Smoothness for systems of degenerate variational inequalities with natural growth

MARTIN FUCHS

Abstract. We extend a regularity theorem of Hildebrandt and Widman [3] to certain degenerate systems of variational inequalities and prove Hölder-continuity of solutions which are in some sense stationary.

Keywords: variational inequalities, regularity theory Classification: 49

0. Introduction.

We consider systems of variational inequalities of the form

(0.1)
$$\int_{\Omega} A(u) |Du|^{p-2} Du \cdot D(v-u) \, dx \ge \int_{\Omega} f(\cdot, u, Du) \cdot (v-u) \, dx$$

for all $v \in \mathbb{K} := H^{1,p}(\Omega, K)$ such that $\operatorname{spt}(u-v) \subset \subset \Omega$, where K is a convex set in \mathbb{R}^N and p denotes some real number in the interval [2, n], n denoting the dimension of the domain Ω . Our main purpose is to prove (partial) regularity for solutions $u \in \mathbb{K}$ of (0.1) in the case that the right-hand side is of natural growth, i.e. we require

$$|f(x, y, Q)| \le a \cdot (|Q|^p + 1)$$

for some positive constant a. To my knowledge there is only a theorem of Hildebrandt and Widman [3] concerning the quadratic case p = 2 which can be summarized as follows:

(0.2) If
$$A \ge \lambda > 0$$
 and if $a < \lambda / \text{diam } K$

is satisfied then any solution u of (0.1) is of class $C^{0,\alpha}$ on the whole domain Ω .

Since these authors make use of the Green's function technique it is rather clear that for general p > 2 one has to find completely new arguments. We start with the observation that (0.2) is sufficient to prove a Caccioppoli inequality for u giving $Du \in L^q_{loc}$ for some q > p and hence partial regularity apart from a closed singular set of vanishing \mathcal{H}^{n-q} -measure. Of course the convexity of K is essential in two ways: it is needed to derive Caccioppoli's inequality and to show that local solutions w of $D(|Dw|^{p-2}Dw) = 0$ for boundary values u are admissible. Unfortunately we did not succeed in proving everywhere regularity by the way giving

M. Fuchs

a complete extension of the above mentioned theorem of Hildebrandt and Widman. Our contribution concerns the following case: suppose that f is of the special form $f(x, y, Q) = \frac{1}{2} DA(y) |Q|^p$ and that in addition u is a stationary point of the functional $\mathcal{F}(u) := \int_{\Omega} A(u) |Du|^p dx$ with respect to reparametrizations of Ω . This enables us to consider blow-up sequences at possible singularities which are shown to converge strongly to a homogeneous (degree zero) tangent map u_0 in the space $H_{\text{loc}}^{1,p}(\Omega)$ and from (0.2) it follows that u_0 must be trivial so that the singular set is empty. Hence our main result can be summarized as follows:

Suppose that $u \in \mathbb{K}$ satisfies $\frac{d}{dt/0} \mathcal{F}(u + t(v - u)) \geq 0$ for all $v \in \mathbb{K}$ such that $\operatorname{spt}(u - v) \subset \subset \Omega$. Then if (0.2) holds and if u is also stationary we have $u \in C^{0,\alpha}(\Omega)$.

1. Notations and results.

We here specify our assumptions and introduce some notations which will be used throughout the paper. Let $B_r(x_0) := \{x \in \mathbb{R}^n : |x - x_0| < r\}$, we often write B_r when x_0 is fixed and use the symbol B to denote the open unit ball with center at 0. For a compact convex set K in \mathbb{R}^N and a real number $2 \le p < n$ we introduce the class $\mathbb{K} := \{u \in H^{1,p}(B, \mathbb{R}^N) : u(x) \in K \text{ a.e.}\}$ of all vector-valued Sobolev functions with values in the prescribed set K. Moreover, we are given a smooth function $A : \mathbb{R}^n \to \mathbb{R}$ with the property

(1.1)
$$\lambda \le A(y), \quad y \in K,$$

for some positive number λ . For the functions $u \in \mathbb{K}$ and balls $B_r(x_0) \subset B$ we then define the energy

$$\mathcal{F}(u, B_r(x_0)) := \int_{B_r(x_0)} A(u) |Du|^p dx.$$

Theorem 1.1. Suppose $u \in \mathbb{K}$ satisfies

(1.2)
$$\lim_{t\downarrow 0} t^{-1} \cdot \left[\mathcal{F}(u+t(v-u),B) - \mathcal{F}(u,B) \right] \ge 0$$

for all $v \in \mathbb{K}$ with the property $\operatorname{spt}(u-v) \subset B$. Then, if the smallness condition

