On matrix points in Čech–Stone compactifications of discrete spaces

A. Gryzlov

Abstract. We prove the existence of $(2^{\tau}, \tau)$ -matrix points among uniform and regular points of Čech–Stone compactification of uncountable discrete spaces and discuss some properties of these points.

Keywords:Čech–Stone compactification of discrete spaces, weak $p\mbox{-}\mathrm{points},$ independent matrix

Classification: 54D35, 54D40

The existence of weak p-points in $\omega^* = \beta \omega \setminus \omega$ has been proved by K. Kunen [K], he proved the existence of c-OK-points in ω^* . In [G₁], [G₂], the existence of so named matrix points has been proved. Matrix points are c-0K-points and therefore are weak p-points. In this article we discuss a problem of an existence of matrix points in Čech–Stone compactification of an uncountable discrete space. By τ , we denote cardinal and discrete space of cardinality τ , $\beta \tau$ is Čech–Stone compactification of τ and $\tau^* = \beta \tau \setminus \tau$. Denote by $U(\tau)$ a set of uniform ultrafilters on τ and let $R(\tau)$ be a set of regular ultrafilters on τ . Recall that the ultrafilter $\xi \in \tau^*$ is said to be regular, if there is a family $\xi' \subseteq \xi$, $|\xi'| = \tau$ such that if $\xi'' \subseteq \xi'$ and $|\xi''| = \omega$, then $\bigcap \xi'' = \emptyset$.

We prove the existence of $(2^{\tau}, \tau)$ -matrix point in $U(\tau)$ and $R(\tau)$ (Theorem 1.4, 1.8) for so named $(2^{\tau}, \tau)$ -independent matrix. These points are weak *p*-points, moreover they are not limit points of subsets of τ^* with countable Souslin number. We also discuss some properties of these points.

Definition 1.1. An indexed family $\{A_{\alpha\beta} : \alpha \in \lambda, \beta \in \sigma\}$ of subsets of τ is called a (λ, σ) -independent matrix on τ if

- (1) for all distinct $\beta_1, \beta_2 \in \sigma$ and $\alpha \in \lambda$ we have that $|A_{\alpha\beta_1} \cap A_{\alpha\beta_2}| < \omega$, and
- (2) if $\alpha_1, \ldots, \alpha_n \in \lambda$ are distinct, then for all $\beta_1, \ldots, \beta_n \in \sigma \mid \bigcap \{A_{\alpha_i \beta_i} : i \leq n\} \mid = \tau$.

It is well known that there is a $(\mathfrak{c}, \mathfrak{c})$ -independent matrix on ω [K], and the fine proof of this fact is due to P. Simon. For cardinal $\tau, \tau > \omega$, we can prove the following

Lemma 1.2. There is a $(2^{\tau}, \tau)$ -independent matrix on τ for $\tau > \omega$ ([EK]).

PROOF: For all δ , $\delta < \tau$, let us denote $S_{\delta} = \{ \langle \delta, K_1, K_2, f \rangle : K_1, K_2 \subseteq \delta, K_1, K_2$ are finite, $f \in K_2^{\mathcal{P}(K_1)} \}$, where $\mathcal{P}(A)$ is a set of subsets of A. Let for $\beta \in \tau$ and $Y \subseteq \tau$

$$A_{Y\beta}^{\delta} = \{ \langle \delta, K_1, K_2, f \rangle \in S_{\delta} : K_1 \cap Y \neq \emptyset, \ K_2 \ni \beta, \ f(Y \cap K_1) = \beta \},$$

