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Inductive limit topologies on Orlicz spaces

Marian Nowak

Abstract. Let Lϕ be an Orlicz space defined by a convex Orlicz function ϕ and let Eϕ be
the space of finite elements in Lϕ (= the ideal of all elements of order continuous norm).
We show that the usual norm topology Tϕ on Lϕ restricted to Eϕ can be obtained as
an inductive limit topology with respect to some family of other Orlicz spaces. As an
application we obtain a characterization of continuity of linear operators defined on Eϕ.
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1. Introduction and preliminaries.

In [1] and [2] Davis, Murray and Weber discussed the spaces

Lp+ =
⋃

p<t<∞

Lt[0, 1] and lp− =
⋃

1≤t<p

lt (1 < p ≤ ∞)

(endowed with the appropriate inductive limit topologies) which turned out to be
distinct from the spaces Lp and lp, respectively.
Moreover, in [8] it is proved that if S ⊂ [0,∞) with inf S /∈ S or supS /∈ S and

µ is an infinite atomless measure (resp. supS /∈ S and µ is the counting measure
on N), there is no Orlicz function ϕ such that:

Eϕ = Lin
⋃

p∈S

Lp or Lϕ = Lin
⋃

p∈S

Lp.

On the other hand, Krasnoselskii and Rutickii [3, p. 60] showed that if µ is the
finite Lebesgue measure, then

L1 =
⋃

ϕ

Lϕ,

where ϕ are taken over the family of all N -functions. This equality was a starting
point for many results concerning a representation of an Orlicz space Lϕ or a space
Eϕ as the union of some families of Orlicz spaces which they contain properly
(see [4], [7], [9], [12]).
In [7] for a convex Orlicz function ϕ we found the set Ψϕ of N -functions such

that:

Eϕ =
⋃

ψ∈Ψϕ

Eψ =
⋃

ψ∈Ψϕ

Lψ.



668 M.Nowak

In this paper we show that the appropriate inductive limit topologies on Eϕ

defined with respect to these representations coincide with the norm topology Tϕ
on Lϕ restricted to Eϕ.
We now recall some notation and terminology concerning Orlicz spaces (see [3],

[5], [11] for more details).
By an Orlicz function we mean a function ϕ : [0,∞) → [0,∞] which is non-

decreasing, left continuous, continuous at zero with ϕ(0) = 0, and not identically
equal to zero.
We shall say that an Orlicz function ϕ jumps to ∞, whenever there is a number

u0 > 0 such that ϕ(u) = ∞ for u > u0. We shall say that ϕ vanishes near zero,
whenever ϕ(u) = 0 for 0 ≤ u ≤ u0 for some u0 > 0.
An Orlicz function ϕ is called convex, if ϕ(αu+βv) ≤ αϕ(u)+βϕ(v) for α, β ≥ 0,

α + β = 1. A convex Orlicz function is usually called a Young function. A convex
Orlicz function ϕ, vanishing only at 0 and taking only finite values is called an
N -function if ϕ(u)/u → 0 as u → 0 and ϕ(u)/u → ∞ as u → ∞. By ΦN we will
denote the collection of all N -functions.
For a convex Orlicz function ϕ we denote by ϕ∗ the function complementary to ϕ

in the sense of Young, i.e.

ϕ∗(v) = sup{uv − ϕ(u) : u ≥ 0} for v ≥ 0.

For a set Ψ of convex Orlicz functions we will write

Ψ∗ = {ψ∗ : ψ ∈ Ψ}.

Throughout this paper we will write: ϕp(u) = u
p for u ≥ 0, where p ≥ 1 and

ϕ0(u) =

{

0 for 0 ≤ u ≤ 1,

1 for u > 1
and ϕ∞(u) =

{

0 for 0 ≤ u ≤ 1,

∞ for u > 1
.

We shall say that two Orlicz functions ψ and ϕ are equivalent for all u (resp. for

small u, resp. for large u), in symbols ψ
a
∼ ϕ (resp. ψ

s
∼ ϕ, resp. ψ

l
∼ ϕ) if there

exist constants a, b, c, d > 0 such that aψ(bu) ≤ ϕ(u) ≤ cψ(du) for all u ≥ 0 (resp.
for 0 ≤ u ≤ u0, resp. for u ≥ u0), where u0 > 0.
We say that an Orlicz function ϕ increases essentially more rapidly than any

other ψ for all u (resp. for small u, resp. for large u), in symbols ψ
a
≪ ϕ (resp.

