Inductive limit topologies on Orlicz spaces

MARIAN NOWAK

Abstract. Let L^{φ} be an Orlicz space defined by a convex Orlicz function φ and let E^{φ} be the space of finite elements in L^{φ} (= the ideal of all elements of order continuous norm). We show that the usual norm topology \mathcal{T}_{φ} on L^{φ} restricted to E^{φ} can be obtained as an inductive limit topology with respect to some family of other Orlicz spaces. As an application we obtain a characterization of continuity of linear operators defined on E^{φ} .

Keywords: Orlicz spaces, inductive limit topologies, convex functions Classification: 46E30

1. Introduction and preliminaries.

In [1] and [2] Davis, Murray and Weber discussed the spaces

$$L^{p+} = \bigcup_{p < t < \infty} L^t[0,1] \text{ and } l^{p-} = \bigcup_{1 \le t < p} l^t \quad (1 < p \le \infty)$$

(endowed with the appropriate inductive limit topologies) which turned out to be distinct from the spaces L^p and l^p , respectively.

Moreover, in [8] it is proved that if $S \subset [0, \infty)$ with $\inf S \notin S$ or $\sup S \notin S$ and μ is an infinite atomless measure (resp. $\sup S \notin S$ and μ is the counting measure on \mathbb{N}), there is no Orlicz function φ such that:

$$E^{\varphi} = \operatorname{Lin} \bigcup_{p \in S} L^p \text{ or } L^{\varphi} = \operatorname{Lin} \bigcup_{p \in S} L^p.$$

On the other hand, Krasnoselskii and Rutickii [3, p. 60] showed that if μ is the finite Lebesgue measure, then

$$L^1 = \bigcup_{\varphi} L^{\varphi},$$

where φ are taken over the family of all N-functions. This equality was a starting point for many results concerning a representation of an Orlicz space L^{φ} or a space E^{φ} as the union of some families of Orlicz spaces which they contain properly (see [4], [7], [9], [12]).

In [7] for a convex Orlicz function φ we found the set Ψ^{φ} of N-functions such that:

$$E^{\varphi} = \bigcup_{\psi \in \Psi^{\varphi}} E^{\psi} = \bigcup_{\psi \in \Psi^{\varphi}} L^{\psi}.$$

M. Nowak

In this paper we show that the appropriate inductive limit topologies on E^{φ} defined with respect to these representations coincide with the norm topology \mathcal{T}_{φ} on L^{φ} restricted to E^{φ} .

We now recall some notation and terminology concerning Orlicz spaces (see [3], [5], [11] for more details).

By an Orlicz function we mean a function $\varphi : [0, \infty) \to [0, \infty]$ which is nondecreasing, left continuous, continuous at zero with $\varphi(0) = 0$, and not identically equal to zero.

We shall say that an Orlicz function φ jumps to ∞ , whenever there is a number $u_0 > 0$ such that $\varphi(u) = \infty$ for $u > u_0$. We shall say that φ vanishes near zero, whenever $\varphi(u) = 0$ for $0 \le u \le u_0$ for some $u_0 > 0$.

An Orlicz function φ is called convex, if $\varphi(\alpha u + \beta v) \leq \alpha \varphi(u) + \beta \varphi(v)$ for $\alpha, \beta \geq 0$, $\alpha + \beta = 1$. A convex Orlicz function is usually called a Young function. A convex Orlicz function φ , vanishing only at 0 and taking only finite values is called an *N*-function if $\varphi(u)/u \to 0$ as $u \to 0$ and $\varphi(u)/u \to \infty$ as $u \to \infty$. By Φ_N we will denote the collection of all *N*-functions.

