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Čech–Stone-like compactifications

for general topological spaces

Miroslav Hušek

Abstract. The problem whether every topological space X has a compactification Y such
that every continuous mapping f fromX into a compact space Z has a continuous extension
from Y into Z is answered in the negative. For some spaces X such compactifications exist.
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By a space we always mean a topological space. In this paper, compact spaces
are regarded without any separation axiom, so that they are such spaces that every
their open cover contains a finite subcover (they are called quasi-compact in [En]).
A compactification of a space X is a compact space containing X as a dense sub-
space. We shall explore compactifications from the point of view of continuous
extensions of continuous mappings. Such a point of view is related to the concept
reflection of a space X in a subclass C of topological spaces: it is a space rX from
C and a continuous mapping r : X → rX such that for every continuous mapping
f : X → Y , Y ∈ C, there exists a unique continuous mapping g : rX → Y such that
g ◦ r = f . If we omit the word “unique” from the previous definition, we get the
concept weak reflection. The reflectivity is rather strong, the weak reflectivity is
rather weak, and there are some modifications of the above definitions, for instance
existence of a functor F into C and a natural transformation r : 1→ F .
If X has a (weak) reflection r : X → rX in the class of compact spaces, then r is

an embedding and rX may be found as a compactification of X . The Čech–Stone
compactification βX of a completely regular Hausdorff space X is the reflection of
X in the class of compact Hausdorff spaces; composing it with the reflection into
completely regular Hausdorff spaces, we get a reflection of any space in compact
Hausdorff spaces. If we do not need the uniqueness of the continuous extensions,
the Čech–Stone compactification realizes a weak reflection of any space in compact
regular spaces. Of course, the reflection mapping r is an embedding only for com-
pletely regular Hausdorff spaces in the former case and for the completely regular
spaces in the latter case. It is easy to show that there are continuous mappings
from X into a compact (nonregular) space which cannot be continuously extended
to βX .
The Wallman compactification ωX is usually constructed for T1-spaces X , but

the T1-axiom is not needed in its definition and the proof of its basic properties;
one of the properties asserts that every continuous mapping from X into a compact
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regular space Y can be continuously extended to ωX (see e.g. [En] for T1-spaces).
Again, there are continuous mappings from X into a compact (nonregular) space
which cannot be continuously extended to ωX (see e.g. [Ha]).
Thus, it is quite natural to ask: Is there a compactification γX of X such that

every continuous mapping from X into any compact space Y can be continuously
extended to γX? In other words: Is the class of compact spaces weakly reflective
in the class of topological spaces? It is probably impossible to find out who first
asked that question. I remember that 25 years ago Z. Froĺık mentioned it by some
occasion; then I did not hear it for a long time and about two years ago, J. Adámek
and J. Rosický came with it again (oral communication). Now, the problem is
stated explicitly in [AR] and [He].
The occasion when we spoke about the problem with Z. Froĺık was an interest

in improving some results on extension of various mappings onto compactifications.
I used some categorical methods (extension of functors) to get functors from var-
ious categories into the category of compactifications (in fact, into a more general
category of extensions) — see [Hu1]. Those categorical methods could solve the
problem positively only. In [Hu2, Example 3], it was proved that the answer to the
problem is in the negative if one considers closure spaces in the sense of [Če] instead
of topological spaces (even if one requires extensions of mappings into compact
Hausdorff closure spaces only), but some spaces (e.g. those having finitely many
nonconverging ultrafilters only) have the requested compactification. In the next
part of this paper we will show that the answer for topological spaces is similar
as for closure spaces: it is in the negative but there exist noncompact spaces X
having the requested compactification γX . For normal spaces such situations are
fully characterized. At first we shall describe some spaces having a weak reflection
in compact spaces (Theorem 1) and then some spaces having no weak reflection in
compact spaces (Theorem 2).