ψ
s
≪ ϕ, resp. ψ

l
≪ ϕ) if for any c > 0, ψ(cu)/ϕ(u)→ 0 as u→ 0 and u→ ∞ (resp.

as u→ 0, resp. u→ ∞) (see [3, p. 114]).

It is known that ψ
a
≪ ϕ (resp. ψ

s
≪ ϕ, resp. ψ

l
≪ ϕ) implies ϕ∗

a
≪ ψ∗ (resp.

ϕ∗
s
≪ ψ∗, resp. ϕ∗

l
≪ ψ∗) (see [3, Lemma 13.1]).

Let (Ω,Σ, µ) be a positive measure space, and let L0 denote the set of equivalence
classes of all real valued µ-measurable functions defined and finite a.e. on Ω. An
Orlicz function ϕ determines a functional mϕ : L

0 → [0,∞] by the formula:

mϕ(x) =

∫

Ω
ϕ(|x(t)|) dµ.
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The Orlicz space determined by ϕ is the ideal of L0 defined by

Lϕ = {x ∈ L0 : mϕ(λx) <∞ for some λ > 0}.

The functional mϕ restricted to L
ϕ is an orthogonally additive modular (see [6]).

Lϕ can be equipped with the complete metrizable topology Tϕ of the Riesz F -
norm

|x|ϕ = inf{λ > 0 : mϕ(x/λ) ≤ λ}.

Moreover, if ϕ is convex, then the topology Tϕ is generated by the norm

‖x‖ϕ = inf{λ > 0 : mϕ(x/λ) ≤ 1}.

Let

Eϕ = {x ∈ L0 : mϕ(λx) <∞ for all λ > 0}.

Then Eϕ is a closed ideal of Lϕ, and it is well known that Eϕ coincides with the
ideal of all elements of Lϕ with order continuous F -norm | · |ϕ. It is known that
Lϕ = Eϕ if ϕ satisfies the ∆2-condition, i.e.

lim sup
ϕ(2u)

ϕ(u)
<∞ as u→ 0 and u→ ∞.

If µ is the counting measure on the set N of all natural numbers, we will write lϕ

and hϕ instead of Lϕ and Eϕ, respectively. By c0 we will denote the space of all
sequences that are convergent to 0.

Given a linear topological space (X, ξ), by (X, ξ)∗ we will denote its topological
dual.

2. Some equalities among Orlicz spaces.

In this section we present some equalities among Orlicz spaces, obtained in [7],
that are of the key importance in the paper.

Let Φ1 be the set of all convex Orlicz functions ϕ taking only finite values and
such that ϕ(u)/u→ 0 as u→ 0.

Denote by

Φ11 = {ϕ ∈ Φ1 : ϕ(u) > 0 for u > 0 and ϕ(u)/u→ ∞ as u→ ∞},

Φ12 = {ϕ ∈ Φ1 : ϕ(u) > 0 for u > 0 and ϕ(u)/u→ a as u→ ∞, a > 0},

Φ13 = {ϕ ∈ Φ1 : ϕ(u) = 0 near zero and ϕ(u)/u→ ∞ as u→ ∞},

Φ14 = {ϕ ∈ Φ1 : ϕ(u) = 0 near zero and ϕ(u)/u→ a as u→ ∞, a > 0}.

Then Φ1 =
⋃4
i=1Φ1i, where the sets are pairwise disjoint. It is seen that

Φ11 = ΦN .
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Theorem 2.1 [7, Theorems 1.1–1.4, Theorem 1.7]. Let ϕ ∈ Φ1i (i = 1, 2, 3, 4).
Then the following equalities hold:

Eϕ =
⋃

ψ∈Ψϕ
1i

Eψ =
⋃

ψ∈Ψϕ
1i

Lψ,

where:

Ψ
ϕ
11 = {ψ ∈ ΦN : ϕ

a
≪ ψ},

Ψ
ϕ
12 = {ψ ∈ ΦN : ϕ

s
≪ ψ},

Ψ
ϕ
13 = {ψ ∈ ΦN : ϕ

l
≪ ψ},

Ψϕ14 =ΦN .