For a convex Orlicz function φ we denote by φ^* the function complementary to φ in the sense of Young, i.e.

$$\varphi^*(v) = \sup\{uv - \varphi(u) : u \ge 0\} \text{ for } v \ge 0.$$

For a set Ψ of convex Orlicz functions we will write

$$\Psi^* = \{\psi^* : \psi \in \Psi\}.$$

Throughout this paper we will write: $\varphi_p(u) = u^p$ for $u \ge 0$, where $p \ge 1$ and

$$\varphi_0(u) = \begin{cases} 0 & \text{for } 0 \le u \le 1, \\ 1 & \text{for } u > 1 \end{cases} \text{ and } \varphi_\infty(u) = \begin{cases} 0 & \text{for } 0 \le u \le 1, \\ \infty & \text{for } u > 1 \end{cases}$$

We shall say that two Orlicz functions ψ and φ are equivalent for all u (resp. for small u, resp. for large u), in symbols $\psi \stackrel{a}{\sim} \varphi$ (resp. $\psi \stackrel{s}{\sim} \varphi$, resp. $\psi \stackrel{l}{\sim} \varphi$) if there exist constants a, b, c, d > 0 such that $a\psi(bu) \leq \varphi(u) \leq c\psi(du)$ for all $u \geq 0$ (resp. for $0 \leq u \leq u_0$, resp. for $u \geq u_0$), where $u_0 > 0$.

We say that an Orlicz function φ increases essentially more rapidly than any other ψ for all u (resp. for small u, resp. for large u), in symbols $\psi \overset{a}{\ll} \varphi$ (resp. $\psi \overset{s}{\ll} \varphi$, resp. $\psi \overset{l}{\ll} \varphi$) if for any c > 0, $\psi(cu)/\varphi(u) \to 0$ as $u \to 0$ and $u \to \infty$ (resp. as $u \to 0$, resp. $u \to \infty$) (see [3, p. 114]).

It is known that $\psi \stackrel{a}{\ll} \varphi$ (resp. $\psi \stackrel{s}{\ll} \varphi$, resp. $\psi \stackrel{l}{\ll} \varphi$) implies $\varphi^* \stackrel{a}{\ll} \psi^*$ (resp. $\varphi^* \stackrel{s}{\ll} \psi^*$, resp. $\varphi^* \stackrel{l}{\ll} \psi^*$) (see [3, Lemma 13.1]).

Let (Ω, Σ, μ) be a positive measure space, and let L^0 denote the set of equivalence classes of all real valued μ -measurable functions defined and finite a.e. on Ω . An Orlicz function φ determines a functional $m_{\varphi} : L^0 \to [0, \infty]$ by the formula:

$$m_{\varphi}(x) = \int_{\Omega} \varphi(|x(t)|) \, d\mu.$$

The Orlicz space determined by φ is the ideal of L^0 defined by

$$L^{\varphi} = \{ x \in L^0 : m_{\varphi}(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$

The functional m_{φ} restricted to L^{φ} is an orthogonally additive modular (see [6]).

 L^{φ} can be equipped with the complete metrizable topology \mathcal{T}_{φ} of the Riesz $F\text{-}\operatorname{norm}$

$$|x|_{\varphi} = \inf\{\lambda > 0 : m_{\varphi}(x/\lambda) \le \lambda\}.$$

Moreover, if φ is convex, then the topology \mathcal{T}_{φ} is generated by the norm

$$||x||_{\varphi} = \inf\{\lambda > 0 : m_{\varphi}(x/\lambda) \le 1\}.$$

Let

$$E^{\varphi} = \{ x \in L^0 : m_{\varphi}(\lambda x) < \infty \text{ for all } \lambda > 0 \}.$$

Then E^{φ} is a closed ideal of L^{φ} , and it is well known that E^{φ} coincides with the ideal of all elements of L^{φ} with order continuous *F*-norm $|\cdot|_{\varphi}$. It is known that $L^{\varphi} = E^{\varphi}$ if φ satisfies the Δ_2 -condition, i.e.

$$\limsup rac{arphi(2u)}{arphi(u)} < \infty \ \ ext{as} \ \ u o 0 \ \ ext{and} \ \ u o \infty.$$

If μ is the counting measure on the set \mathbb{N} of all natural numbers, we will write l^{φ} and h^{φ} instead of L^{φ} and E^{φ} , respectively. By c_0 we will denote the space of all sequences that are convergent to 0.

Given a linear topological space (X,ξ) , by $(X,\xi)^*$ we will denote its topological dual.

2. Some equalities among Orlicz spaces.

In this section we present some equalities among Orlicz spaces, obtained in [7], that are of the key importance in the paper.

Let Φ_1 be the set of all convex Orlicz functions φ taking only finite values and such that $\varphi(u)/u \to 0$ as $u \to 0$.