(1.3)
$$\sup_{K} |DA| < 2 \cdot \lambda \cdot (\operatorname{diam} K)^{-1}$$

holds, we have $u \in C^{0,\alpha}(B')$ for some open subset B' of B such that $\mathcal{H}^{n-p}(B-B') = 0.$

Definition. A function $u \in \mathbb{K}$ is a stationary point of $\mathcal{F}(\cdot, B)$ iff

(1.4)
$$\frac{d}{dt/0} \mathcal{F}(u_t, B) = 0, \quad u_t(x) := u\big(x + t \cdot X(x)\big),$$

holds for all vectorfields $X \in C_0^1(B, \mathbb{R}^n)$.

Theorem 1.2. Let $u \in \mathbb{K}$ denote a stationary point of $\mathcal{F}(\cdot, B)$ which in addition satisfies (1.2). Then $u \in C^{0,\alpha}(B)$ provided the smallness condition (1.3) is satisfied.

Remarks:1) Theorems 1.1, 1.2 easily extend to functionals of the form

$$u \to \int_B A(u) \left(a_{\alpha\beta} D_\alpha u \cdot D_\beta u\right)^{p/2} dx$$

with elliptic coefficients $a_{\alpha\beta}: B \to \mathbb{R}$.

2) We conjecture that (1.2), (1.3) are sufficient to prove everywhere regularity.

3) Under suitable smallness conditions relating λ , diam (K) and the growth constant a in

$$|f(x, y, Q)| \le a(|Q|^p + 1),$$

a partial regularity result in the spirit of Theorem 1.1 can be deduced for solutions $u \in K$ of the variational inequality

$$\int_{B} A(u) |Du|^{p-2} Du \cdot (Dv - Du) dx \ge$$
$$\ge \int_{B} f(\cdot, u, Du) \cdot (v - u) dx, \quad v \in \mathbb{K}, \ \operatorname{spt}(u - v) \subset \subset B,$$

but again we are unable to exclude singular points.

2. Proof of the partial regularity Theorem 1.1.

Clearly inequality (1.2) is equivalent to

(2.1)
$$\int_{B} A(u) |Du|^{p-2} Du \cdot D(u-v) \, dx \le \int_{B} \frac{1}{2} DA(u) \cdot (v-u) |Du|^{p} \, dx$$

for all $v \in \mathbb{K}$ such that $\operatorname{spt}(u-v) \subset \subset B$. Consider a ball $B_{2R}(x_0) \subset B$ and a cut-off function

$$\eta \in C_0^1(B_{2R}(x_0), [0, 1]), \quad \eta = 1 \text{ on } B_R(x_0), \quad |D\eta| \le 2 \cdot R^{-1}$$

Then

$$v := u + \eta^p (u_{2R} - u), \quad u_{2R} := \oint_{B_{2R}(x_0)} u \, dx,$$

is admissible in (2.1) and a standard calculation using (1.3) implies Caccioppoli's inequality

(2.2)
$$\int_{B_R(x_0)} |Du|^p \, dx \le c_1 \cdot R^{-p} \int_{B_{2R}(x_0)} |u - u_{2R}|^p \, dx$$

for some absolute constant c_1 independent of u and the ball $B_R(x_0)$. Quoting [G] we find an exponent q > p such that

$$Du \in L^q_{\text{loc}}(B, \mathbb{R}^{nN})$$

and the following reverse Hölder inequality holds

(2.3)
$$\left(\oint_{B_R(x_0)} |Du|^q \, dx \right)^{1/q} \le c_3 \left(\oint_{B_{2R}(x_0)} |Du|^p \, dx \right)^{1/p}.$$

Let $w \in H^{1,p}(B_R(x_0), \mathbb{R}^N)$ denote the unique minimizer of the functional

$$\mathcal{F}_0(v) := A(u_R) \cdot \int_{B_R(x_0)} |Dv|^p \, dx$$

for boundary values $u \mid_{\partial B_R(x_0)}$. Since $u(B_R(x_0)) \subset K$ and since K is convex, one easily checks (for example by projecting v onto the set K) that v respects the side condition and therefore is admissible in (2.1) provided we integrate over the ball $B_R(x_0)$. As in [1, Lemma 3.3] we then can prove the following comparison inequality

