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Radicals which define factorization systems

B.J. Gardner

Abstract. A method due to Fay and Walls for associating a factorization system with
a radical is examined for associative rings. It is shown that a factorization system results
if and only if the radical is strict and supernilpotent. For groups and non-associative rings,
no radical defines a factorization system.
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Introduction.

A factorization system in a category is an ordered pair (E,M) of classes of
morphisms satisfying the following conditions.

(F1) All isomorphisms are in E ∩M.
(F2) Both E andM are closed under composition.
(F3) Every morphism f has a factorization f = me (first e, then m) m ∈M, e ∈

E.
(F4) For every commutative square

A
e

−−−−→ B

r





y





y

s

C
m

−−−−→ D

with e ∈ E and m ∈M, there is a unique d with de = r and md = s.

This is equivalent to the usual definition by 2.2 of [1] and is the most convenient
characterization for our purposes.
Fay [2] has shown that in the categoryR-mod of left unital modules over a ring R

with identity, every radical class (= not necessarily hereditary torsion class) R can
be used to define a factorization system (ER,MR) as follows:

A
f

−→ B ∈ ER ⇔ B/f(A) ∈ R;

C
g

−→ D ∈MR ⇔ g is injective and R(D/g(C)) = 0.

If one seeks analogous factorization systems in other categories such as the cat-
egory of rings, in which subobjects need not be normal, the defining conditions for
ER andMR have to be modified. The natural way to do this was demonstrated by
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Fay and Walls [3] who considered specific radicals in some categories of groups, not
varieties. (For an account of what happens in the category of all groups, see §2.)
As it happens, radicals define factorizations comparatively rarely in non-abelian
situations.
Following [3], but without making any assumptions about whether (ER,MR) is

a factorization system, we define, for every radical class R of (associative) rings,
the following classes of ring homomorphisms:

ER ={A
f

−→ B : B/[f(A)]B ∈ R};

MR ={C
g

−→ D : g is injective, g(C) ⊳ D and R(D/g(C)) = 0}.

Here [S]R denotes the ideal of a ring R generated by a subset S, and the symbol ⊳
indicates an ideal.
In the next section we shall characterize the radical classesR for which (ER,MR)

is a factorization system. The corresponding question for groups and non-associative
rings will be discussed in §2.
Mrówka [9] proved that a topological space A is compact if and only if for every

space B, the projection π2 : A × B → B is closed. In the category of topological
spaces,

({maps with dense image}, {closed embeddings})

is a factorization system. The concatenation of these ideas led Manes [8] and Her-
rlich, Salicrup and Strecker [7] to study analogues of compactness in other cate-
gories. The papers of Fay and Walls [2], [3], [4] are primarily concerned with the
investigation of such “compactnesses” in categories of modules and groups. In the
category of rings it turns out that “everything is compact”; this is proved in §3.
All rings treated are associative unless we indicate otherwise, but need not, of

course, have identities. For unexplained terminology pertaining to radical theory,
we refer to [6].

1. Associative rings.

In this section we shall be exclusively concerned with radical classes of associative
rings. A radical class R is strict if its semi-simple class is closed under subrings or,
equivalently, for every ring A, R(A) contains all subrings of A belonging to R ([6,
p. 153]); R is supernilpotent if it contains all nilpotent rings.
Clearly (ER,MR) satisfies (F1) for all R. We shall now consider (F2).

Proposition 1.1. The following conditions are equivalent for a radical class R of
associative rings.

(i) If A ⊳ B ⊳ C, R(B/A) = 0 and R(C/B) = 0, then A ⊳ C.
(ii) R is supernilpotent.
(iii) If A ⊳ B ⊳ C and R(B/A) = 0, then A ⊳ C.

Proof: ¬(ii) ⇒ ¬(i): If R is not supernilpotent then Z0, the zeroring on the
integers, is not in R and so (as Z0 is isomorphic to each of its non-zero ideals)
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R(Z0) = 0. It then follows (e.g. as in [10, Proof of Lemma 2]) that R(Y Z[Y ]) = 0
(Y Z[Y ] being the free ring on the generator Y ). Let

C = (Y Z[Y ])[X ] (polynomial ring),

B = {a1X + a2X
2 + · · · : ai ∈ Y Z[Y ]},

A = {kY X + a2X
2 + · · · : k ∈ Z, ai ∈ Y Z[Y ]}.

Then A⊳B ⊳C. Since B2 ⊆ A and additively B/A ∼= Y Z[Y ]/〈Y 〉, B/A is a zeroring
on a free group, so R(B/A) = 0. Also C/B ∼= Y Z[Y ], so R(C/B) = 0. However, A
is not an ideal of C.
(ii)⇒ (iii): If A⊳B ⊳C, then [A]3C ⊆ A (by Andrunakievich’s lemma) so [A]C/A

is a nilpotent ideal of B/A. Since R(B/A) = 0, B/A is semiprime, so A = [A]C ⊳C.
(This implication is well known.) �

Note that the implication (iii)⇒ (ii) can also be obtained from Theorem 2 of [11].
Thus since semi-simple classes are closed under extensions, MR is closed under

composition if and only if R is supernilpotent.