Denote by

$$\begin{split} \Phi_{11} &= \{\varphi \in \Phi_1 : \varphi(u) > 0 \ \text{ for } u > 0 \ \text{ and } \varphi(u)/u \to \infty \ \text{ as } u \to \infty \}, \\ \Phi_{12} &= \{\varphi \in \Phi_1 : \varphi(u) > 0 \ \text{ for } u > 0 \ \text{ and } \varphi(u)/u \to a \ \text{ as } u \to \infty, a > 0 \}, \\ \Phi_{13} &= \{\varphi \in \Phi_1 : \varphi(u) = 0 \ \text{ near zero and } \varphi(u)/u \to \infty \ \text{ as } u \to \infty \}, \\ \Phi_{14} &= \{\varphi \in \Phi_1 : \varphi(u) = 0 \ \text{ near zero and } \varphi(u)/u \to a \ \text{ as } u \to \infty, a > 0 \}. \end{split}$$

Then $\Phi_1 = \bigcup_{i=1}^4 \Phi_{1i}$, where the sets are pairwise disjoint. It is seen that $\Phi_{11} = \Phi_N$.

Theorem 2.1 [7, Theorems 1.1–1.4, Theorem 1.7]. Let $\varphi \in \Phi_{1i}$ (i = 1, 2, 3, 4). Then the following equalities hold:

$$E^{\varphi} = \bigcup_{\psi \in \Psi_{1i}^{\varphi}} E^{\psi} = \bigcup_{\psi \in \Psi_{1i}^{\varphi}} L^{\psi}$$

where:

$$\begin{split} \Psi^{\varphi}_{11} &= \{\psi \in \Phi_N : \varphi \overset{a}{\ll} \psi\}, \\ \Psi^{\varphi}_{12} &= \{\psi \in \Phi_N : \varphi \overset{s}{\ll} \psi\}, \\ \Psi^{\varphi}_{13} &= \{\psi \in \Phi_N : \varphi \overset{l}{\ll} \psi\}, \\ \Psi^{\varphi}_{14} &= \Phi_N. \end{split}$$

Moreover, if μ is an atom less measure or the counting measure on \mathbb{N} , then for each $\psi \in \Psi_{1i}^{\varphi}$, the strict inclusion $L^{\psi} \subsetneq E^{\varphi}$ holds. Next, let Φ_2 be the set of all convex Orlicz functions φ vanishing only at 0 and

Next, let Φ_2 be the set of all convex Orlicz functions φ vanishing only at 0 and such that $\varphi(u)/u \to \infty$ as $u \to \infty$.

Denote by

$$\begin{split} \Phi_{21} &= \{\varphi \in \Phi_2 : \varphi(u) < 0 \ \text{ for } u > 0 \ \text{ and } \varphi(u)/u \to 0 \ \text{ as } u \to 0\}, \\ \Phi_{22} &= \{\varphi \in \Phi_2 : \varphi \ \text{jumps to } \infty \text{ and } \varphi(u)/u \to 0 \ \text{ as } u \to 0\}, \\ \Phi_{23} &= \{\varphi \in \Phi_2 : \varphi(u) < 0 \ \text{ for } u > 0 \ \text{ and } \varphi(u)/u \to a \ \text{ as } u \to 0, a > 0\}, \\ \Phi_{24} &= \{\varphi \in \Phi_2 : \varphi \ \text{jumps to } \infty \text{ and } \varphi(u)/u \to a \ \text{ as } u \to 0, a > 0\}. \end{split}$$

Then $\Phi_2 = \bigcup_{i=1}^4 \Phi_{2i}$ and $\Phi_{21} = \Phi_N$.

