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Some results on the product of distributions
and the change of variable

EMIN OZCA(_}, BRIAN FISHER

Abstract. Let F and G be distributions in D’ and let f be an infinitely differentiable
function with f/(z) > 0, (or < 0). It is proved that if the neutrix product F o G exists and
equals H, then the neutrix product F(f) o G(f) exists and equals H(f).
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In the following, we let N be the neutrix, see van der Corput [1], having domain
N’ =1{1,2,...,n,...} and range the real numbers, with negligible functions finite
linear sums of the functions

" tn, Wm"n:A>0, r=1,2,...

and all functions which converge to zero in the normal sense as n tends to infinity.

We will use n or m to denote a general term in N’ so that if {a,} is a se-
quence of real numbers, then N— lim;,_,oc a, means exactly the same thing as
N- limp—co Gm.

Note that if {an} is a sequence of real numbers which converges to a in the
normal sense as n tends to infinity, then the sequence {a,} converges to a in the
neutrix sense as n tends to infinity and

lim ap, = N-limay,
n—oo n—oo

We now let p(z) be a fixed infinitely differentiable function having the following

properties:

(i) p(z) =0 for |x| > 1,
(i) p(z) =0,
(iif) plz) = p(= )
(iv) [1) p(a)da =

Putting 6, (z) = np(mc) forn =1,2,..., it follows that {0, (x)} is a regular sequence
of infinitely differentiable functions converging to the Dirac delta-function §(z).

Now let D be the space of infinitely differentiable functions with compact support
and let D’ be the space of distributions defined on D. Then, if F is an arbitrary
distribution in D’, we define

Fn(z) = (F *0n)(x) = (F(t), 0n(z — 1))
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forn =1,2,.... It follows that {F,(z)} is a regular sequence of infinitely differen-
tiable functions converging to the distribution F'(x).
The following definition for the product of two distributions was given in [2].

Definition 1. Let F and G be distributions in D’ and let G, = G * §,,. We say
that the neutrix product F'oG of F and G exists and is equal to the distribution H
on the interval (a, b) if

(1) N- lim(FGn, ¢) = (H, ¢)

n—oo

for all functions ¢ in D with support contained in the interval (a,b). If

(FGn,¢) = (H,9),

lim

n—oo

we simply say that the product F.G exists and equals H.
Note that if we put F,, = F * d,,, we have

(FGn, ¢) = N~ lim(Fin G, 6)

and so the equation (1) could be replaced by the equation

(2) N lim [N - lim(F G, 6)] = (H, ¢).

n—o0 m—00
The next definition for the change of variable in distributions was given in [3].

Definition 2. Let F be a distribution in D’ and let f be a locally summable func-
tion. We say that the distribution F(f(x)) exists and is equal to the distribution H
on the interval (a,b) if

oo

N- lim Fo(f(x)o(x)dx = (H, )

n—oo [ o
for all test functions ¢ in D with support contained in the interval (a,b), where

The following theorem was proved in [5].

Theorem 1. Let F be a distribution in D' and let f be an infinitely differen-
tiable function with f’(x) > 0, (or < 0), for all z in the interval (a,b). Then the
distribution F(f(x)) exists on the interval (a,b).

FEurther, if F' is the p-th derivative of a locally summable function F(=P) on the
interval (f(a), f()), (or f(b), f(a)), (g inverse of f), then

(3)  (F(f(2),é(x)) =(~1)P /f “ FOP ()¢ () p(g())]P) da =

() 17 [ FGE )| s 1| [ S ] de
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for all ¢ in D with support contained in the interval (a,b).

Using the equation (3), it was proved that if f had a single simple zero at the
point « = x1 in the interval (a,b), then

6 SN = e | 7 2 O =)

on the interval (a,b) for s = 0,1, 2, ..., showing that the Definition 2 is in agreement
with the definition of 6(%)(f(z)) given by Gel’fand and Shilov [6].

The problem of defining the product F(f) o G(g) was considered in [4]. Putting
F(f) = F1 and G(g) = G1, the product F} o G; = Hj is of course defined by the
equation

N 1im [N lim(F1,G1n, ¢)] = (H1,9),

n—oo

for all ¢ in D, where Fi,, = F} * 0, and G1y, = G1 * 0p.-

However, it was pointed out that since the distributions F(f) and G(g) were
defined by the sequences { Fy,, } and {Gy, }, the product F(f)oG(g) should be defined
by these sequences, leading to the following definition.

Definition 3. Let F' and G be distributions in D', let f and g be locally summable
functions and let Fy, = F % §y, and G, = G * d,. We say that the neutrix product
F(f) o G(g) of F(f) and G(g) exists and is equal to the distribution H on the
interval (a,b) if Fp,(f) Gn(g) is a locally summable function on the interval (a,b)
and

N- lim [N - im(F,,,(f)Gn(9), ¢)] = (H1, ),

n—oo m—00
for all ¢ in D with support contained in the interval (a, b).