(2.4)
$$\int_{B_R(x_0)} |Du - Dv|^p \, dx \le \le c_4 \cdot \left[R^{p-n} \int_{B_R(x_0)} |Du|^p \, dx \right]^{1-p/q} \int_{B_{2R}(x_0)} |Du|^p \, dx \, .$$

Note that the proof of (2.4) combines (2.3) with standard ellipticity estimates. On the other hand we know from [5] that

$$\int_{B_{\rho}(x_0)} |Dv|^p \, dx \le c_r \left(\frac{\rho}{R}\right)^n \int_{B_R(x_0)} |Dv|^p \, dx \,, \quad 0 < \rho \le R \,,$$

which gives on account of (2.4):

Lemma 2.1. Suppose that $u \in \mathbb{K}$ satisfies (1.2) and that the smallness condition (1.3) holds. Then there exist constants $\varepsilon, \alpha \in (0, 1)$ (independent of u) with the following property: If

(2.5)
$$R^{p-n} \int_{B_R(x_0)} |Du|^p \, dx < \varepsilon$$

holds for some ball $B_R(x_0) \subset B$ then $u \in C^{0,\alpha}(B_{R/2}(x_0))$ and

$$|u(x) - u(y)| \le c \cdot |x - y|^{\alpha}, \quad x, y \in B_{R/2}(x_0),$$

with $0 < c < \infty$ independent of u.

This proves Theorem 1.1 and in view of Caccioppoli's inequality (2.2) we see that a point $x_0 \in B$ is a regular point if and only if

(2.5)'
$$\int_{B_R(x_0)} |u - u_R|^p \, dx < \varepsilon'$$

holds for some ball $B_R(x_0) \subset B$ and a suitable small constant $\varepsilon' \in (0, 1)$.

Smoothness for systems of degenerate variational inequalities with natural growth

3. Monotonicity and everywhere regularity.

The following lemma is essentially due to Price [4] (for p = 2).

Lemma 3.1. Let $u \in \mathbb{K}$ satisfy (1.4). Then we have

(3.1)
$$0 = \int_{B} A(u) |Du|^{p-2} \left[|Du|^{2} \operatorname{div} X - pD_{\alpha}u \cdot D_{\beta}uD_{\alpha}X^{\beta} \right] dx$$

for all vectorfields $X \in C_0^1(B, \mathbb{R}^n)$.

By applying (3.1) to fields of the form

$$X(x) = \gamma(|x|) x$$

for a function $\gamma \in C^1(\mathbb{R})$ such that $(0 < \rho < 1)$

$$\gamma' \leq 0, \quad \gamma = 1 \quad \text{on} \quad (-\infty, \rho/2], \gamma = 0 \quad \text{on} \quad (\rho, \infty),$$

we get

Lemma 3.2 (Monotonicity formula). Suppose that $u \in \mathbb{K}$ satisfies (1.4). Then

$$R^{p-n} \int_{B_R} A(u) |Du|^p \, dx \, - \, r^{p-n} \int_{B_r} A(u) |Du|^p \, dx$$
$$= p \cdot \int_{B_R - B_r} A(u) |Du|^{p-2} \cdot |D_r u|^2 \cdot |x|^{p-n} \, dx$$

holds for balls $B_r(0) \subset B_R(0) \subset B$.

Remarks:1) $D_r u$ denotes the radial derivative: $D_r u^i(x) := \nabla u^i(x) \cdot \frac{x}{|x|}$.

2) A similar formula is valid for balls with center $x_0 \in B$.

We now come to the proof of Theorem 1.2: Let all the assumptions of Theorem 1.2 hold; it clearly suffices to show

(3.2)
$$\lim_{R \downarrow 0} R^{p-n} \int_{B_R(0)} |Du|^p \, dx = 0$$

i.e. $0 \in \text{Reg}(u)$ (= the regular set of u). To this purpose define a sequence $r_k \downarrow 0$ and consider the scaled maps $u_k(z) := u(r_k z), z \in B$, which belong to the class \mathbb{K} and satisfy (2.1) for all $v \in \mathbb{K}$, $\text{spt}(u_k - v) \subset B$. Since

$$\sup_k \|u_k\|_{H^{1,p}(B)} < \infty \,,$$

we may extract a subsequence (again denoted by u_k) such that

 $u_k \to: u_0 \quad \text{ in } \quad L^p_{\mathrm{loc}}, u_k \to u_0 \quad \text{weakly in } \quad H^{1,p}_{\mathrm{loc}}$