and

$$A_{Y\beta} = \bigcup \{ A_{Y\beta}^{\delta} : \delta < \tau \}.$$

The family $\{A_{Y\beta} : Y \subseteq \tau, \beta \in \tau\}$ is a $(2^{\tau}, \tau)$ -independent matrix. Really, let $Y \subseteq \tau, \beta_1, \beta_2 \in \tau, \beta_1 \neq \beta_2$. Then $A_{Y\beta_1} \cap A_{Y\beta_2} = \emptyset$, otherwise there is an element $\langle \delta, K_1, K_2, f \rangle$ such that $K_1 \cap Y \neq \emptyset$, $K_2 \ni \beta_1$, $K_2 \ni \beta_2$, and $f \in K_2^{\mathcal{P}(K_1)}$ for which we have $f(Y \cap K_1) = \beta_1$ and at the same time $f(Y \cap K_1) = \beta_2$. Now let Y_1, \ldots, Y_n be distinct. We check that $|\bigcap \{A_{Y_i\beta_i} : i \leq n\}| = \tau$ for all $\beta_1, \ldots, \beta_n \in \tau$. There is a set $C \subseteq \tau$, $|C| \leq n$ such that sets $Y_i \cap C$ $(i = 1, \ldots, n)$ are distinct and non-void. Then for all $\delta < \tau$ such that $C \subseteq \delta$, $\{\beta_1, \ldots, \beta_n\} \subseteq C$ there is an element $\langle \delta, K_1, K_2, f \rangle$ defined as follows: $K_1 = C, K_2 = \{\beta_1, \ldots, \beta_n\}, f \in K_2^{\mathcal{P}(K_1)}$ such that $f(Y_i \cap K_1) = \beta_i$ $(i = 1, \ldots, n)$, and therefore the element $\langle \delta, K_1, K_2, f \rangle$ is a point of $A_{Y_i\beta_i}$ for all $i = 1, \ldots, n$. So, $|\bigcap \{A_{Y_i\beta_i} : i \leq n\}| = \tau$.

Note that by the proof of Lemma 1.2, a $(2^{\tau}, \tau)$ -independent matrix $\{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$ has the property:

(1') for all distinct
$$\beta_1, \beta_2 \in \tau$$
 and $\alpha \in 2^{\tau}$
 $A_{\alpha\beta_1} \cap A_{\alpha\beta_2} = \emptyset.$

Further we will assume that the $(2^{\tau}, \tau)$ -independent matrix satisfies the property (1').

Note that the system of sets $\{S_{\delta} : \delta < \tau\}$ defined in the proof of the existence of $(2^{\tau}, \tau)$ -independent matrix has the following property:

for all distinct $\alpha_1, \ldots, \alpha_n \in 2^{\tau}$ and $\beta_1, \ldots, \beta_n \in \tau$, there is $\delta_0 \in \tau$ such that for all $\delta \in \tau, \delta_0 < \delta$,

$$\left(\bigcap \{A_{\alpha_i \beta_i} : i \le n\}\right) \cap S_{\delta} = \bigcap \{A_{\alpha_i \beta_i}^{\delta} : i \le n\} \neq \emptyset.$$

The family $\{S_{\delta} : \delta < \tau\}$ we will call the basic family for a $(2^{\tau}, \tau)$ -independent matrix $\{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$. A $(2^{\tau}, \tau)$ -independent matrix $\{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$ gives us a family $\{A_{\alpha\beta}^* : \alpha \in 2^{\tau}, \beta \in \tau\}$ of clopen sets of $\tau^* = \beta \tau \setminus \tau$, where $A_{\alpha\beta}^* = [A_{\alpha\beta}]_{\beta\tau} \cap \tau^*$, with the following properties:

- (1) for all distinct $\beta_1, \beta_2 \in \tau$ and $\alpha \in 2^{\tau}$, we have that $A^*_{\alpha\beta_1} \cap A^*_{\alpha\beta_2} = \emptyset$, and (2) if $\alpha = 0$, $\alpha \in 2^{\tau}$ are distinct then for all $\beta = 0$, $\beta \in \mathbb{C}$
- (2) if $\alpha_1, \ldots, \alpha_n \in 2^{\tau}$ are distinct, then for all $\beta_1, \ldots, \beta_n \in \lambda$

$$\left(\bigcap\{A_{\alpha_i\beta_i}^*:i\leq n\}\right)\cap U(\tau)\neq\emptyset.$$

The family $\{A_{\alpha\beta}^*: \alpha \in 2^{\tau}, \beta \in \tau\}$ we will call the $(2^{\tau}, \tau)$ -independent matrix in τ^* .