The following two examples were given in [4] and show that the neutrix product
F(f) o G(g) can be equal to, but is not necessarily equal to the neutrix product
Fi oGy

Example 1. Let F' = xi_/z, G=0'(z), f =2% and g = 24. Then

F(f)=Fi =24, Glg) =G = 50()
and )
F(f) o Glg) = —50(z) = Fy 0 Gi.

~1/2

Example 2. Let =2, ", G=46(z), f=rand g = :ci_/z. Then

F(f)y=F =27 Glg)=G1=0

and

F(f) o Glg) = 8(x) #0 = F1 o G1.

The following theorem was, however, proved in [4].
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Theorem 2. Let F' and G be distributions in D', let f be a locally summable
function and let g be an infinitely differentiable function. If the distributions F'(f) =
Fy and G(g) = G exist and the neutrix product F(f) o G(g) exists on the interval
(a,b), then
F(f)oG(g) = F10G(g)
on the interval (a,b). In particular, if g(x) = x, then
F(f)eGlg) = F1o Gy
on the interval (a,b).
In this theorem, F} o G(g) was used to denote the distribution defined by
We now prove the following theorem.

Theorem 3. Let F and G be distributions in D’ and let f be an infinitely differen-
tiable function with f'(x) > 0, (or < 0), for all = in the interval (a,b). If the neutrix
product F oG exists and is equal to H on the interval (f(a), f(b)), (or (f(b), f(a))),
then

F(f)eG(f) = H(f)

on the interval (a,b).

PROOF: Note first of all that the distributions F(f) and G(f) exist on the interval

(f(a), f(b)), (or (f(b), f(a))), by Theorem 1.
We will suppose that f’(z) > 0 and that g is the inverse of f on the interval (a, b).

Letting ¢ be an arbitrary function in D with support contained in the interval (a, b)
and making the substitution ¢t = f(x), we have

t/a)Fﬁ(ﬂxDC%Lﬂx»¢@0dx:i[%)quﬂixﬂ¢@@ﬁg%wdt:

_ /_ T B (G () dt,

where ¥(t) = ¢(g(t))g’(t) is a function in D with support contained in the interval
(f(a), f(1)). It follows that

N- lim [N— Lim (Fp, (f)Gn(f), ¢>} = (H, 1)

n—oo m—00

for all ¢ or 1.
Further, on making the substitution ¢ = f(z), we have

/ffmmwoﬁ:/ffm@wmmdmﬁ:
— [t ot ds

and so

N-—lim(Hp,¢) = (H(f), )-

n—oo

The result of the theorem follows. O
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Theorem 4. Let F' and G be distributions in D’ and let f be an infinitely differ-
entiable function with f’(z) > 0, (or < 0), for all z in the interval (a,b). If the
neutrix products F o G and F o G', (or F' o G), exist on the interval (f(a), f(b)),

(or (f(b), f(a))), then
[E(f) o GO = [F(N)) o G(f) + F(f) o [G(f)
on the interval (a,b).

ProoOF: The usual law

(FoGY =F oG+ Fod’
for the differentiation of a product holds, see [2], and so the result of the theorem
follows immediately from Theorem 3. O

Theorem 5. Let f be an infinitely differentiable function with f’(x) > 0, (or < 0),
for all x in the interval (a,b) and having a simple zero at the point x = 1 in
the interval (a,b). Then the neutrix products (f(z))", o 56 (f(x)) and 6)(f(x)) o
(f(x))" exist and

(6) (f(@) - 69 (f(x)) = 6O (f(2)) - (f(2))} =0
fors=0,1,....,r—1landr=1,2,... and
(f(@) 06 (f(x)) =6 (f(2)) o (f(2))} =
(7 C(=1rst1 1 d
“2s =) [f(@)] [ f(w) do

forr=0,1,...,s and s=r,r+1,r 4+ 2,... on the interval (a,b).

| st -a)

PRrROOF: If g is an s times continuously differentiable function at the origin, then
the product g - §(s) = §(s) . g is given by
S
o12) - 00(0) =6 (0) - ga) = -1 H (7

=0

)gs-i<o>6<"> (a).

1

It follows that
a5 (z) =6 (2) - 2L =0

fors=1,2,...,r—1and r =1,2,... and the equation (6) follows immediately on
using Theorem 3.
It was proved in [2] that

xl o 5(3)(;5) — 5 (z)oa’, = M(g(s—”(x),

2(s—r)!
forr,s =0,1,2,...,s > r, and it follows on using Theorem 3 that
—1)"s! o
() o 8(7() =8 (a)) o () = 35065
for r,s =0,1,2,.... The equation (7) follows immediately on using equation (5).