Moreover, if µ is an atomless measure or the counting measure on N, then for
each ψ ∈ Ψϕ1i, the strict inclusion L

ψ  Eϕ holds.
Next, let Φ2 be the set of all convex Orlicz functions ϕ vanishing only at 0 and

such that ϕ(u)/u→ ∞ as u→ ∞.
Denote by

Φ21 = {ϕ ∈ Φ2 : ϕ(u) < 0 for u > 0 and ϕ(u)/u→ 0 as u→ 0},

Φ22 = {ϕ ∈ Φ2 : ϕ jumps to ∞ and ϕ(u)/u→ 0 as u→ 0},

Φ23 = {ϕ ∈ Φ2 : ϕ(u) < 0 for u > 0 and ϕ(u)/u→ a as u→ 0, a > 0},

Φ24 = {ϕ ∈ Φ2 : ϕ jumps to ∞ and ϕ(u)/u→ a as u→ 0, a > 0}.

Then Φ2 =
⋃4
i=1Φ2i and Φ21 = ΦN .

Theorem 2.2 [7, Theorems 2.1–2.4, Theorem 2.6]. Let ϕ ∈ Φ2i (i = 1, 2, 3, 4).
Then the following equalities hold:

Lϕ =
⋂

ψ∈Ψϕ
2i

Lψ =
⋂

ψ∈Ψϕ
2i

Eψ,

where:

Ψ
ϕ
21 = {ψ ∈ ΦN : ψ

a
≪ ϕ},

Ψϕ22 = {ψ ∈ ΦN : ψ
s
≪ ϕ},

Ψ
ϕ
23 = {ψ ∈ ΦN : ψ

l
≪ ϕ},

Ψϕ24 =ΦN .

At last, according to [7, Lemma 3.1, Theorem 3.3] we have
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Theorem 2.3. Let ϕ1 and ϕ2 be a pair of complementary convex Orlicz functions,
i.e. ϕ∗1 = ϕ2. Then ϕ1 ∈ Φ1i iff ϕ2 ∈ Φ2i (i = 1, 2, 3, 4), and moreover, the sets Ψ

ϕ1
1i

and Ψ
ϕ2
2i are mutually related in such a way that:

(

Ψ
ϕ1
1i

)∗
= Ψ

ϕ2
2i and

(

Ψ
ϕ2
2i

)∗
= Ψ

ϕ1
1i .

3. Inductive limit topologies on Eϕ.

Let ϕ ∈ Φ1i (i = 1, 2, 3, 4). Then in view of Theorem 2.1, one can consider on E
ϕ

the inductive limit topologies T
ϕ
I1
and T

ϕ
I2
with respect to the families

{(Eψ, Tψ |Eψ) : ψ ∈ Ψϕ1i} and {(Lψ, Tψ) : ψ ∈ Ψϕ1i}, respectively (see [10, Chap-

ter V, § 2]). Thus T ϕI1 (resp. T
ϕ
I2
) is the finest of all locally convex topologies ξ on

Eϕ that satisfy, for each ψ ∈ Ψ
ϕ
1i, the condition ξ |Eψ⊂ Tψ |Eψ (resp. ξ |Lψ⊂ Tψ).

It is seen that

(3.1) Tϕ |Eϕ⊂ T
ϕ
I2

⊂ T
ϕ
I1
.

Our aim is to show that the topology Tϕ |Eϕ coincides with T ϕI1 and T ϕI2 . For

this purpose, the following theorem will be of importance.

Theorem 3.1. Let ϕ ∈ Φ1 and let µ be a σ-finite measure. Then for a linear
functional f on Eϕ the following statements are equivalent:

(a) f is T
ϕ
I1
-continuous.

(b) There exists a unique y ∈ Lϕ
∗

such that

f(x) = fy(x) =

∫

Ω
x(t)y(t) dµ for all x ∈ Eϕ.