Definition 1.3. A point $x \in \tau^*$ is called a (λ, σ) -matrix point if there is a (λ, σ) independent matrix as just defined, such that for any sequence $\Gamma = \{U_i : i \in \omega\}$ of neighbourhoods of x there is $B(\Gamma) \subseteq \lambda$ with $|B(\Gamma)| < \lambda$ such that $x \in [\bigcup \{A_{\alpha_i \beta_i} \cap U_i : i \in \omega\}]$, where $\{\alpha_i : i \in \omega\} \subseteq \lambda \setminus B(\Gamma)$ are distinct and $\{\beta_i : i \in \omega\} \subseteq \sigma$.

The existence of $(\mathfrak{c}, \mathfrak{c})$ -matrix points in ω^* has been proved in [K]. For $\tau > \omega$, we will prove the existence of $(2^{\tau}, \tau)$ -matrix points.

We say that a family $\lambda = \{C\}$ of subsets of τ (or closed subsets of τ^*) is "good" for a $(2^{\tau}, \tau)$ -independent matrix $\{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$ on τ (or the matrix $\{A_{\alpha\beta}^* : \alpha \in 2^{\tau}, \beta \in \tau\}$ in τ^*), if for any finite $\lambda' \subseteq \lambda$, distinct $\alpha_1, \ldots, \alpha_n \in 2^{\tau}$ and $\beta_1, \ldots, \beta_n \in \tau$, $|(\bigcap\{C : C \in \lambda'\}) \cap (\bigcap\{A_{\alpha_i\beta_i} : i \leq n\})| = \tau$ (or $(\bigcap\{C : C \in \lambda'\}) \cap (\bigcap\{A_{\alpha_i\beta_i}^* : i \leq n\}) \neq \emptyset$).

Theorem 1.4. There is a $(2^{\tau}, \tau)$ -matrix point in $U(\tau)$.

PROOF: Let $\{A^*_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$ be a $(2^{\tau}, \tau)$ -independent matrix in τ^* . Index the set of all clopen subsets of τ^* as $\{W_{\gamma} : \gamma \in 2^{\tau}\}, W_0 = \tau^*$. By induction, for each $\gamma \in 2^{\tau}$, we choose a clopen set and a set $B_{\gamma} \subseteq 2^{\tau}$ such that

- (1) $\{Z_{\gamma} : \gamma \in 2^{\tau}\}$ is an ultrafilter of clopen subsets of τ^* ;
- (2) $|B_{\gamma} \setminus \bigcup \{B_{\delta} : \delta < \gamma\}| < \omega$ for all $\gamma \in 2^{\tau}$, and $B_{\gamma} \subseteq B_{\gamma'}$ for $\gamma \leq \gamma'$; for each $\gamma \in 2^{\tau}$, let Σ_{γ} be a family of sets of the form $\bigcup \{A_{\alpha_i \beta_i} \cap Z_{\gamma} : i \in \omega\}$, where $\{\alpha_i : i \in \omega\} \subseteq 2^{\tau} \setminus B_{\gamma}$ are distinct, $\{\beta_i : i \in \omega\} \subseteq \tau$ and $\alpha_i \leq \gamma$ $(i \in \omega)$;
- (3) for all $\delta \in 2^{\tau}$, the family $(\bigcup \{\Sigma_{\gamma} : \gamma \leq \delta\}) \cup \{Z_{\gamma} : \gamma \leq \delta\}$ is "good" for the matrix $\{A_{\alpha\beta}^* : \alpha \in 2^{\tau} \setminus B_{\delta}, \beta \in \tau\}$.

Define $Z_0 = W_0 = \tau^*, B_0 = \emptyset$.