Theorem 2.2 [7, Theorems 2.1–2.4, Theorem 2.6]. Let $\varphi \in \Phi_{2i}$ (i = 1, 2, 3, 4). Then the following equalities hold:

$$L^{\varphi} = \bigcap_{\psi \in \Psi_{2i}^{\varphi}} L^{\psi} = \bigcap_{\psi \in \Psi_{2i}^{\varphi}} E^{\psi},$$

where:

$$\begin{split} \Psi_{21}^{\varphi} &= \{\psi \in \Phi_N : \psi \overset{a}{\ll} \varphi\}, \\ \Psi_{22}^{\varphi} &= \{\psi \in \Phi_N : \psi \overset{s}{\ll} \varphi\}, \\ \Psi_{23}^{\varphi} &= \{\psi \in \Phi_N : \psi \overset{l}{\ll} \varphi\}, \\ \Psi_{24}^{\varphi} &= \Phi_N. \end{split}$$

At last, according to [7, Lemma 3.1, Theorem 3.3] we have

Theorem 2.3. Let φ_1 and φ_2 be a pair of complementary convex Orlicz functions, i.e. $\varphi_1^* = \varphi_2$. Then $\varphi_1 \in \Phi_{1i}$ iff $\varphi_2 \in \Phi_{2i}$ (i = 1, 2, 3, 4), and moreover, the sets $\Psi_{1i}^{\varphi_1}$ and $\Psi_{2i}^{\varphi_2}$ are mutually related in such a way that:

$$(\Psi_{1i}^{\varphi_1})^* = \Psi_{2i}^{\varphi_2}$$
 and $(\Psi_{2i}^{\varphi_2})^* = \Psi_{1i}^{\varphi_1}$.

3. Inductive limit topologies on E^{φ} .

Let $\varphi \in \Phi_{1i}$ (i = 1, 2, 3, 4). Then in view of Theorem 2.1, one can consider on E^{φ} the inductive limit topologies $\mathcal{T}_{I_1}^{\varphi}$ and $\mathcal{T}_{I_2}^{\varphi}$ with respect to the families $\{(E^{\psi}, \mathcal{T}_{\psi} \mid_{E^{\psi}}) : \psi \in \Psi_{1i}^{\varphi}\}$ and $\{(L^{\psi}, \mathcal{T}_{\psi}) : \psi \in \Psi_{1i}^{\varphi}\}$, respectively (see [10, Chapter V, § 2]). Thus $\mathcal{T}_{I_1}^{\varphi}$ (resp. $\mathcal{T}_{I_2}^{\varphi}$) is the finest of all locally convex topologies ξ on E^{φ} that satisfy, for each $\psi \in \Psi_{1i}^{\varphi}$, the condition $\xi \mid_{E^{\psi}} \subset \mathcal{T}_{\psi} \mid_{E^{\psi}}$ (resp. $\xi \mid_{L^{\psi}} \subset \mathcal{T}_{\psi}$). It is seen that

(3.1)
$$\mathcal{T}_{\varphi} \mid_{E^{\varphi}} \subset \mathcal{T}_{I_2}^{\varphi} \subset \mathcal{T}_{I_1}^{\varphi}.$$

Our aim is to show that the topology $\mathcal{T}_{\varphi}|_{E^{\varphi}}$ coincides with $\mathcal{T}_{I_1}^{\varphi}$ and $\mathcal{T}_{I_2}^{\varphi}$. For this purpose, the following theorem will be of importance.

Theorem 3.1. Let $\varphi \in \Phi_1$ and let μ be a σ -finite measure. Then for a linear functional f on E^{φ} the following statements are equivalent:

- (a) f is $\mathcal{T}_{I_1}^{\varphi}$ -continuous.
- (b) There exists a unique $y \in L^{\varphi^*}$ such that

$$f(x) = f_y(x) = \int_{\Omega} x(t)y(t) \, d\mu$$
 for all $x \in E^{\varphi}$.

PROOF: (a) \Rightarrow (b). Let $\varphi \in \Phi_{1i}$ (i = 1, 2, 3, 4). Then for each $\psi \in \Psi_{1i}^{\varphi}$, the functional $f \mid_{E^{\psi}}$ is continuous for $\mathcal{T}_{\psi} \mid_{E^{\psi}}$, so according to [5, Chapter II, §3, Theorem 2] there exists a unique function $y_{\psi} \in L^{\psi^*}$ such that

(+)
$$f(x) = \int_{\Omega} x(t) y_{\psi}(t) \, d\mu \quad \text{for all} \quad x \in E^{\psi}$$

Assume that there exist $\psi_1, \psi_2 \in \Psi_{1i}^{\varphi}$ such that $y_{\psi_1} \neq y_{\psi_2}$, and f(x) =