M. Fuchs

and pointwise a.e. The limit u_0 is in the class \mathbb{K} and let us suppose for the moment that we already know

(3.3)
$$u_k \to u_0$$
 strongly in $H^{1,p}_{\text{loc}}$

We then fix an arbitrary point $\xi \in K$ and a function $\eta \in C_0^1(0,1)$, $0 \le \eta \le 1$, and apply (2.1) with u replaced by u_k and $v(x) := u_k(x) + \eta(|x|) (\xi - u_k(x))$. (v is admissible since Im $v \subset K$ and $\operatorname{spt}(u_k - v) \subset B$.) On account of (3.3) we may pass to the limit $k \to \infty$ in order to deduce

$$\int_{B} A(u_0) Du_0 \cdot D\left(\eta[u_0 - \xi]\right) |Du|^{p-2} dx \le \int_{B} \frac{1}{2} DA u_0 \cdot \eta(\xi - u_0) |Du_0|^p dx,$$

which gives (recall (1.3))

(3.4)
$$\delta \cdot \int_{B} \eta \cdot |Du_{0}|^{p} dx + \int_{B} A(u_{0}) |Du_{0}|^{p-2} D_{\alpha} u_{0} \cdot (u_{0} - \xi) \eta'(|x|) x_{\alpha} \cdot |x|^{-1} dx \leq 0$$

for some $\delta > 0$. By scaling (3.1) is valid also for u_k and strong convergence $u_k \to u_0$ in $H_{\text{loc}}^{1,p}$ shows that (3.1) holds for the limit u_0 . Thus Lemma 3.2 extends to u_0 . Applying Lemma 3.2 to u we see that

$$\Phi(t) := t^{p-n} \int_{B_t} A(u) |Du|^p dx$$

is an increasing function so that $L:=\lim_{t\downarrow 0}\Phi(t)$ exists. On the other hand we have for any 0< R<1

$$R^{p-n} \int_{B_R} A(u_0) |Du_0|^p dx = \lim_{(3,3)} \lim_{k \to \infty} R^{p-n} \int_{B_R} A(u_k) |Du_k|^p dx$$
$$= \lim_{k \to \infty} (r_k \cdot R)^{p-n} \int_{B_{r_k} \cdot R} A(u) |Du|^p dx = L,$$

which shows $D_r u_0 \equiv 0$. Inserting this result into (3.4) we finally arrive at

$$\int_B \eta \cdot |Du_0|^p \, dx = 0$$

so that $Du_0 = 0$ a.e. on *B*, and in conclusion

$$\begin{aligned} 0 &= R^{p-n} \int_{B_R(0)} |Du_0|^p \, dx = \lim_{k \to \infty} R^{p-n} \int_{B_R(0)} |Du_k|^p \, dx \\ &= \lim_{k \to \infty} (r_k \cdot R)^{p-n} \int_{B_{r_k} \cdot R(0)} |Du|^p \, dx, \end{aligned}$$

which proves (3.2).

It remains to verify (3.3): Choose a point $x \in B$ such that

$$\int_{B_r(x)} \left| u_0 - (u_0)_r \right|^p dz < \varepsilon$$

holds for some ball $B_r(x) \subset B$ with ε' being defined in (2.5). For k sufficiently large we then have

$$\int_{B_r(x)} \left| u_k - (u_k)_r \right|^p dz < \varepsilon'$$

and since Lemma 2.1 applies to u_k we get the apriori estimate

$$[u_k]_{C^{0,\alpha}(B_{r/2}(x))} \le c \le \infty$$

for the Hölder-seminorms with c independent of k. Arzela's theorem implies $u_k \to u_0$ uniformly on $B_{r/2}(x)$, especially $u_0 \in C^{0,\alpha}(B_{r/2}(x))$.

Let S_0 denote the interior singular set of u_0 . The preceding arguments show

$$S_0 \subset \Sigma_0 := \{ x \in B : \liminf_{r \downarrow 0} f_{B_r(x)} | u_0 - (u_0)_r |^p \, dz > 0 \},$$

so that $\mathcal{H}^{n-p}(S_0) \leq \mathcal{H}^{n-p}(\Sigma_0) = 0$. Fix a number $t \in (0,1)$ and some small $\delta > 0$ and choose a covering

$$\Sigma_0 \cap B_t \subset \bigcup_{i=1}^{\infty} B_i, \quad B_i := B_{r_i}(x_i) \subset \subset B,$$