Proposition 1.2. If R is strict, then ER is closed under composition.

Proof: Let f : A → B and g : B → C be in ER. Then B/[f(A)]B ∈ R, so
g(B)/g([f(A)]B) ∈ R. Since g([f(A)]B) ⊆ [g([f(A)]B)]C , R also contains

(g(B) + [g([f(A)]B)]C )/[g([f(A)]B)]C .

Since R is strict, we then have

[g(B)]C/[g([f(A)]B)]C

=[g(B) + [g([f(A)]B)]C ]C/[g([f(A)]B)]C

= [[g(B) + [g([f(A)]B)]C ]/[g([f(A)]B)]C ]C ∈ R,

where C = C/[g([f(A)]B)]C . (This follows, for example, from the proof of Theo-
rem 2.1 of [12].) From the exact sequence

0→ [g(B)]C/[g([f(A)]B)]C →C/[g([f(A)]B)]C

→C/[g(B)]C → 0

and the fact that C/[g(B)]C ∈ R, we deduce that C/[g([f(A)]B)]C ∈ R. But

g([f(A)]B) =gf(A) + g(B)gf(A) + gf(A)g(B) + g(B)gf(A)g(B)

⊆gf(A) + Cgf(A) + gf(A)C + Cgf(A)C

=[gf(A)]C ,

so [g([f(A)]B)]C ⊆ [gf(A)]C , while the reverse inclusion is clear, so we conclude
that

C/[gf(A)]C = C/[g([f(A)]B)]C ∈ R.

Thus gf ∈ ER. �
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Proposition 1.3. If R is supernilpotent and strict, then (ER,MR) is a factoriza-
tion system.

Proof: By 1.1 and 1.2, (ER,MR) satisfies (F2). Let f : A → B be a ring
homomorphism. Let I/[f(A)]B = R(B/[f(A)]B). Then we have a commutative
diagram

A
f

−−−−→ B −−−−→ B/[f(A)]B

(f)





y

⊳

x





f(A) −−−−→ I −−−−→ R(B/[f(A)]B).

Let m : I → B be inclusion. Then

R(B/m(I)) = R(B/I) ∼=R((B/[f(A)]B)/(I/[f(A)]B))

=R((B/[f(A)]B)/R(B/[f(A)]B)) = 0,

so m is in MR.

Now let e : A → I be induced by f . Then [e(A)]B = [f(A)]B , so I/[e(A)]B =
I/[f(A)]B ∈ R. Also [e(A)]I⊳I⊳B, and [[e(A)]I ]B = [e(A)]B , so by Andruakievich’s
lemma, [e(A)]B/[e(A)]I is nilpotent, hence in R. Since

(I/[e(A)]I)/([e(A)]B/[e(A)]I) ∼= I/[e(A)]B ∈ R,

we conclude that I/[e(A)]I ∈ R. Thus e is in ER. Since me = f , we have estab-
lished (F3).

Finally we examine (F4). If

A
e

−−−−→ B

f





y





y

g

C
m

−−−−→ D

commutes, with e ∈ ER and m ∈ MR, then for the natural maps α : B →
B/[e(A)]B , β : D → D/m(C), we have βge = νmf = 0, so βg([e(A)]B) = 0
and there is a unique map γ = B/[e(A)]B → D/m(C) such that γα = βg. But
B/[e(A)]B ∈ R while R(D/m(C)) = 0, so as R is strict, γ = 0 and thus βg = 0.
This means that there is a unique d : B → C (= Ker(βm)) such that md = g. Then
also mde = ge = mf , so as m is injective, de = f . (Cf. the proof on p. 2257 of [3],
and note that strictness (or something like it) is required there for the conclusion
u = 0. All subsequent results in that paper are obtained for the torsion radical in
categories of groups for which it is strict.) �

All we need for the converse of 1.3 is
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Proposition 1.4. If R is not strict, then (ER,MR) does not satisfy (F4).

Proof: If R is not strict, there is a ring A ∈ R and a ring B ⊇ A for which
A * R(B). Then

0 6= A/A ∩R(B) ∼= (A+R(B))/R(B) ⊆ B/R(B)

where A/A ∩ R(B) ∈ R and R(B/R(B)) = 0. Thus we may as well assume that
R(B) = 0.
Recall that the split null extension A ∗ A of A is the additive direct sum A ⊕ A

with multiplication given by

(x, y)(z, w) = (xw + yz, yw).

Let A0 = {(x, 0) : x ∈ A}. Then A0 ⊳ A ∗ A and (A ∗ A)/A0 ∼= A. We have
a commutative diagram

A0
e

−−−−→ A ∗ A

f





y





y

g

B0
m

−−−−→ B ∗ B

where all maps are inclusions. Since e(A0) ⊳ A ∗ A and (A ∗ A)/A0 ∼= A ∈ R, e is
in ER, while B ∗ B/m(B0) ∼= B and R(B) = 0, so m ∈ MR. But if there were
a homomorphism d : A ∗ A → B0 with md = g we would have, for every a ∈ A,

(0, a) = g(0, a) = md(0, a) ∈ B0

— a contradiction, as clearly A 6= 0. �

We now have all the ingredients for our principal result.