 $\int_{\Omega} x(t) y_{\psi_k}(t) d\mu \text{ for } x \in E^{\psi_k}, \text{ where } k = 1, 2. \text{ Let us assume, for example, that } \mu(\{t \in \Omega : y_{\psi_1}(t) > y_{\psi_2}(t)\}) > 0, \text{ and let } A \subset \{t \in \Omega : y_{\psi_1}(t) > y_{\psi_2}(t)\} \text{ be a measurable set with } 0 < \mu(A) < \infty. \text{ Denoting by } \chi_A \text{ the characteristic function of } A, \text{ we have } \chi_A \in E^{\psi_1} \cap E^{\psi_2}, \text{ so by } (+) \text{ we get }$

$$\int_{\Omega} \chi_A(t) \left(y_{\psi_1}(t) - y_{\psi_2}(t) \right) d\mu = \int_A \left(y_{\psi_1}(t) - y_{\psi_2}(t) \right) d\mu = 0.$$

M. Nowak

This contradiction establishes that there exists a unique

$$y \in \bigcap_{\psi \in \Psi_{1i}^{\varphi}} L^{\psi^*}$$
 such that $f(x) = \int_{\Omega} x(t)y(t) \, d\mu$ for all $x \in E^{\varphi}$.

On the other hand, since $\varphi^* \in \Phi_{2i}$ and $(\Psi_{1i}^{\varphi})^* = \Psi_{2i}^{\varphi^*}$ (see Theorem 2.3), according to Theorem 2.2,

$$\bigcap_{\psi \in \Psi_{1i}^{\varphi}} L^{\psi^*} = \bigcap_{\psi \in (\Psi_{1i}^{\varphi})^*} L^{\psi} = \bigcap_{\psi \in \Psi_{2i}^{\varphi^*}} L^{\psi} = L^{\varphi^*}$$

(b) \Rightarrow (a). Let $\varphi \in \Phi_{1i}$ (i=1,2,3,4). Then for each $\psi \in \Psi_{1i}^{\varphi}$, by Theorem 2.3, $\psi^* \in \Psi_{2i}^{\varphi^*}$. Hence $L^{\varphi^*} \subset L^{\psi^*}$, and the functional $f|_{E^{\psi}}$ is continuous for $\mathcal{T}_{\psi}|_{E^{\psi}}$ (see [5, Chapter 2, §3, Theorem 2]). Therefore, in view of [10, Chapter V, Proposition 5], the functional f is continuous for $\mathcal{T}_{I_1}^{\varphi}$.

Thus the proof is completed.

Now we are in a position to prove our main theorem.

Theorem 3.2. Let $\varphi \in \Phi_1$ and μ be a σ -finite measure. Then the norm topology \mathcal{T}_{φ} restricted to E^{φ} coincides with the inductive limit topologies $\mathcal{T}_{I_1}^{\varphi}$ and $\mathcal{T}_{I_2}^{\varphi}$, that is

$$\mathcal{T}_{\varphi}\mid_{E^{\varphi}} = \mathcal{T}_{I_1}^{\varphi} = \mathcal{T}_{I_2}^{\varphi}.$$

PROOF: Since the space $(E^{\varphi}, \mathcal{T}_{\varphi} \mid_{E^{\varphi}})$ is barrelled and $(E^{\varphi}, \mathcal{T}_{\varphi} \mid_{E^{\varphi}})^* = \{f_y : y \in \mathcal{T}_{\varphi} \mid_{E^{\varphi}}\}$ L^{φ^*} } (see [5, Chapter II, §3, Theorem 2]), the equality $\mathcal{T}_{\varphi}|_{E^{\varphi}} = \beta(E^{\varphi}, L^{\varphi^*})$ holds (see $[10, Chapter IV, \S 1, Corollary 1]$).

On the other hand, the space $(E^{\varphi}, \mathcal{T}^{\varphi}_{I_1})$ is barrelled, because an inductive limit of barrelled spaces is barrelled (see [10, Chapter 2, Proposition 6]). Hence, in view of Theorem 3.1, the equality $\mathcal{T}_{I_1}^{\varphi} = \beta(E^{\varphi}, L^{\varphi^*})$ holds. Thus $\mathcal{T}_{\varphi} \mid_{E^{\varphi}} = \mathcal{T}_{I_1}^{\varphi}$, and by (3.1) our proof is completed.

