On the variety Csub (D)

Václav Slavík

Abstract. The variety of lattices generated by lattices of all convex sublattices of distributive lattices is investigated.

Keywords: convex sublattice, variety

Classification: 06B20

0. Introduction.

Let L be a lattice. Denote by $\mathrm{Csub}(L)$ the lattice of all convex sublattices of L (including the empty set \emptyset). For a variety V of lattices, let $\mathrm{Csub}(V)$ denote the variety of lattices generated by $\{\mathrm{Csub}(L); L \in V\}$. In [4], it is shown that for any proper variety V of lattices, the variety $\mathrm{Csub}(V)$ is proper and that there are uncountably many varieties $\mathrm{Csub}(V)$.

The aim of this paper is to obtain some information about the least nontrivial such variety, i.e. about $\mathrm{Csub}(D)$, where D denotes the variety of all distributive lattices. We shall show that this variety is locally finite. The meet $\mathrm{Csub}(D)$ with the variety of all modular lattices will be described.

1. Preliminaries.

Any interval of a lattice L is a convex sublattice of L. Denote by $\mathrm{Int}(L)$ the lattice of all intervals of L (including \emptyset). Clearly, $\mathrm{Int}(L)$ is a sublattice of $\mathrm{Csub}(L)$. The one-element sublattices of a lattice L are just atoms of both $\mathrm{Int}(L)$ and $\mathrm{Csub}(L)$. If I=[a,b] and J=[c,d] are intervals of a lattice L, then we have in the lattice $\mathrm{Csub}(L)$

$$\begin{split} I \vee J &= [a \wedge c, b \vee d] \ \text{ and } \\ I \wedge J &= I \cap J = [a \vee c, b \wedge d] \ \text{ or } \emptyset \ \text{ if } \ a \vee c \not \leq b \wedge d. \end{split}$$

One can show (by induction) that, for any lattice term p in k variables and any $A_1, \ldots, A_k \in \text{Csub}(L)$ the following holds:

$$p(A_1, \dots, A_k) = \bigcup \{ p(I_1, \dots, I_k); \quad I_j \subseteq A_j, I_j \in \operatorname{Int}(L) \}.$$

Thus, for any variety V of lattices, $\operatorname{Int}(L) \in V$ iff $\operatorname{Csub}(L) \in V$. Especially, the variety $\operatorname{Csub}(V)$ is generated by $\{\operatorname{Int}(L); L \in V\}$ (see [4]).

432 V. Slavík

Let L be a lattice and A be a sublattice of the lattice Int(L). If A has the least element that is not \emptyset , then the meet of any pair of elements from A is a non-empty interval of L and, clearly, the mapping h of A into $L^* \times L$, where L^* denotes the dual lattice of L, defined by

$$h([a,b]) = (a,b),$$

is an embedding of A into $L^* \times L$.

Lemma 1. Let V be a self-dual variety V of lattices and $L \in V$ be a lattice. Then any dual ideal of Int(L) generated by an atom of Int(L) belongs to V.

PROOF: Any dual ideal of Int(L) generated by an atom of Int(L) is a sublattice of $L^* \times L \in V$.

2. Locally finite varieties.

In this section, let V denote a locally finite (any finitely generated lattice in V is finite) self-dual variety of lattices.

Theorem 1. The variety Csub(V) is locally finite.

PROOF: Let d(n) denote the cardinality of the V-free lattice with n generators. Let $A \in V$ and let C be a sublattice of $\operatorname{Int}(A)$ generated by n elements. Then there exist atoms a_1, \ldots, a_k of the lattice $\operatorname{Int}(A)$, $k \leq n$, such that $C \subseteq \{\emptyset\} \cup [a_1) \cup \cdots \cup [a_k)$. By Lemma 1, $[a_i) \in V$ and the cardinality of $C \cap [a_i)$ is at most d(n). Thus the cardinality of C is at most $s(n) = 1 + n \cdot d(n)$. Since the variety $\operatorname{Csub}(V)$ is generated by $\{\operatorname{Int}(A); A \in V\}$ and for any $A \in V$ a sublattice of $\operatorname{Int}(A)$ with n generators has at most s(n) elements, the variety $\operatorname{Csub}(V)$ is locally finite (see [3]).

Lemma 2. Let $L \in V$ be a lattice and let A be a finite sublattice of the lattice Int(L). Then A is a sublattice of Int(K) for some finite sublattice K of L.

