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Inductive limit topologies on Orlicz spaces

MARIAN NOWAK

Abstract. Let L¥ be an Orlicz space defined by a convex Orlicz function ¢ and let E¥ be
the space of finite elements in L¥ (= the ideal of all elements of order continuous norm).
We show that the usual norm topology 7, on L¥ restricted to E¥ can be obtained as
an inductive limit topology with respect to some family of other Orlicz spaces. As an
application we obtain a characterization of continuity of linear operators defined on E¥.
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1. Introduction and preliminaries.
In [1] and [2] Davis, Murray and Weber discussed the spaces

= J rf0,1] and P~ = |J @' (1<p<)
p<t<oo 1<t<p

(endowed with the appropriate inductive limit topologies) which turned out to be
distinct from the spaces LP and I[P, respectively.

Moreover, in [8] it is proved that if S C [0, 00) with inf.S ¢ S or supS ¢ S and
@ is an infinite atomless measure (resp. sup S ¢ S and p is the counting measure
on N), there is no Orlicz function ¢ such that:

E¥ = Lin U ILP or L¥ = Lin U LP.
peS peS

On the other hand, Krasnoselskii and Rutickii [3, p. 60] showed that if u is the
finite Lebesgue measure, then
L' ={Jr®,
©

where ¢ are taken over the family of all N-functions. This equality was a starting
point for many results concerning a representation of an Orlicz space L¥ or a space
E¥ as the union of some families of Orlicz spaces which they contain properly
(see [4], [7], [9], [12]).

In [7] for a convex Orlicz function ¢ we found the set U¥ of N-functions such

that:
Be=|J EY= | L¥
pET® pET®
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In this paper we show that the appropriate inductive limit topologies on E%
defined with respect to these representations coincide with the norm topology 7,
on L¥ restricted to E¥.

We now recall some notation and terminology concerning Orlicz spaces (see [3],
[5], [11] for more details).

By an Orlicz function we mean a function ¢ : [0,00) — [0, 00] which is non-
decreasing, left continuous, continuous at zero with ¢(0) = 0, and not identically
equal to zero.

We shall say that an Orlicz function ¢ jumps to co, whenever there is a number
ug > 0 such that o(u) = oo for u > ug. We shall say that ¢ vanishes near zero,
whenever p(u) = 0 for 0 < u < ug for some ug > 0.

An Orlicz function ¢ is called convex, if p(au+Gv) < ap(u)+ Gp(v) for a, § > 0,
a+ f =1. A convex Orlicz function is usually called a Young function. A convex
Orlicz function ¢, vanishing only at 0 and taking only finite values is called an
N-function if p(u)/u — 0 as u — 0 and ¢(u)/u — 0o as u — co. By @5 we will
denote the collection of all N-functions.

For a convex Orlicz function ¢ we denote by ¢* the function complementary to ¢
in the sense of Young, i.e.

0" (v) = sup{uv — p(u) : u > 0} for v>0.
For a set ¥ of convex Orlicz functions we will write
U* = {1 1p € T
Throughout this paper we will write: ¢, (u) = uP for u > 0, where p > 1 and

0 for 0 <u <1,
1 for u>1

0 for 0 <u <1,

00 for u>1

wolw = { nd o) = {

We shall say that two Orlicz functions ¥ and ¢ are equivalent for all u (resp. for

small u, resp. for large u), in symbols ¢ L ¢ (resp. v 2 (p, Tesp. P L ) if there
exist constants a,b,c,d > 0 such that ay(bu) < p(u) < cp(du) for all u > 0 (resp.
for 0 < u < ug, resp. for u > wug), where ug > 0.

We say that an Orlicz function ¢ increases essentially more rapidly than any

other ¢ for all u (resp. for small u, resp. for large u), in symbols ¢ & ¢ (resp.
l
P <s< @, resp. ¥ K ) if for any ¢ > 0, ¥(cu)/p(u) — 0 as u — 0 and u — oo (resp.
as u — 0, resp. u — 00) (see [3, p. 114]).
l
It is known that 1 % @ (resp. ¥ <S< ©, resp. ¥ K ) implies p* % Y* (resp.

o* & P*, resp. ¢* <l< ™) (see [3, Lemma 13.1]).