Proof: (a) ⇒ (b). Let ϕ ∈ Φ1i (i = 1, 2, 3, 4). Then for each ψ ∈ Ψ
ϕ
1i, the func-

tional f |Eψ is continuous for Tψ |Eψ , so according to [5, Chapter II, § 3, Theorem 2]

there exists a unique function yψ ∈ Lψ
∗

such that

(+) f(x) =

∫

Ω
x(t)yψ(t) dµ for all x ∈ Eψ .

Assume that there exist ψ1, ψ2 ∈ Ψ
ϕ
1i such that yψ1 6= yψ2 , and f(x) =

∫

Ω x(t)yψk (t) dµ for x ∈ Eψk , where k = 1, 2. Let us assume, for example, that
µ({t ∈ Ω : yψ1(t) > yψ2(t)}) > 0, and let A ⊂ {t ∈ Ω : yψ1(t) > yψ2(t)} be
a measurable set with 0 < µ(A) < ∞. Denoting by χA the characteristic function

of A, we have χA ∈ Eψ1 ∩ Eψ2 , so by (+) we get

∫

Ω
χA(t) (yψ1(t)− yψ2(t)) dµ =

∫

A
(yψ1(t)− yψ2(t)) dµ = 0.
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This contradiction establishes that there exists a unique

y ∈
⋂

ψ∈Ψϕ
1i

Lψ
∗

such that f(x) =

∫

Ω
x(t)y(t) dµ for all x ∈ Eϕ .

On the other hand, since ϕ∗ ∈ Φ2i and (Ψ
ϕ
1i)

∗ = Ψ
ϕ∗

2i (see Theorem 2.3), accord-
ing to Theorem 2.2,

⋂

ψ∈Ψϕ
1i

Lψ
∗

=
⋂

ψ∈(Ψϕ
1i)

∗

Lψ =
⋂

ψ∈Ψϕ
∗

2i

Lψ = Lϕ
∗

.

(b) ⇒ (a). Let ϕ ∈ Φ1i (i=1,2,3,4). Then for each ψ ∈ Ψϕ1i, by Theorem 2.3,

ψ∗ ∈ Ψϕ
∗

2i . Hence L
ϕ∗

⊂ Lψ
∗

, and the functional f |Eψ is continuous for Tψ |Eψ (see
[5, Chapter 2, § 3, Theorem 2]). Therefore, in view of [10, Chapter V, Proposition 5],
the functional f is continuous for T ϕI1 .

Thus the proof is completed. �

Now we are in a position to prove our main theorem.

Theorem 3.2. Let ϕ ∈ Φ1 and µ be a σ-finite measure. Then the norm topology
Tϕ restricted to E

ϕ coincides with the inductive limit topologies T ϕI1 and T ϕI2 , that

is

Tϕ |Eϕ= T ϕ
I1
= T ϕ

I2
.

Proof: Since the space (Eϕ, Tϕ |Eϕ) is barrelled and (E
ϕ, Tϕ |Eϕ)

∗ = {fy : y ∈

Lϕ
∗

} (see [5, Chapter II, § 3, Theorem 2]), the equality Tϕ |Eϕ= β(Eϕ, Lϕ
∗

) holds
(see [10, Chapter IV, § 1, Corollary 1]).
On the other hand, the space (Eϕ, T ϕI1) is barrelled, because an inductive limit of

barrelled spaces is barrelled (see [10, Chapter 2, Proposition 6]). Hence, in view of

Theorem 3.1, the equality T
ϕ
I1
= β(Eϕ, Lϕ

∗

) holds. Thus Tϕ |Eϕ= T
ϕ
I1
, and by (3.1)

our proof is completed. �

4. A characterization of continuity of linear operators on Eϕ.

As an application of Theorem 3.2, in view of the general property of inductive
limit topologies (see [10, Chapter V, 2, Proposition 5]), we obtain a characterization
of linear operators of Eϕ into a locally convex space X . The details follow.

Theorem 4.1. Let ϕ ∈ Φ1i (i = 1, 2, 3, 4) and let (X, ξ) be a locally convex space.
For a linear operator A : Eϕ → X , the following statements are equivalent:

(a) A is (Tϕ |Eϕ , ξ)-continuous.

(b) A |Eψ is (Tψ |Eψ , ξ)-continuous for every ψ ∈ Ψ
ϕ
1i.

(c) A |Eψ is (Tψ, ξ)-continuous for every ψ ∈ Ψϕ1i.