PROOF: Denote $M_1 = \{x \in L; [x, y] \in A \text{ for some } y \in L\}$ and $M_2 = \{x \in L; [y, x] \in A \text{ for some } y \in L\}$. The sets M_1 and M_2 are finite, the sublattice K of L generated by $M_1 \cup M_2$ is finite and, clearly, A is a sublattice of Int(K).

For a class K of lattices, let H(K), S(K), and P(K) denote the class of all homomorphic images, sublattices, and direct products of members of K, respectively. For a class K, the variety generated by K is equal to HSP(K).

Theorem 2. Let $A \in V$ be a finite lattice. Then $A \in HSP(Int(B))$ for some finite lattice $B \in V$. If A is subdirectly irreducible, then $A \in HS(Int(B))$ for some finite lattice $B \in V$.

PROOF: Since $A \in HSP(\{\operatorname{Int}(L); L \in V\})$, there exist lattices $L_i \in V$, $i \in I$, a sublattice C of the product of $\operatorname{Int}(L_i)$, $i \in I$, and a homomorphism f of C onto A. We can assume that C is finitely generated and so, by Theorem 1, C is finite. Thus we may suppose that I is finite. Let π_i denote the i-th projection of the product of $\operatorname{Int}(L_j)$, $j \in I$, onto $\operatorname{Int}(L_i)$. For any $i \in I$, $\pi_i(C)$ is a finite sublattice of $\operatorname{Int}(L_i)$ and, by Lemma 2, $\pi_i(C)$ is a sublattice of $\operatorname{Int}(B_i)$ for some finite sublattice B_i of L_i . We get that the lattice A belongs to $HSP(\{\operatorname{Int}(B_i); i \in I\})$. It is easy

to show that for any pair of lattices $A, B, A \subseteq B$ implies $Int(A) \subseteq Int(B)$; thus $Int(B_i), i \in I$ are sublattices of Int(B), where B is the product of all $B_i, i \in I$; hence $A \in HSP(B)$. If A is subdirectly irreducible, then, since congruence lattices of lattices are distributive, $A \in HS(Int(B))$ (see [1]).

Corollary 1. Let $A \in \text{Csub}(V)$ be a finite subdirectly irreducible lattice. Then any dual ideal of A generated by an atom of A belongs to the variety V.

PROOF: By Theorem 2, $A \in HS(\operatorname{Int}(B))$ for some finite lattice $B \in V$. Thus for any atom $a \in A$, the dual ideal [a) of A generated by a is a homomorphic image of a sublattice of a dual ideal [d) of $\operatorname{Int}(A), d \neq \emptyset$. By Lemma 1, $[d) \in V$ and so $[a) \in V$, too.

3. The variety Csub(D).

Let D denote the class of all distributive lattices. The class D is a self-dual locally finite variety. Any finite distributive lattice is a sublattice of a finite Boolean algebra. Now we can reformulate the results of Section 2 as follows.

Theorem 3. The following assertions hold:

- 1. The variety Csub(D) is locally finite.
- 2. Let $A \in Csub(D)$ be a finite subdirectly irreducible lattice. Then
- (i) $A \in HS(Int(B))$ for some finite Boolean algebra B:
- (ii) for any atom $a \in A$, the dual ideal [a) is a distributive lattice.

Since any locally finite variety is generated by its finite members, we can immediately obtain

Proposition 1. Csub(D) = $HSP(\{Int(B_n); n = 2, 3, ...\})$, where B_n denotes the Boolean algebra with n atoms.

Let us remark that, for any $n \geq 2$, the lattice $\operatorname{Int}(B_n)$ is simple. Indeed, if α is a nontrivial congruence relation on $\operatorname{Int}(B_n)$, then there exist intervals I,J of B_n such that $I \subseteq J, I \neq J$ and $I\alpha J$. Let c be an element from $J \setminus I$. Then $([c,c] \cap I)\alpha([c,c] \cap J)$, i.e. $\emptyset\alpha[c,c]$. Let c' be the complement of c. We can easily see that $[c',c']\alpha[0,1]$ and that $([x,x] \cap [c',c'])\alpha([x,x] \cap [0,1])$ for any $x \in B_n$. If $x \neq c'$, we get $\emptyset\alpha[x,x]$. If $c \notin \{0,1\}$, then we have $\emptyset\alpha[0,0], \emptyset\alpha[1,1]$ and so $\emptyset\alpha[0,1]$. Now assume that $c \in \{0,1\}$. Let $b \in B_n \setminus \{0,1\}$. Then $\emptyset\alpha[b,b]$ and $\emptyset\alpha[b',b']$; hence $\emptyset\alpha[0,1]$.