Let (Q, X, 1) be a positive measure space, and let LY denote the set of equivalence
classes of all real valued py-measurable functions defined and finite a.e. on Q. An
Orlicz function ¢ determines a functional my, : LY — [0, 0] by the formula:

mo(z) = /Q o(l2(t)]) dp.
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The Orlicz space determined by ¢ is the ideal of LY defined by
LY ={zelLl: my(Ar) < oo for some A > 0}.

The functional m,, restricted to L¥ is an orthogonally additive modular (see [6]).
L¥ can be equipped with the complete metrizable topology 7, of the Riesz F-
norm

||, = inf{A > 0:my(x/N) < A}
Moreover, if ¢ is convex, then the topology 7, is generated by the norm
lz|lp = inf{A > 0:my(x/X) < 1}
Let
EY ={zelLl: mep(Ar) < oo for all A > 0}.

Then E¥ is a closed ideal of L®, and it is well known that E¥ coincides with the
ideal of all elements of L¥ with order continuous F-norm |- |,. It is known that
L% = E¥ if ¢ satisfies the Az-condition, i.e.

¢(2u)

<o as u— 0 and u — oo.
p(u)

lim sup

If 1 is the counting measure on the set N of all natural numbers, we will write [¥
and h¥ instead of L¥ and E¥, respectively. By cg we will denote the space of all
sequences that are convergent to 0.

Given a linear topological space (X, &), by (X, £)* we will denote its topological
dual.

2. Some equalities among Orlicz spaces.

In this section we present some equalities among Orlicz spaces, obtained in [7],
that are of the key importance in the paper.

Let @1 be the set of all convex Orlicz functions ¢ taking only finite values and
such that ¢(u)/u — 0 as u — 0.

Denote by
D11 ={pePr:p(u) >0 for u>0 and ¢(u)/u — oo as u— o0},
B1o ={p e d1:pu) > o(u)/u —a as u— oco,a >0},

( 0

( 0 for v >0 and
P13 ={pe @ :p(u)=0

( 0

near zero and p(u)/u — 0o as u — oo},
Pra={pedr:p u)

near zero and p(u)/u — a as u — oo,a > 0}.

Then ®; = U?‘Zl ®1;, where the sets are pairwise disjoint. It is seen that
D11 = Dy
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Theorem 2.1 [7, Theorems 1.1-1.4, Theorem 1.7]. Let ¢ € ®1; (i = 1,2,3,4).
Then the following equalities hold:

o= J Ev= |J LY
YeTY YeTY

where:

a

U ={y € oy : 0o <V},
S

U ={y € oy : p < P},

l
Ui ={pedy:p <y},
vE, =3y

Moreover, if p is an atomless measure or the counting measure on N, then for
each ¢ € Wfi, the strict inclusion LY G E¥ holds.

Next, let ®2 be the set of all convex Orlicz functions ¢ vanishing only at 0 and
such that ¢(u)/u — oo as u — oo.

Denote by

D1 ={p € Py:¢p(u) <0 for u>0 and ¢(u)/u—0 as u— 0},

Doy ={p € Py:p jumps to oo and @(u)/u— 0 as u — 0},

D3 ={pePy:p(u) <0 for u>0 and ¢(u)/u—a as u— 0,a >0},
Doy ={p € Py : ¢ jumps to oo and ¢(u)/u—a as u— 0,a > 0}.
Then @2 = U?:l <I)2i and @21 = <I)N-

Theorem 2.2 [7, Theorems 2.1-2.4, Theorem 2.6]. Let ¢ € ®9; (i = 1,2,3,4).
Then the following equalities hold:

= ) = N 8

ey, Yevy
where:

a

U5 ={vedy Y <},
S

v ={vedy v <o},
!