Suppose that $\delta \in 2^{\tau}$ and B_{γ}, Z_{γ} have been chosen for all $\gamma < \delta$. Define $B'_{\delta} = \bigcup \{B_{\gamma} : \gamma < \delta\}$. For W_{δ} , there is a finite $K \subseteq 2^{\tau}$ such that $(\bigcup \{\Sigma_{\gamma} : \gamma < \delta\}) \cup \{Z_{\gamma} : \gamma < \delta\} \cup \{W_{\delta}\}$ (or $(\bigcup \{\Sigma_{\gamma} : \gamma < \delta\}) \cup \{Z_{\gamma} : \gamma < \delta\} \cup \{\tau^* \setminus W_{\delta}\}$) is "good" for the matrix $\{A^*_{\alpha\beta} : \alpha \in 2^{\tau} \setminus (B'_{\delta} \cup K), \beta \in \tau\}$. Otherwise there is $\eta \in 2^{\tau}, \eta < \delta$, such that $(\bigcup \{\Sigma_{\gamma} : \gamma < \eta\}) \cup \{Z_{\gamma} : \gamma \leq \eta\}$ is not "good" for the matrix $\{A^*_{\alpha\beta} : \alpha \in 2^{\tau} \setminus B_{\eta}, \beta \in \tau\}$, but this contradicts our assumption. If $(\bigcup \{\Sigma_{\gamma} : \gamma < \delta\}) \cup \{Z_{\gamma} : \gamma < \delta\} \cup \{W_{\delta}\}$ is "good" for $\{A^*_{\alpha\beta} : \alpha \in 2^{\tau} \setminus (B'_{\delta} \cup K), \beta \in \tau\}$, then we define $Z_{\delta} = W_{\delta}$, otherwise define $Z_{\delta} = \tau^* \setminus W_{\delta}$, and define $B_{\delta} = B'_{\delta} \cup K$.

Let us check that $\{Z_{\gamma} : \gamma < \delta\}$ and $\{B_{\gamma} : \gamma \leq \delta\}$ satisfy (3). Let

- (a) $\{Z_{\gamma_1}, \ldots, Z_{\gamma_n} : \gamma_i \leq \delta\}$ be a finite subset of $\{Z_{\gamma} : \gamma \leq \delta\}$, and
- (b) $\{V_j : j = 1, \dots, m\}$ be a finite subset of $\Sigma_{\delta}, V_j = \bigcup \{A^*_{\alpha_i^j \beta_i^j} \cap Z_{\gamma_i^j} : i \in \omega\};$
- (c) $\{V'_k : k = 1, ..., l\}$ be a finite subset of $\Sigma_{\gamma'}, \gamma' < \delta, V'_k = \bigcup \{A_{\alpha_i^k \beta_i^k} \cap Z_{\gamma_i^k} : i \in \omega\}$:
- (d) $\{A^*_{\alpha_p\beta_p}: p=1,\ldots,q\}$ be a finite family of sets of $(2^{\tau},\tau)$ -independent matrix $\{A^*_{\alpha\beta}: \alpha \in 2^{\tau} \setminus B_{\delta}, \beta \in \tau\}$, where $\{\alpha_p: p=1,\ldots,q\}$ are distinct.

Let us check that

$$\left(\bigcap_{i=1}^{n} Z_{\gamma_i}\right) \cap \left(\bigcap_{j=1}^{m} V_j\right) \cap \left(\bigcap_{k=1}^{l} V_k'\right) \cap \left(\bigcap_{p=1}^{q} A_{\alpha_p \beta_p}\right) \neq \emptyset.$$

For V_1, \ldots, V_m from the family (b), we choose the subsets $A_{\hat{\alpha}_i^1}^* \cap Z_{\hat{\gamma}_i^1} \subseteq V_1, \ldots, A_{\hat{\alpha}_i^m \hat{\beta}_i^m} \cap Z_{\hat{\gamma}_i^m} \subseteq V_m$ such that $\hat{\alpha}_i^1, \ldots, \hat{\alpha}_i^m$ are distinct and distinct from the indexes $\{\alpha_p : p = 1, \ldots, q\}$ of sets of the family (d).