4. A characterization of continuity of linear operators on E^{φ} .

As an application of Theorem 3.2, in view of the general property of inductive limit topologies (see [10, Chapter V, 2, Proposition 5]), we obtain a characterization of linear operators of E^{φ} into a locally convex space X. The details follow.

Theorem 4.1. Let $\varphi \in \Phi_{1i}$ (i = 1, 2, 3, 4) and let (X, ξ) be a locally convex space. For a linear operator $A: E^{\varphi} \to X$, the following statements are equivalent:

- (a) A is $(\mathcal{T}_{\varphi} |_{E^{\varphi}}, \xi)$ -continuous.
- (b) $A \mid_{E^{\psi}} \text{ is } (\mathcal{T}_{\psi} \mid_{E^{\psi}}, \xi) \text{-continuous for every } \psi \in \Psi_{1i}^{\varphi}.$ (c) $A \mid_{E^{\psi}} \text{ is } (\mathcal{T}_{\psi}, \xi) \text{-continuous for every } \psi \in \Psi_{1i}^{\varphi}.$

We close this section with an application of Theorem 2.1 and Theorem 4.1 to the spaces: $L^p, L^1 + L^p$ (p > 1) and c_0 .

Examples.

A. Let p > 1. Then $\varphi_p \in \Phi_{11}$ and in view of Theorem 2.1 and Theorem 4.1 we get the following

Corollary 4.2. Let p > 1. Then the following equalities hold:

$$L^p = \bigcup_{\psi} E^{\psi} = \bigcup_{\psi} L^{\psi},$$

where the unions are taken over all N-functions ψ such that $\psi(u)/u^p \to \infty$ as $u \to 0$ and $u \to \infty$.

Moreover, if the measure μ is σ -finite, then for a locally convex space (X, ξ) and a linear operator $A: L^p \to X$, the following statements are equivalent:

- (a) A is (\mathcal{T}_{L^p}, ξ) -continuous.
- (b) $A \mid_{E^{\psi}} \text{ is } (\mathcal{T}_{\psi} \mid_{E^{\psi}}, \xi) \text{-continuous for every } N \text{-function } \psi \text{ such that } \psi(u)/u^p \to \infty \text{ as } u \to 0 \text{ and } u \to \infty.$
- (c) $A \mid_{L^{\psi}}$ is $(\mathcal{T}_{\psi}, \xi)$ -continuous for every *N*-function ψ such that $\psi(u)/u^p \to \infty$ as $u \to 0$ and $u \to \infty$.

B. For p > 1 let us put

$$\varphi(u) = \begin{cases} u^p & \text{for } 0 \le u \le 1, \\ pu+1-p & \text{for } u > 1 \end{cases}$$

and let $\varphi'(u) = \min(\varphi_1(u), \varphi_p(u))$. Then φ is a convex Orlicz function and $\varphi \stackrel{a}{\sim} \varphi'$, so $E^{\varphi} = L^{\varphi} = L^{\varphi'} = L^1 + L^p$ and $\mathcal{T}_{\varphi} = \mathcal{T}_{\varphi'}$, where the topology $\mathcal{T}_{\varphi'}$ is generated by the norm:

$$\|x\|_{L^1+L^p} = \inf\{\|x_1\|_{L^1} + \|x_2\|_{L^p} : x = x_1 + x_2, \ x_1 \in L^1, \ x_2 \in L^p\}.$$

Since $\varphi \in \Phi_{12}$, according to Theorem 2.1 and Theorem 4.1 we have

Corollary 4.3. Let p > 1. Then the following equalities hold:

$$L^1 + L^p = \bigcup_{\psi} E^{\psi} = \bigcup_{\psi} L^{\psi},$$

where the unions are taken over the set of all N-functions ψ such that $\psi(u)/u^p \to \infty$ as $u \to 0$.