‘1153 ={Yedy: <K},

v _
U5 =y

At last, according to [7, Lemma 3.1, Theorem 3.3] we have
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Theorem 2.3. Let 1 and w2 be a pair of complementary convex Orlicz functions,
i.e. o] = @2. Then p1 € ®q; iff o3 € ®o; (i = 1,2,3,4), and moreover, the sets \Ilfil
and \I’fiz are mutually related in such a way that:

(‘I’fil)* = ‘I’% and (\I/ff)* = \I/fil .

3. Inductive limit topologies on E¥.

Let o € ®1; (i = 1,2,3,4). Then in view of Theorem 2.1, one can consider on E¥
the inductive limit topologies Tlf and T“p with respect to the families

{(Ed’,’Tw |pe) 1 € ¥} and {(Lw,Tw) ¢ € U}, respectively (see [10, Chap-
ter V, §2]). Thus TQO (resp. Tgo) is the finest of all locally convex topologies £ on

E¥ that satisfy, for each ¢ € WY, the condition & |5y C Ty |ge (vesp. & [0 C Ty).
It is seen that

(3.1) Ty |peC T, C T .

Our aim is to show that the topology 7, |ge coincides with 'Tff and 'Z'If For
this purpose, the following theorem will be of importance.

Theorem 3.1. Let ¢ € ®; and let u be a o-finite measure. Then for a linear
functional f on E¥ the following statements are equivalent:
(a) fis ’Tff—continuous.

(b) There exists a unique y € L¥" such that

f(x) = fy(x) = /Qa:(t)y(t) du for all x € E¥.

PROOF: (a) = (b). Let ¢ € ®1; (i =1,2,3,4). Then for each ¢ € Y., the func-
tional f | gy is continuous for 7y, | g, so according to [5, Chapter II, § 3, Theorem 2]
there exists a unique function yy, € LY such that

(+) f(z) = /Qx(t)yd,(t) dp forall z € EY.

Assume that there exist 11,12 € \I’ ; such that y,,, # yy,, and f(z) =

fQ yd,k )du for x € EVr, Where k = 1,2. Let us assume, for example, that

p({t € ywl() > ywz( )}) > 0, and let AcC {te: ywl() > ywz( )} be
a measurable set with 0 < pu(A) < oco. Denoting by x4 the characteristic function

of A, we have x4 € E¥1 N E¥2, s0 by (+) we get

/Q XA (Y (B) = Yoy (1)) dpp = /A (Yypy (8) = Yoy () dpu = 0.
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This contradiction establishes that there exists a unique

ye [ LY suchthat f(z)= / z(t)y(t)dp for all z € E?.
Yevy, @

On the other hand, since ¢* € ®9; and (¥],)* = \Ilgi* (see Theorem 2.3), accord-
ing to Theorem 2.2,

N LV = N = N LY =¥ .

Pevy, Pe(w) pevs

(b) = (a). Let ¢ € ®1; (i=1,2,3,4). Then for each ¢ € \Ilfi, by Theorem 2.3,
Y e \I’fg. Hence L¥" C L¥", and the functional f |z is continuous for Ty | ge (see
[5, Chapter 2, § 3, Theorem 2]). Therefore, in view of [10, Chapter V, Proposition 5],
the functional f is continuous for ’Tlf

Thus the proof is completed. O

Now we are in a position to prove our main theorem.

Theorem 3.2. Let ¢ € ®; and p be a o-finite measure. Then the norm topology
1, restricted to E¥ coincides with the inductive limit topologies 'Z'If and ij, that
is

Tp lpe="Tf, = Tf, -
PROOF: Since the space (E¥, 7T, |g¢) is barrelled and (E¥, T, |ge)* = {fy 1y €
L¥"} (see [5, Chapter II, §3, Theorem 2]), the equality 7, |pe= B(E?, L¥") holds
(see [10, Chapter IV, § 1, Corollary 1]).

On the other hand, the space (E¥, Tff) is barrelled, because an inductive limit of
barrelled spaces is barrelled (see [10, Chapter 2, Proposition 6]). Hence, in view of
Theorem 3.1, the equality ’Tlf = B(E®,L¥") holds. Thus Ty, |pe= ij, and by (3.1)
our proof is completed. O

4. A characterization of continuity of linear operators on E¥.

As an application of Theorem 3.2, in view of the general property of inductive
limit topologies (see [10, Chapter V, 2, Proposition 5]), we obtain a characterization
of linear operators of E¥ into a locally convex space X. The details follow.