Note that by construction, the family $\Sigma_{\gamma'} \cup \{Z_{\gamma} : \gamma \leq \delta\}$ is "good" for $\{A_{\alpha\beta}^* : \alpha \in 2^{\tau} \setminus B_{\delta}, \beta \in \tau\}$. By this remark and by choosing of indexes $\hat{\alpha}_i^1, \ldots, \hat{\alpha}_i^m$, we have

$$\emptyset \neq \left(\bigcap_{i=1}^{n} Z_{\gamma_{i}}\right) \cap \left(\bigcap_{j=1}^{m} (A_{\hat{\alpha}_{i}^{j} \hat{\beta}_{i}^{j}} \cap Z_{\hat{\gamma}_{i}^{j}})\right) \cap \left(\bigcap_{k=1}^{l} V_{k}^{\prime}\right) \cap \left(\bigcap_{p=1}^{q} A_{\alpha_{p}\beta_{p}}\right) \subseteq \left(\bigcap_{i=1}^{n} Z_{\gamma_{i}}\right) \cap \left(\bigcap_{j=1}^{m} V_{j}\right) \cap \left(\bigcap_{k=1}^{l} V_{k}^{\prime}\right) \cap \left(\bigcap_{p=1}^{q} A_{\alpha_{p}\beta_{p}}\right).$$

So, $\{Z_{\gamma} : \gamma \leq \delta\}$ and $\{B_{\gamma} : \gamma \leq \delta\}$ satisfy (3). By the completing of the induction, we obtain the systems $\{Z_{\gamma} : \gamma \in 2^{\tau}\}$ and $\{B_{\gamma} : \gamma \in 2^{\tau}\}$ which satisfy (1)–(3). Let us check that a point $x = \bigcap \{Z_{\gamma} : \gamma \in 2^{\tau}\}$ is a $(2^{\tau}, \tau)$ -matrix point in τ^* .

Let $\{U_i : i \in \omega\}$ be a system of neighbourhoods of the point x. We can assume that $U_i = Z_{\gamma_i}$ $(i \in \omega)$. By (3), a set $\bigcup_i \{A_{\alpha_i\beta_i} \cap Z_{\gamma_i}\} \in \Sigma_{\gamma}$, where $\delta = \sup\{\gamma_i : i \in \omega\}$, intersects any set $Z_{\gamma}, \gamma \in 2^{\tau}$, so $x \in [\bigcup_i \{A_{\alpha_i\beta_i} \cap Z_{\gamma_i}\}]$. Finally, it is easy to see that $x \in U(\tau)$.

A simple consequence of the definition of a matrix point is

Theorem 1.5. Let x be a $(2^{\tau}, \tau)$ -matrix point in τ^* for a $(2^{\tau}, \tau)$ -independent matrix $\{A_{\alpha\beta}^* : \alpha \in 2^{\tau}, \beta \in \tau\}$. Let $\{F_i : i \in \omega\}$ be a family of closed sets in τ^* , not containing x. Suppose $B \subseteq 2^{\tau}$ and $|B| = 2^{\tau}$, and for any $\alpha \in B$ there is $\beta \in \tau$ with $A_{\alpha\beta} \cap (\bigcup_{i=1}^{\infty} F_i) = \emptyset$. Then $x \notin [\bigcup \{F_i : i \in \omega\}]$.

Corollary 1.6. Let $x \in \tau^*$ be a $(2^{\tau}, \tau)$ -matrix point and $\{F_i : i \in \omega\}$ be a family of closed subsets of τ^* such that $x \notin F_i$, $c(F_i) \leq \delta$ and $\delta < \tau$ for all $i \in \omega$. Then $x \notin [\bigcup \{F_i : i \in \omega\}]$.