As far as I know, most recent constructions suggested for the negative solution
of the problem used the topological modification of the closure space constructed
in [Hu2], i.e., adding ultrafilters; maybe, that approach works but it is probably
difficult to manage it. The construction we use in this paper, is a modification of
the example from [GH] (it was used to produce non-co-well-poweredness of a certain
class of spaces): instead of uncountable families it suffices to use countable families
(the same modified space was used in [GS] to produce non-co-well-poweredness of
another class of spaces).
Now, we shall repeat some basic facts concerning the Wallman compactification

ωX of X . As a set, ωX = X∪{F : F is a free maximal centered collection of closed
sets in X}. An open base of ωX consists of G∪{F ∈ ωX−X : F ⊂ G for some F ∈
F}, G open in X . Then ωX − X is called the Wallman remainder and every its
point is closed in ωX .

Theorem 1. If the Wallman remainder of X is finite, then the Wallman compact-
ification of X is the weak reflection of X in compact spaces.

Proof: Let |ωX − X | < ω, f : X → Y be continuous, Y be compact. For x ∈

ωX −X put f̃x to be an accumulation point of {F : F is closed in Y, f−1(F ) ∈ x},
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for x ∈ X define f̃x = fx. We shall prove that f̃ : ωX → Y is continuous. Clearly,
f̃ is continuous on X since the restriction of f̃ to X coincides with f and X is
open in ωX . Take x ∈ ωX − X and an open set G in Y containing f̃x. Then
f−1(G) is open in X . Since there is some F ∈ x such that F ⊂ f−1(G) (otherwise,

X − f−1(G) ∈ x, which contradicts the fact that f̃x ∈ G), we can choose an open
subset U of f−1(G) such that X − U belongs to all elements of ωX − X but not

to x. Then U ∪ (x) is a neighborhood of x in ωX and f̃ maps this neighborhood
into G. �

Theorem 2. If X contains an infinite family {Xn} of closed noncompact subsets
such that Xn∩Xm is compact for n 6= m, then X has no weak reflection in compact
spaces.

Proof: For any infinite cardinal κ define Zκ = X∪(κ×ω). Let {Nn} be a partition
of ω with |Nn| = ω for every n ∈ ω. The topology on Zκ will be defined transfinitely
on κ such that

α < κ ⇒ X ∪ (α × ω) is open in Zκ

(hence X is an open subset of Zκ):

(1) A neighborhood base of (0, n) is composed of the sets (0, n) ∪ (X − (C ∪⋃
K Xi) for finite K ⊂ ω with n /∈ K, and for closed compact sets C in X .

(2) A neighborhood base of (β+1, n) is composed of the sets (β+1, n)∪
⋃
{Vx :

x ∈ (β)× Nn − F} for finite sets F , and for neighborhoods Vx of x.
(3) A neighborhood base of (α, n), for α limit, is composed of the sets (α, n) ∪⋃

{V(β,n) : γ < β < α} for γ < α, and for neighborhoods Vx of x.

Claim: Let S be either of the following three subsets of Zκ for some k ∈ ω, 1 ≤ δ <
κ : (0, k)∪Xk, (δ, k)∪ (δ − 1)×Nk for isolated δ, {(β, k) : β ≤ δ} for limit δ. Then
S is closed compact in Zκ.

Proof of Claim: The compactness is clear in all three cases (the first two spaces are
one-point compactifications, the last space is homeomorphic to a space of ordinals).
The proof of closedness will proceed by transfinite induction (take z ∈ Zκ − S):

(i) If z ∈ X then either X − Xk or X is a neighborhood of z disjoint with S.
(ii) If z ∈ (0) × ω, then either (z) ∪ X − Xk or (z) ∪ X is a neighborhood of z
disjoint with S.

(iii) If z = (α, n), α > 0, then the respective sets (α−1)×Nn−F or {(β, n) : γ <
β < α} from (2) and (3) can be chosen disjoint with S (in the latter case,
either δ < α and then the choice γ = δ works, or δ ≥ α and then k 6= n and
δ = 0 works). The corresponding neighborhoods Vx can be chosen disjoint
with S by the induction hypothesis.