An interesting problem is to describe the variety $\operatorname{Csub}(D) \cap M$, where M denotes the variety of all modular lattices. We shall show that this variety contains all finite lattices M_n having n atoms and n+2 elements. Since the lattice $M_{3,3}$ pictured in Fig. 1 belongs to any variety of modular lattices that is not a subvariety of the variety $HSP(\{M_n; n=1,2,\ldots\})$ (see [2]) and, by Theorem 3, $M_{3,3}$ does not belong to $\operatorname{Csub}(D)$, we can get the following result.

Theorem 4. Csub(D) \cap M = HSP({M_n; n = 1, 2, ...}).

To prove Theorem 4, it suffices to show that any lattice M_n is a sublattice of a lattice Int(B) for some finite Boolean algebra B.

434 V. Slavík

Lemma 3. For any natural number $n \ge 2$, there exist subsets $A_i, B_i, i = 1, 2, ..., n$ of $S = \{1, 2, ..., \frac{n}{2}(n+1)\}$ such that the following conditions hold:

- (1) if $i \neq j$, then $A_i \cap A_j = \emptyset$ and $B_i \cup B_j = S$;
- (2) $A_i \nsubseteq B_j$ iff (i,j) = (n,1) or $(i,j) \neq (1,n)$ and i < j.

PROOF: By induction on n. Let n=2. Put $A_1=\{1\}$, $A_2=\{2\}$, $B_1=\{1,3\}$, $B_2=\{1,2\}$. Now suppose that $k\geq 2$ and $A'_1,A'_2,\ldots,A'_k,B'_1,\ldots,B'_k$ are subsets of $T=\{1,2,\ldots,\frac{k}{2}(k+1)\}$ satisfying the conditions (1) and (2). Denote $s=\frac{k}{2}(k+1)$ and $A_i=A'_i\cup\{s+i\}$ for $i=1,2,\ldots,k$ and $A_{k+1}=\{s+k+1\}$. Put $B_1=T\setminus\{s+k+1\}$ and for all $i,2\leq i\leq k-1$, $B_i=B'_i\cup\{s+1,\ldots,s+k+1\}$, $B_k=B'_k\cup\{s+2,\ldots,s+k+1\}$, and finally $B_{k+1}=\{1,2,\ldots,s+1\}\cup\{s+k+1\}$. One can easily verify that the sets A_i,B_i are subsets of $\{1,2,\ldots,\frac{k+1}{2}(k+2)\}$ satisfying the required conditions (1) and (2).

Proposition 2. For any natural number $n \geq 2$, the lattice M_n is a sublattice of Int(B) for some finite Boolean algebra B.

PROOF: Denote by B the Boolean algebra of all subsets of the set $S = \{1, 2, ..., \frac{n}{2}(n+1)\}$. Let A_i, B_i (i=1,...,n) be subsets of S satisfying the conditions (1) and (2) of Lemma 3. Put $I_i = [A_i, B_i], i = 1,...,n$. Clearly, $I_i \in \text{Int}(B)$ and for any pair $i, j, i \neq j, I_i \vee I_j = [A_i \wedge A_j, B_i \vee B_j] = [\emptyset, S]$. Since for any pair $i, j, i \neq j, A_i \nsubseteq B_j$ or $B_i \nsubseteq A_j$, we have $A_i \vee A_j \nsubseteq B_i \wedge B_j$; thus $I_i \wedge I_j = \emptyset$. We have showed that the intervals $I_1, ..., I_n$ together with \emptyset and $[\emptyset, S]$ form a sublattice of Int(B) isomorphic to M_n .

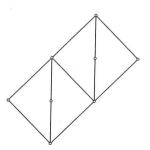


Fig. 1: $M_{3,3}$

References

- Jónsson B., Algebras whose congruence lattices are distributive, Math. Scan. 21 (1967), 110– 121.
- [2] Jónsson B., Equational classes of lattices, Math. Scan. 22 (1968), 187–196.
- [3] Mal'cev A.I., Algebraičeskie sistemy (in Russian), Moskva, 1970.
- [4] Slavík V., A note on convex sublattices of lattices, to appear.

College of Agriculture, Department of Mathematics, 160 21 Praha 6, Czechoslovakia