Corollary 1.7. Let $x \in \tau^*$ be a $(2^{\tau}, \tau)$ -matrix point. Then $x \notin [F]$ for any $F \subseteq \tau^*$ such that $x \notin F$ and $c(F) \leq \omega$.

Let $M = \{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$ be a $(2^{\tau}, \tau)$ -independent matrix on τ , and a family $\lambda = \{F\}$ of subsets of τ is "good" for M. Then we construct a new matrix M_{λ} in such a way.

Let $\lambda' = \{F_{\alpha} : \alpha \in 2^{\tau}\}$, where each F_{α} is one of $F \in \lambda$, and for all $F \in \lambda$ $|\{F_{\alpha} : F_{\alpha} = F\}| = 2^{\tau}$. Denote

$$M_{\lambda} = \{ A'_{\alpha\beta} : A'_{\alpha\beta} = A_{\alpha\beta} \cap F_{\alpha}, \alpha \in 2^{\tau}, \beta \in \tau \}.$$

We say that M_{λ} is a λ -modification of M. It is easy to see that $x \in \{[F] : F \in \lambda\}$. Now let us discuss a problem of the existence of matrix points which are regular points in $R(\tau)$. Recall that a centered system of subsets of τ , $\xi = \{A\}$, $|\xi| = \tau$, is called regular, if $\bigcap \{A : A \in \xi'\} = \emptyset$ for all countable $\xi' \subseteq \xi$, $|\xi'| = \omega$. An ultrafilter x on τ , containing a regular system, is regular.

Theorem 1.8. There is a $(2^{\tau}, \tau)$ -matrix point in $R(\tau)$.

PROOF: Let $\xi = \{B\}, |\xi| = \tau$, be a regular system on τ , and let $\Sigma = \{S'_{\delta} : \delta \in \tau\}$ be a basic family for a $(2^{\tau}, \tau)$ -independent matrix $M = \{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$. For $\beta \in \xi$, denote $\Sigma_B = \bigcup \{S'_{\delta} : \delta \in B\}$. The system $\eta = \{\Sigma_B : B \in \xi\}$ is a regular system on $\tau = \bigcup \{S'_{\delta} : S_{\delta} \in \Sigma\}$, and $|\eta| = \tau$. The system $\eta = \{\Sigma_B : B \in \xi\}$ is "good" for the matrix M; and let $M_{\eta} = \{A'_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$ be an η -modification of M. A $(2^{\tau}, \tau)$ -matrix point x for M_{η} is a regular one, since $x \in \bigcap \{[\Sigma_B] : \Sigma_B \in \eta\}$.

Theorem 1.9. Let $T = \{P_{\gamma} : \gamma \in \tau\}$ be a family of pairwise disjoint subsets of τ , and $\mathcal{D} = \{x_{\gamma} : \gamma \in \tau\}$ be a discrete subset of τ^* such that $x_{\gamma} \in P_{\gamma}^* = [P_{\gamma}]_{\beta\tau} \setminus \tau$. Then there is a $(2^{\tau}, \tau)$ -matrix point in $([\mathcal{D}]_{\tau^*} \setminus \mathcal{D}) \cap U(\tau)$.

PROOF: Denote $F = ([\mathcal{D}]_{\tau^*} \setminus \mathcal{D}) \cap U(\tau)$ and let $B_F = \{0\}$ be a system of clopen neighbourhoods of F in $\beta\tau$. For a $(2^{\tau}, \tau)$ -independent matrix $M = \{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$ on τ , note $M' = \{A'_{\alpha\beta} : A'_{\alpha\beta} = \bigcup \{P_{\gamma} : \gamma \in A_{\alpha\beta}\}, \alpha \in 2^{\tau}, \beta \in \tau\}$. It is easy to see that B_F is "good" for the matrix M' and let M'_{B_F} be a B_F -modification of M'. A matrix point x for the matrix M'_{B_F} is in F, so the theorem is proved. \Box

We can prove the same fact for regular points, namely

Theorem 1.10. Let $T = \{P_{\gamma} : \gamma \in \tau\}$ be a family of pairwise disjoint subsets of τ , and $\mathcal{D} = \{x_{\gamma} : \gamma \in \tau\}$ be a discrete subset of τ^* such that $x_{\gamma} \in P_{\gamma}^*$. Then there is a $(2^{\tau}, \tau)$ -matrix point in $([\mathcal{D}]_{\tau^*} \setminus \mathcal{D}) \cap R(\tau)$.