with the property $\sum_{i=1}^{\infty} r_i^{n-p} < \delta$. Then we have the following estimate for the energies on the set $0 =: \bigcup_{i=1}^{\infty} B_i$:

$$\begin{split} \int_{O} |Du_{k}|^{p} dx &\leq \sum_{i=1}^{\infty} \int_{B_{i}} |Du_{k}|^{p} dx \\ &\leq (\text{monotonicity formula for } u_{k}) \leq c \cdot \sum_{i=1}^{\infty} r_{i}^{n-p} \int_{B} |Du_{k}|^{p} dx \\ &= c \cdot \sum_{i=1}^{\infty} r_{i}^{n-p} \left(r_{k}^{p-n} \int_{B_{r_{k}}} |Du|^{p} dx \right) \\ &\leq (\text{monotonicity formula}) \leq c' \cdot \delta \cdot \int_{B} |Du|^{p} dx \,. \end{split}$$

M. Fuchs

In order to control the energies on the remaining part we choose $\eta \in C_0^1(B, [0, 1])$ such that $\eta \equiv 1$ on $\bar{B}_t - O$ and spt $\eta \cap S_o = \emptyset$. For $k \in \mathbb{N}$ we have

$$(3.5)_k \qquad \qquad \int_B A(u_k) |Du_k|^{p-2} Du_k \cdot D(u_k - v) \, dx$$
$$\leq \int_B \frac{1}{2} DA(u_k) \cdot (v - u_k) |Du_k|^p \, dx,$$
$$v \in \mathbb{K}, \text{ spt } (u_k - v) \subset B;$$

choosing $v := u_k + \eta^p \cdot (u_\ell - u_k)$ in $(3.5)_k$ and $v := u_\ell + \eta^p (u_k - u_\ell)$ in $(3.5)_\ell$ we arrive at

$$\begin{split} &\int_{B} \Big(A(u_{k}) Du_{k} \cdot D(u_{k} - u_{\ell}) |Du_{k}|^{p-2} \\ &- A(u_{\ell}) Du_{\ell} \cdot D(u_{k} - u_{\ell}) |Du_{\ell}|^{p-2} \Big) \cdot \eta^{p} dx \\ &\leq c_{1} \cdot \int_{B} |D\eta^{p}| \cdot |u_{k} - u_{\ell}| \cdot \{ |Du_{\ell}|^{p-1} + |Du_{k}|^{p-1} \} dx \\ &+ c_{2} \cdot \int_{B} \eta^{p} \cdot |u_{k} - u_{\ell}| \cdot \{ |Du_{\ell}|^{p} + |Du_{k}|^{p} \} dx, \end{split}$$

which turns into an estimate of the form $(\tau > 0$ a positive constant)

$$\begin{aligned} \tau \cdot \int_B \eta^p \cdot |Du_k - Du_\ell|^p \, dx \\ &\leq c_3 \cdot \int_B |u_k - u_\ell| \cdot \left(|D\eta^p| \cdot \left\{ |Du_\ell|^{p-1} + |Du_k|^{p-1} \right\} \\ &+ \eta^p \cdot \left\{ |Du_k|^p + |Du_\ell|^p \right\} \right) dx. \end{aligned}$$

Recalling $\sup \{|u_{\ell}(x) - u_k(x)| : x \in \operatorname{spt} \eta\} \xrightarrow{\ell,k\to\infty} 0$ we see $\int_B \eta^p |Du_{\ell} - Du_k|^p dx \xrightarrow{\ell,k\to\infty} 0$ so that $\{Du_k\}$ is a Cauchy-sequence in $L^p_{\operatorname{loc}}(B)$ which completes the proof of (3.3). \Box

References

- Fuchs M., Fusco N., Partial regularity results for vector valued functions which minimize certain functionals having nonquadratic growth under smooth side conditions, J. Reine Angew. Math. 399 (1988), 67–78.
- [2] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Studies 105, Princeton U.P. 1983.
- [3] Hildebrandt S., Widman K.-O., Variational inequalities for vectorvalued functions, J. Reine Angew. Math. 309 (1979), 181–220.

Smoothness for systems of degenerate variational inequalities with natural growth

- [4] Price P., A monotonicity formula for Yang-Mills fields, Manus. Math. 43 (1983), 131-166.
- [5] Uhlenbeck K., Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219–240.

Fachbereich Mathematik, Arbeitsgruppe 6, Technische Hochschule, Schlossgartenstrasse 7, D–6100 Darmstadt, FRG

(Received August 29, 1991)