Moreover, if the measure μ is σ -finite, then for a locally convex space (X, ξ) and a linear operator $A: L^1 + L^p \to X$, the following statements are equivalent:

- (a) A is $(\mathcal{T}_{L^1+L^p},\xi)$ -continuous.
- (b) $A \mid_{E^{\psi}} \text{ is } (\mathcal{T}_{\psi} \mid_{E^{\psi}}, \xi) \text{-continuous for every } N \text{-function } \psi \text{ such that } \psi(u)/u^p \to \infty \text{ as } u \to 0.$
- (c) $A \mid_{L^{\psi}}$ is $(\mathcal{T}_{\psi}, \xi)$ -continuous for every N-function ψ such that $\psi(u)/u^p \to \infty$ as $u \to 0$.

In particular, if the measure μ is finite, then

$$L^1 = \bigcup_{\psi} E^{\psi} = \bigcup_{\psi} L^{\psi},$$

where the unions are taken over the set of all N-functions ψ .

Moreover, for a linear operator $A: L^1 \to X$, the following statements are equivalent:

(a) A is (\mathcal{T}_{L^1}, ξ) -continuous.

(b) $A \mid_{E^{\psi}}$ is $(\mathcal{T}_{\psi} \mid_{E^{\psi}}, \xi)$ -continuous for every N-function ψ .

(c) $A \mid_{L^{\psi}}$ is $(\mathcal{T}_{\psi}, \xi)$ -continuous for every N-function ψ .

$$\varphi(u) = \begin{cases} 0 & \text{for } 0 \le u \le 1, \\ u - 1 & \text{for } u > 1. \end{cases}$$

Then φ is a convex Orlicz function and $\varphi \stackrel{s}{\sim} \varphi_0$. Hence $l^{\varphi} = l^{\varphi_0} = l^{\infty}$ and $h^{\varphi} = h^{\varphi_0} = c_0$, and the topology \mathcal{T}_{φ} on l^{φ} agrees with the topology \mathcal{T}_{∞} of the norm $||x||_{\infty} = \sup_i |x(i)|$ on l^{∞} . Since $\varphi \in \Phi_{14}$, in view of Theorem 2.1 and Theorem 4.1, we have

Corollary 4.4. The following equalities hold:

$$c_0 = \bigcup_{\psi} h^{\psi} = \bigcup_{\psi} l^{\psi},$$

where the unions are taken over the set of all N-functions.

Moreover, for a locally convex space (X,ξ) and a linear operator $A: c_0 \to X$, the following statements are equivalent:

- (a) A is $(\mathcal{T}_{\infty} \mid_{c_0}, \xi)$ -continuous.
- (b) $A \mid_{h^{\psi}}$ is $(\mathcal{T}_{\psi} \mid_{h^{\psi}}, \xi)$ -continuous for every N-function ψ .
- (c) $A|_{l\psi}$ is $(\mathcal{T}_{\psi}, \xi)$ -continuous for every N-function ψ .

References

- Davis H.W., Murray F.J., Weber J.K., Families of L_p-spaces with inductive and projective topologies, Pacific J. Math. 34 (1970), 619–638.
- [2] _____, Inductive and projective limits of L_p -spaces, Portugal. Math. 38 (1972), 21–29.
- [3] Krasnoselskii M.A., Rutickii Ya.B., Convex Functions and Orlicz Spaces, Groningen, 1961.
- [4] Leśniewicz R., On two equalities for Orlicz spaces, Bull. Acad. Pol. Sci. 27 (1979), 557–560.
- [5] Luxemburg W.A., Banach Functions Spaces, Delft, 1955.
- [6] Musielak J., Orlicz W., Some remarks on modular spaces, Bull. Acad. Pol. Sci. 7 (1959), 661-668.
- [7] Nowak M., Some equalities among Orlicz spaces II, Bull. Acad. Pol. Sci. 34 (1986), 675–687.
- [8] _____, Unions and intersections of families of L^p-spaces, Math. Nachr. 136 (1988), 241–251.
- [9] _____, Some equalities among Orlicz spaces I, Comment. Math. 29 (1990), 255–275.
- [10] Robertson A.P., Robertson W.J., Topological Vector Spaces, Cambridge, 1973.

674

- [11] Turpin Ph., Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).
- [12] Welland R., Inclusions relations among Orlicz spaces, Proc. Amer. Math. Soc. 17 (1966), 135–138.

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60–769 Poznań, Poland

(Received August 8, 1991)