PROOF: Let $M = \{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$ be a $(2^{\tau}, \tau)$ -independent matrix on τ , $\Sigma = \{S_{\delta} : \delta \in \tau\}$ be a basic family for $M, \xi = \{B\}$ be a regular system on τ . As in the proof of Theorem 1.8, denote $\Sigma_B = \bigcup\{S_{\delta} : \delta \in B\}$, then $\eta = \{\Sigma_B : B \in \xi\}$ is a regular system. For $S_{\delta} \in \Sigma$, let $S_{\delta}^T = \bigcup\{P_{\gamma} : \gamma \in S_{\delta}\}, \Sigma_B^T = \bigcup\{S_{\delta}^T : \delta \in B\}$, for $B \in \xi$. Then $\eta^T = \{\Sigma_B^T : B \in \xi\}$ is a regular system. Denote $M' = \{A'_{\alpha\beta} : A'_{\alpha\beta} = \bigcup\{P_{\gamma} : \gamma \in A_{\alpha\beta}\}, \alpha \in 2^{\tau}, \beta \in \tau\}$. A family $\lambda = \eta^T \cup B_F$ (B_F as in 1.9) is "good" for M', finally we construct a matrix point for a λ -modification of M'.

Note that from the previous theorems it follows

Corollary 1.11. There are 2^{τ} $(2^{\tau}, \tau)$ -matrix points in $U(\tau)$ and $R(\tau)$.

Theorem 1.12. $\chi(x,\tau^*) \ge cf2^{\tau}$ for $(2^{\tau},\tau)$ -matrix point in τ^* .

PROOF: Let $\chi(x,\tau^*) < cf2^{\tau}$, where x is a matrix point for a $(2^{\tau},\tau)$ -independent matrix $\{A_{\alpha\beta} : \alpha \in 2^{\tau}, \beta \in \tau\}$. Let $B_x = \{O_x\}$ be a base in $x, |B_x| = \chi(x,\tau^*)$. By the definition of a $(2^{\tau},\tau)$ -matrix point, for each $O_x \in B_x$ there is a set $B'_{O_x} \subseteq 2^{\tau}$

such that $O_x \cap A_{\alpha\beta} \neq \emptyset$ for all $\alpha \in 2^{\tau} \setminus B'_{O_x}$ and $\beta \in \tau$. Since $2^{\tau} \setminus \bigcup \{B'_{O_x} : O_x \in B_x\} \neq \emptyset$, there is $\alpha_0 \in 2^{\tau} \setminus \bigcup \{B'_{O_x} : O_x \in B_x\}$ such that $A_{\alpha_0\beta} \cap O_x \neq \emptyset$ for all $\beta \in \tau$ and $O_x \in B_x$, but it is impossible.

References

- [K] Kunen K., Weak p-points in $\beta N \setminus N$, Coll. Math. Soc. Janos Bolyai, Topology, Budapest, vol. 23, 341–349.
- [G1] Gryzlov A., Ob odnom klasse tochek prostranstva N*, Leningradskaya mezhdunarodnaya konf., Leningrad, Nauka, 1982, p. 57.
- $[G_2]$, K teorii prostranstva βN , Obshchaya topologiya, Mosk. Univ., Moskva, 1986, 20-33.
- [EK]Engelking R., Karłowicz M., Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287–304.

Udmurt State University, Krasnogeroyskaya 71, 426037 Izhevsk, USSR

(Received August 26, 1991)