O

681
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Example 3.
(x + x2):_ 06" (z+2?) =6 (z+2%) 0 (z + x2)7_;_ =

(8)
_ %(_1)% [6(z) + 6(z + 1)),

(x + x2)7:,_ 06Ut (x4 22) = 60t (2 4+ 2%) o (2 + a:2):_ =

%) 1 , ,
= 5(—1) (r+ D)o (x) +20(x) + 6" (x+ 1) + 26(x + 1)]

for r =0,1,2,... on the real line.
PrOOF: The function f(z) = 2 + 22 has simple zeros at the points = = 0, —1. It
follows from the equations (5) and (7) that

(z+ %) o 5z +22) =6 (z 4+ 2%) o (2 + ) =

:%(—1)’"7“ 6(x + 22) =

=5 (1P [5(@) + (e + 1),

proving the equation (8) for r =0,1,2,....
It again follows from the equations (5) and (7) that

(I+.¢L‘2):_ 06(T+1)(x+x2) 25(T+1)($+.’L'2) o (CL‘—}-!TQ):_ _

1 1
:5(—1)T(r +1)! 192 [6'(x) + 6 (x+1)] =
:%(_1)% + 1)1 (@) + 28(2) + &' (x + 1) + 28(z + 1)),
proving the equation (9) for r =0,1,2,.... O

Theorem 6. Let f be an infinitely differentiable function with f'(x) > 0, (or < 0),
for all x in the interval (a,b) and having a simple zero at the point x = x1 in the
interval (a,b). Then the neutrix products (f(z))~" o 6®)(f(z)) and 6 (f(z)) o
(f(x))™" exist and

~1)rs! 1 1 a]™*
10) (@) od (o) = s s | s - o)
(11) 5O(f(@) o (@) =0,
forr=1,2,... and s =0,1,2,... on the interval (a,b).
PROOF: It was proved in [2] that

z "o 6(5)(95) = Er__l'_);j: §5(rts) (2),

5 (z)ox" =0

forr=1,2,... and s =0,1,2,.... Equations (10) and (11) follow immediately as

in the proof of Theorem 6. O
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Example 4.

(12) (22 —=1)"tod(a?—1) = —i[é'(w — 1)+ 6z —1) =0 (x+1)+ 6z + 1)),
(13) §)(@? —1)o (22 —1)"" =0,

forr=1,2,... and s =0,1,2,... on the real line.

PRrOOF: The function f(z) = 22 — 1 has simple zeros at the points z = +1. Tt
follows from the equations (5) and (10) that

(@2 1)L os(a?—1) = — ﬁ[a'(x )41 =
_ i[&'(w— D)4z —1) =8z +1)+5(x+1)]

proving equation (12). O

The equation (13) follows immediately from the equations (5) and (11) for r =
1,2,... and s =0,1,2,....

Theorem 7. Let f be an infinitely differentiable function with f'(x) > 0, (or
< 0), for all z in the interval (a,b) and having a simple zero at the point x =

x1 in the interval (a,b). Then the neutrix products (f(ac))f‘,_ o (f(gc)):)‘_’" and
(f(I)):)‘_T o (f(:z:))f‘i_ exist and

@)k o (f@) A" =(f@)=" o (f@)) =
(14) _ mcosec(mA) 1 [ 1 d
20r =) |f' ()| LS (21) da
for A\ #0,+1,4+2,... and r =1,2,... on the interval (a,b)

PROOF: It was proved in [2] that

y_15(90 - 1),

_ meosec(mA) (1)
2(r—=1)!

A —A—T1 _ —A—T A
T4 ow_ =x_ oxy =

(),

for A\ #£0,+1,42,... andr =1,2,.... Equation (14) follows immediately as in the
proof of Theorem 6. 0

Example 5. Let f(x) =t be the inverse of the function g(t) = ¢ + > = 2. Then

(15) (f@)3 o (@) =(f@) o (fa))) =
=— %w cosec(mA)d(x),
(16) (f@)3 o (@) =(f@) 2o (f(2)} =

__ %wcosec(ﬂ)\) 16 () + 6(2)),

683
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for A #0,+1,42,... on the real line.

PrOOF:
Jt)=1+3t2>0

for all ¢, it follows that f/(z) > 0 for all z and so on using the equation (3) with
p =1, we have for all ¢ in D

(). o) == [ HE@(+ 367000 + %)) =
—— [ a4 et + ) = o00).

It follows that
(17) 6(f(x)) = 6(x).
Using the equation (3) again with p = 2, we have for all z in D
@0l = [ dl1+ 32200 +ad) -

=—¢/(0) - /OOO d[(1+32%)(x + 2%)] =
=—¢'(0) + ¢(0).

It follows that

(18) §'(f(x)) = 0'(2) + ().

It now follows from the equations (15) and (17) that

1
=—57 cosec(mA)o(f(x)) =
E— %ﬂ' cosec(mA)d(z),

proving the equation (15) for A # 0,+1,+2,....
It again follows from the equations (14) and (18) that

(f@)d o (f@) 72 =(f@) 2o (f(2)} =
=— %ﬂ' cosec(mA\)d' (f(x)) =

=— %ﬂ' cosec(mA) [’ (z) + d(z)),

proving the equation (16) for A # 0,+1,+2,.... O
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