Theorem 1.5. Let R be a radical class of associative rings. Then (ER,MR) is
a factorization system if and only if R is supernilpotent and strict.

Proof: “If”: 1.3. “Only if”: 1.1 and 1.4. �

A rather natural “smaller” category which has connections with radical theory
has all associative rings as objects but as morphisms just those homomorphisms
whose images are accessible (= subideals). For a radical class R, let

E∗
R = {f : f ∈MR and f has accessible image}.

Then by adapting some of the preceding arguments we can prove

Theorem 1.6. Let R be a radical class of associative rings. Then (E∗
R,MR) is

a factorization system for the category of associative rings and homomorphisms

with accessible images if and only if R is supernilpotent.
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2. Non-associative rings; groups.

We quickly examine two other non-abelian categories for radical-based factor-
ization systems. The notation of the previous section (with obvious changes in
meaning) will be retained.

Proposition 2.1. LetR be a radical class of non-associative rings. Then (ER,MR)
is a factorization system if and only if R is the class of all rings.

Proof: Suppose (ER,MR) is a factorization system. Then MR is closed under
composition so by the argument used in the proof of 1.1, R contains all zerorings.
Let A be any ring with R(A) = 0. A construction in [5] yields a ring R with the
following properties (where A0 is the zeroring on the additive group of A, and so
on):

A ⊕ A0 ⊳ R, R/(A ⊕ A0) ∼= A, [A0]R = A2 ⊕ A0.

Thus we have A0⊳A⊕A0⊳R with R((A⊕A0)/A0) ∼= R(A) = 0 andR(R/A⊕A0) ∼=
R(A) = 0. Again using the fact thatMR is composition-closed, we see that A0 ⊳R.
But then A0 = A2 ⊕ A0, i.e. A

2 = 0. This means that R(A) = A, so A = 0 and R
contains all rings.
Conversely, if R is the class of all rings, then

(ER,MR) = ({all homomorphisms}, {all isomorphisms})

and this is a factorization system. �

There is a lot of degeneracy associated with radical theory for non-associative
rings. The category of groups, however, is in many ways well-behaved. The following
result may therefore be a little surprising.

Proposition 2.2. Let R be a radical class of groups. Then (ER,MR) is a fac-
torization system for the category of groups if and only if R is the class of all
groups.

Proof: Suppose there is a group G with |G| 6= 1 and |R(G)| = 1. As in the
previous proof, we just have to show that MR is not closed under composition.
Consider the wreath product G ≀ G. Let x be any element of G. Then we have (up
to isomorphism)

Gx ⊳
∏

g∈G

Gg ⊳ G ≀ G

where each Gg
∼= G,R(

∏

Gg/Gx) ∼= R(
∏

g 6=x Gg) = 0 and R((G ≀ G)/
∏

g∈G)
∼=

R(G) = 0. But Gx is not normal in G ≀ G as |G| > 1. �

3. Compactness.

As we have noted, there is an analogue of compactness associated with a factor-
ization system. We conclude by describing the compact rings relative to (ER,MR)
where R is a supernilpotent strict radical class. A ring A is said to be compact
relative to (ER,MR) if for every ring B the projection π2 : A × B → B satisfies
the condition

(C
g

−→ A × B) ∈MR =⇒ (C
π2g
−→ B) ∈MR.
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Proposition 3.1. LetR be a supernilpotent strict radical class of associative rings.
Then every associative ring is compact relative to (ER,MR).

Proof: Let A, B be any (associative) rings. Let I ⊳ A ⊕ B and let

J ={a ∈ A : ∃ (a, b) ∈ I},

K ={b ∈ B : ∃ (a, b) ∈ I}.

Then J ⊳ A and K ⊳ B so I ⊆ J ⊕ K ⊳ A ⊕ B. We first prove that

(A ⊕ B)(J ⊕ K) ⊆ I.

Let a ∈ J, b ∈ K, (r, s) ∈ A ⊕ B. Then there exist b′ ∈ B, a′ ∈ A such that
(a, b′), (a′, b) ∈ I. Now we have

(r, s)(a, b) = (ra, sb) =(r, 0)(a, b′) + (0, s)(a′, b)

∈(A ⊕ B)I ⊆ I.

Thus (J ⊕ K)/I is contained in the right annihilator of (A ⊕ B)/I.
Now suppose the embedding of I into A⊕B is inMR, i.e. thatR((A⊕B)/I) = 0.

Since R is supernilpotent, (A ⊕ B)/I is semiprime, so it has zero annihilator and
thus (J ⊕ K)/I = 0/. We therefore have J ⊕ K = I. Then

0 = R((A ⊕ B)/I) =R((A ⊕ B)/(J ⊕ K))

∼=R(A/J) ⊕R(B/K).

In particular, R(B/K) = 0, so the embedding π2(I)→ B, i.e. K → B, is in MR.
�
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