈x〉
is a V-coproduct, there exists a unique group homomorphism F : G∗ 〈x〉 → H such
that the following diagram commutes:

G - G ∗ 〈x〉 � 〈x〉
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Since (g, g) ∈ KerT , we have g−1xg = x. Thus,

F (g−1xg) =F (x), which implies

F (g−1)F (x)F (g) =F (x), which implies

f(g−1)k(x)f(g) =k(x), and so

g−1hg =h,

as desired. Therefore, KerT ≤ Z(G;V)∆; and hence, KerT = Z(G;V)∆. �
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Remark. In light of Theorem 3, we can recast (3) in the following form:

(5) If Z(G;V) = Z(G), then U(G;V) ∼= MltG.

The usual center of a group is not a functorial construction. By contrast, the
endocenter is natural:

Theorem 4. Z( ;V) is a functor from V to Gp.

Proof: Given a group homomorphism f : G → H , define Z(f ;V) to be the
restriction of f to Z(G;V). So if g ∈ Z(G;V), we must show that f(g) ∈ Z(H ;V),
i.e. we must show that for a group K ∈ V with H ≤ K we have f(g) ∈ Z(K).
Hence, given k ∈ K, we must show that f(g)−1kf(g) = k. Towards that end,
define h : 〈x〉 → K to be the unique group homomorphism determined by mapping
x 7→ k. Let i : H → K be the inclusion map. Since G ∗ 〈x〉 is a V-coproduct,
there exists a unique group homomorphism F : G∗〈x〉 → K such that the following
diagram commutes:

G - G ∗ 〈x〉 � 〈x〉
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HHHHH
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Now g ∈ Z(G;V) implies that g ∈ (G ∗ 〈x〉), so that

g−1xg =x, which implies

F (g−1xg) =F (x), which implies

F (g−1)F (x)F (g) =F (x), which implies

f(g−1)h(x)f(g) =h(x), which implies

f(g)−1kf(g) =k.

Thus f(g) ∈ Z(K), and hence f(g) ∈ Z(H ;V). It is now easy to check that
Z(f ;V) : Z(G;V) → Z(H ;V) is a group homomorphism and that Z( ;V) is
a functor. �

Corollary. Z(G;V) is fully invariant in G.

Proof: Suppose f : G → G is a group endomorphism. By functorality, Z(f ;V)
is a group homomorphism from Z(G;V) to Z(G;V). But Z(f ;V) = f |Z(G;V), so

that f maps Z(G;V) to Z(G;V). �

Anticipating the next theorem, we recall the definition of a verbal subgroup:
a subgroup H of a group G is verbal if there exists a set W of words such that
H = 〈w(g1, . . . ) : gi ∈ G, w ∈ W 〉 [Ne, p. 5]. In the event that V = HSP{G},
Propositions 1 and 2 are special cases of



The endocenter and its applications to quasigroup representation theory 421

Theorem 5. If the center Z(G) of a group G is verbal, then Z(G;HSP{G}) =
Z(G). Thus, by (5), U(G;HSP{G}) ∼= MltG.

Proof: Since Z(G) is a verbal subgroup, there exists a set W of words such that
Z(G) = 〈w(g1, . . . ) : gi ∈ G, w ∈ W 〉. Thus, for every w ∈ W ,

(6) [y, w(x1, . . . )] = 1

is an identity in G. By Birkhoff’s Theorem (6) is an identity in every group H in
HSP{G}, in particular in those H for which G ≤ H . So, given g ∈ Z(G), since
g = wg(g1, . . . ) for some gi ∈ G, wg ∈ W , and since [y, wg(x1, . . . )] = 1 is an
identity in H , we know that [y, g] = [y, wg(g1, . . . )] = 1 for every y ∈ H . Thus,
g ∈ Z(H), i.e. g ∈ Z(G;HSP{G}). Hence, Z(G) ≤ Z(G;HSP{G}) and we have
Z(G) = Z(G;HSP{G}), as desired. �

Many familiar groups have verbal centers. For instance abelian groups, simple
groups, free groups, symmetric groups, and dihedral groups all have verbal centers.
Such groups constitute a fairly large class of groups, and in light of Cayley’s theorem
and the fact that every group is the homomorphic image of a free group, one might
be tempted to think that perhaps U(G;HSP{G}) ∼= MltG for every groupG. Before
dispelling this notion, we recall the definition of Hopfian: a group G is said to be
Hopfian if it is not isomorphic to a proper quotient of itself [Rb, p. 159].

Theorem 6. If G is a group such that:

(a) 1 < Z(G) < G;
(b) HSP{G} =Gp; and
(c) G × G is Hopfian,

then MltG 6∼= U(G;HSP{G}).

Proof: Here we use a fact proved in [Sm, p.35]. Namely, U(G;Gp) ∼= G × G. So
suppose on the contrary that U(G;HSP{G}) ∼= MltG. Then

G × G ∼= U(G;Gp)

= U(G;HSP{G}) [by (b)]

∼= MltG [by assumption]

∼= G × G/Ẑ by (1).

This contradicts the Hopfian property ofG×G. Therefore, U(G;HSP{G}) 6∼= MltG.
�

To see that there are groups which satisfy the hypotheses of Theorem 6, consider
the following

Example. Let G = 〈x, y, z : [x, z] = [y, z] = 1〉; i.e. G is the direct product of
the free group 〈x, y〉 on two generators with the free (abelian) group 〈z〉 on one
generator. We note that:
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(a) 1 < Z(G) < G (since Z(G) = 〈z〉).
(b) HSP{G} = Gp (since 〈x, y〉 is clearly a homomorphic image of G, and

HSP{〈x, y〉} =Gp [MKS, p. 413]). And
(c) G×G is Hopfian (since G is residually finite [MKS, pp. 116, 152] and finitely
generated, so too is G× G; and thus G× G is also Hopfian [MKS, p. 415]).

Applying Theorem 6 yields U(G;HSP{G}) 6∼= MltG.

Clearly, groups satisfying the hypotheses of Theorem 6 belong to a restricted
class. For instance, such groups must be infinite. The following theorem provides
finite groups for which the combinatorial multiplication group is not universal.

Theorem 7. If G is a group such that Z(G) is not fully invariant, then Z(G;V) <
Z(G). Suppose further that for normal subgroups N1, N2 of G, the proper contain-
ment N1 < N2 implies that G × G/N1 6∼= G × G/N2. Then U(G;V) 6∼= MltG.

Proof: By the corollary to Theorem 4, Z(G;V) is fully invariant in G. Since we
are assuming that Z(G) is not fully invariant, and since Z(G;V) ≤ Z(G), we have
that Z(G;V) < Z(G) as desired. The final statement follows from the first with
N1 = Z(G;V) and N2 = Z(G). �

Example. The group G = A4×Z2 (the direct product of the alternating group of
order 12 with the cyclic group of order two) has center that is not fully invariant
[Rb, p. 30]. Being finite, it also satisfies the further hypothesis of the theorem.
Thus, U(G;HSP{G}) 6∼= MltG.

Corollary. If G is a group with center that is cyclic of prime order, but not fully
invariant, and if V is any variety of groups containing G, then Z(G;V) = 1. Thus,
by (2) and Theorem 3, U(G;V) ∼= G × G.

Example. Let G = 〈a, b, c : a2 = b2 = c2 = 1, [a, c] = [b, c] = 1〉. Then G is
a group with simple, non-fully invariant center Z(G) = Z2 (the cyclic group of
order two). Hence U(G;HSP{G}) ∼= G × G 6∼= MltG.
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