The proof of Claim is finished.
Suppose now that X has a weak reflection rX in compact spaces and take a car-

dinal κ bigger than the cardinality of rX . The identity mapping of X extends
continuously to a mapping from rX into the one-point compactification of Zκ; de-
note the image by Y — it is a compact space containing X . We shall prove that
Y contains the whole space Zκ, which is impossible by our cardinality assumption.
Indeed, if there is the least δ < κ such that for some k ∈ ω we have (δ, k) /∈ Y , then
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by our Claim, S ∩ Y (S is the set from Claim corresponding to δ, k) is closed in Y
and hence compact, which is a contradiction because S ∩ Y is one of the following
sets: Xk, (δ)× Nk for isolated δ, {(β, k) : β < δ} for limit δ. �

The following Corollary was deduced from Theorem 2 in a joint discussion at
Math. Dept. of Kansas St. Univ. also with colleagues from Univ. of Kansas.

Corollary 1. If the Wallman remainder ofX contains an infinite discrete subspace,
then X has no weak reflection in compact spaces.

Proof: Let {xn} be a countable discrete subspace of ωX − X ; take a sequence
{Un} of basic open neighborhoods Un of xn in ωX such that xm /∈ Un for n 6= m.
For every n there is some An ∈ xn with An ⊂ Un. Put Fn = An −

⋃
i<n Ui for

n ∈ ω. Then the sets Fn are disjoint, closed and noncompact. The noncompactness
follows from the fact that Fn ∈ xn since otherwise there exists Bn ∈ xn disjoint
with Fn, hence Bn ∩An ∈ xn, Bn ∩An ⊂

⋃
i<n Ui, but X −Ui ∈ xn for each i 6= n

and An ∩ Bn ∩ (X −
⋃

i<n Ui) = ∅. �

By the Čech–Stone remainder of a topological space X we mean the Čech–Stone
remainder βcX − cX of the completely regular T1-modification cX of X .

Corollary 2. If the Čech–Stone remainder of X is infinite, then X has no weak
reflection in compact spaces.

Proof: There is a canonical surjection g : ωX → βcX extending the canonical
mapping X → βcX . If the Čech–Stone remainder of X is infinite, it contains an
infinite discrete subspace (since βcX is Hausdorff) and, hence, also ωX−X contains
an infinite discrete subspace and we may use Corollary 1. �

As the following example and Corollary show, Corollary 2 can be converted for
normal spaces only.

Example 1. There is a completely regular T1-space X with |βX −X | = 1, having
no weak reflection in compact spaces.
Take X = [0, 1]ω1 − {0} (by {0} we mean the point with all the coordinates

equal to 0). Then βX = [0, 1]ω1 , and the edges Xn (i.e., the subsets of X of those
points having all the coordinates 0 except the n-th one which is in ]0,1]) fulfil the
conditions of Theorem 2.

Corollary 3. A normal T1-space has a weak reflection in compact spaces iff its

Čech–Stone remainder is finite.

Proof: If X is normal T1, then the Wallman compactification of X coincides with
the Čech–Stone compactification of X . �

In their preprint [DW], A. Dow and S. Watson constructed another compactifi-
cation of X than ωX having the property of continuous extension for continuous
mappings into compact Hausdorff (or regular) spaces; their compactification is gen-
erated by a four-point space. The authors also mention a modified problem (by
S. Todorćevič): Does there exist a space U such that every topological space X has
a compactification γX embeddable into a power of U such that every continuous
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mapping from X into a compact T1-space has a continuous extension onto γX? If
we start with a T1-space X in the proof of Theorem 2, we get a T1-space Zκ and its
one-point compactification is T1, too. So, the Todorćevič’ problem has the negative
answer.

Corollary 4. There are T1-spaces having no weak reflection in the class of compact

T1-spaces.

Theorem 1 implies that every space with finite Wallman remainder has a weak
reflection in compact T1-spaces (it is the Wallman compactification of the T1-
modification of the space). The following trivial example shows that a space may
have a weak reflection in compact T1-spaces but not in compact spaces.

Example 2. Take the half line [0,→ [ endowed with the following topology: the
basic neighborhood of p is [0, p]. Define X as the sum of countably many copies
of such half lines sewed together at the point 0. Then X has no weak reflection in
compact spaces by Theorem 2, but it has a weak reflection in compact T1-spaces,
namely the T1-modification of X , which is a singleton.
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E-mail : husek@cspguk11.bitnet

(Received November 5, 1991)