Theorem 4.1. Let ¢ € ®q; (i = 1,2,3,4) and let (X, &) be a locally convex space.
For a linear operator A : E¥ — X, the following statements are equivalent:

(a) Ais (1, |ge, §)-continuous.

(b) A |ge is (Ty | v, &)-continuous for every 1 € Y.

(c) Algy is (Ty,£)-continuous for every i € ¥,

We close this section with an application of Theorem 2.1 and Theorem 4.1 to the
spaces: LP, L' + LP (p > 1) and ¢.
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Examples.
A. Let p> 1. Then ¢, € 11 and in view of Theorem 2.1 and Theorem 4.1 we get
the following

Corollary 4.2. Let p > 1. Then the following equalities hold:

w=JeY =L,

¥ (4

where the unions are taken over all N-functions v such that ¥ (u)/uP — co asu — 0
and u — 00.

Moreover, if the measure y is o-finite, then for a locally convex space (X, &) and
a linear operator A : LP — X, the following statements are equivalent:

(a) Ais (Trp,&)-continuous.

(b) Algyis (7y | g, §)-continuous for every N-function + such that (u)/uP —
oo as v — 0 and u — oo.

(c) Alpe is (Ty,§)-continuous for every N-function ¢ such that 1 (u)/uP — oo
as u — 0 and © — oo.

B. For p > 1 let us put

uP for 0 <wu <1,
p(u) =
pu+1—p for u>1,

and let ¢/(u) = min(p1(u), pp(u)). Then ¢ is a convex Orlicz function and ¢ ~ ¢/,
so B¥ =LY =LY = L1+ [P and 1, = T, where the topology 7. is generated
by the norm:

|2l 14 pe = mf{lle1l g2 + |z2ll o : @ = 21 + @2, @1 € LY, 22 € LP).

Since ¢ € @12, according to Theorem 2.1 and Theorem 4.1 we have

Corollary 4.3. Let p > 1. Then the following equalities hold:

L+rr=JEY =Y,
¥ ¥

where the unions are taken over the set of all N-functions 1) such that ¢ (u)/uP — oo
asu— 0.

Moreover, if the measure y is o-finite, then for a locally convex space (X, &) and
a linear operator A : L' + LP — X, the following statements are equivalent:
(a) Ais (71, 1p,&)-continuous.
(b) Algy is (Z7y | gw,§)-continuous for every N-function ¢ such that ¢ (u)/uP —
o0 as u — 0.
(c) Alpy is (Ty,&)-continuous for every N-function ¢ such that ¢ (u)/u? — oo
as u — 0.
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In particular, if the measure p is finite, then
'=JEY =",
(4 (4

where the unions are taken over the set of all N-functions .

Moreover, for a linear operator A : L1 — X the following statements are equiv-
alent:

(a) Ais (7p1,&)-continuous.

(b) A gy is (Ty |gw,§)-continuous for every N-function .

(c) ALy is (7y,&)-continuous for every N-function 1.

C. Let
() = 0 for 0 <wu <1,
A= u—1 for uw>1.
Then ¢ is a convex Orlicz function and ¢ < ¢p. Hence [¥ = [0 = [* and
h? = h¥0 = ¢y, and the topology 7, on I¥ agrees with the topology 7 of the
norm ||zljcc = sup;|z(i)| on I*°. Since ¢ € P14, in view of Theorem 2.1 and

Theorem 4.1, we have

Corollary 4.4. The following equalities hold:
co=Jn¥ =J1v,
(4 (4

where the unions are taken over the set of all N-functions.

Moreover, for a locally convex space (X, &) and a linear operator A : ¢g — X,
the following statements are equivalent:

(a) Ais (Tco |cg, &)-continuous.
(b) Ay is (Zy [pw,&)-continuous for every N-function .
(c) Al is (Zy, &)-continuous for every N-function 1.
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