We close this section with an application of Theorem 2.1 and Theorem 4.1 to the
spaces: Lp, L1 + Lp (p > 1) and c0.
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Examples.

A. Let p > 1. Then ϕp ∈ Φ11 and in view of Theorem 2.1 and Theorem 4.1 we get
the following

Corollary 4.2. Let p > 1. Then the following equalities hold:

Lp =
⋃

ψ

Eψ =
⋃

ψ

Lψ,

where the unions are taken over all N -functions ψ such that ψ(u)/up → ∞ as u→ 0
and u→ ∞.

Moreover, if the measure µ is σ-finite, then for a locally convex space (X, ξ) and
a linear operator A : Lp → X , the following statements are equivalent:

(a) A is (TLp , ξ)-continuous.
(b) A |Eψ is (Tψ |Eψ , ξ)-continuous for everyN -function ψ such that ψ(u)/u

p →
∞ as u→ 0 and u→ ∞.

(c) A |Lψ is (Tψ, ξ)-continuous for every N -function ψ such that ψ(u)/u
p → ∞

as u→ 0 and u→ ∞.

B. For p > 1 let us put

ϕ(u) =

{

up for 0 ≤ u ≤ 1,

pu+ 1− p for u > 1,

and let ϕ′(u) = min(ϕ1(u), ϕp(u)). Then ϕ is a convex Orlicz function and ϕ
a
∼ ϕ′,

so Eϕ = Lϕ = Lϕ
′

= L1 + Lp and Tϕ = Tϕ′ , where the topology Tϕ′ is generated
by the norm:

‖x‖L1+Lp = inf{‖x1‖L1 + ‖x2‖Lp : x = x1 + x2, x1 ∈ L1, x2 ∈ Lp}.

Since ϕ ∈ Φ12, according to Theorem 2.1 and Theorem 4.1 we have

Corollary 4.3. Let p > 1. Then the following equalities hold:

L1 + Lp =
⋃

ψ

Eψ =
⋃

ψ

Lψ,

where the unions are taken over the set of all N -functions ψ such that ψ(u)/up → ∞
as u→ 0.

Moreover, if the measure µ is σ-finite, then for a locally convex space (X, ξ) and
a linear operator A : L1 + Lp → X , the following statements are equivalent:

(a) A is (TL1+Lp , ξ)-continuous.
(b) A |Eψ is (Tψ |Eψ , ξ)-continuous for everyN -function ψ such that ψ(u)/u

p →
∞ as u→ 0.

(c) A |Lψ is (Tψ, ξ)-continuous for every N -function ψ such that ψ(u)/u
p → ∞

as u→ 0.
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In particular, if the measure µ is finite, then

L1 =
⋃

ψ

Eψ =
⋃

ψ

Lψ,

where the unions are taken over the set of all N -functions ψ.
Moreover, for a linear operator A : L1 → X , the following statements are equiv-

alent:

(a) A is (TL1 , ξ)-continuous.
(b) A |Eψ is (Tψ |Eψ , ξ)-continuous for every N -function ψ.
(c) A |Lψ is (Tψ, ξ)-continuous for every N -function ψ.

C. Let

ϕ(u) =

{

0 for 0 ≤ u ≤ 1,

u− 1 for u > 1.

Then ϕ is a convex Orlicz function and ϕ
s
∼ ϕ0. Hence l

ϕ = lϕ0 = l∞ and
hϕ = hϕ0 = c0, and the topology Tϕ on l

ϕ agrees with the topology T∞ of the
norm ‖x‖∞ = supi |x(i)| on l

∞. Since ϕ ∈ Φ14, in view of Theorem 2.1 and
Theorem 4.1, we have

Corollary 4.4. The following equalities hold:

c0 =
⋃

ψ

hψ =
⋃

ψ

lψ,

where the unions are taken over the set of all N -functions.

Moreover, for a locally convex space (X, ξ) and a linear operator A : c0 → X ,
the following statements are equivalent:

(a) A is (T∞ |c0 , ξ)-continuous.
(b) A |hψ is (Tψ |hψ , ξ)-continuous for every N -function ψ.
(c) A |lψ is (Tψ , ξ)-continuous for every N -function ψ.
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