
Comment.Math.Univ.Carolin. 33,1 (1992)25–32 25

Orthomodular lattices with fully nontrivial commutators

Milan Matoušek

Abstract. An orthomodular lattice L is said to have fully nontrivial commutator if the
commutator of any pair x, y ∈ L is different from zero. In this note we consider the class
of all orthomodular lattices with fully nontrivial commutators. We show that this class
forms a quasivariety, we describe it in terms of quasiidentities and situate important types
of orthomodular lattices (free lattices, Hilbertian lattices, etc.) within this class. We
also show that the quasivariety in question is not a variety answering thus the question
implicitly posed in [4].
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0. Preliminaries.

Let us first recall basic notions as we shall use them in the sequel (see e.g. [1],
[6], [7], [9], etc.). Let us consider the orthomodular lattices as algebras of the

type ∆ = {∧,∨,⊥ ,0,1}, where the operations are subject to the standard axioms.
Further, let us denote by OML the class of all orthomodular lattices, by I the
class of all one-point OMLs, and by BA the class of all Boolean algebras. Thus,
I ⊂ BA ⊂ OML.
Let V = {x1,x2,x3, . . . } be the set of variables. As usual, instead of x1,x2 we

shall sometimes write x,y. Further, letT denote the set of all ∆−terms. Supposing
t ∈ T, let us denote by var(t) the set of all variables occurring in t. If n ∈ N is a nat-
ural number, we shall use the notation Tn = {t ∈ T; var(t) ⊆ {x1,x2, . . . ,xn}}.
For the sake of transparency, let us sometimes write t(x1,x2, . . . ,xn) instead of t ∈
Tn. If t ∈ Tn and t1, t2, . . . , tn ∈ T, the formula t[x1 → t1,x2 → t2, . . . ,xn → tn]
will denote the term which comes into existence by substituting every xi in t by ti
(i = 1, 2, . . . , n).

Suppose that L ∈ OML. Then a mapping v : V → L will be called a valuation
in L. Obviously, the mapping v can be naturally extended over T. Thus, we obtain
vT : T → L. If t ∈ Tn and v(xi) = ai (i = 1, 2, . . . , n), then the element vT (t)
will be denoted by tL(a1, a2, . . . , an). So, every term t ∈ Tn determines a mapping
tL : L

n → L.
The identities are words of the type s ∼= t, where s, t ∈ T (the sign ∼= stands

for the relation which transforms in a given L ∈ OML to an equality). The
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quasiidentities are words of the type (s1 ∼= t1& . . .&sn
∼= tn) ⇒ s ∼= t, where

s1, . . . , sn, t1, . . . , tn, s, t ∈ T.
The semantic validity will be denoted by the symbol |=. If s, t ∈ T and OML |=

s ∼= t, then we shall write s ∼ t. If OML |= s ≤ t, then we shall write s ≤ t.
If α1 (resp. α2) is an identity or a quasiidentity, we say that α1 is equivalent to

α2 if the folloving logical equivalence is valid in any L ∈ OML : L |= α1 ⇐⇒
L |= α2.
The next simple proposition shows that in OML we may restrict ourselves to

identities and quasiidentities of a very special type.

Proposition 0.1.

(a) Every identity is equivalent to an identity of the form s ∼= 0.
(b) Every identity is equivalent to a quasiidentity.
(c) Every quasiidentity is equivalent to a quasiidentity of the form s ∼= 0 ⇒

t ∼= 0.

The proof is elementary. �

Suppose that Ω denotes a set of quasiidentities in OML. Put Mod(Ω) = {L ∈
OML;L |= α for any α ∈ Ω}. Further, if A ⊆ OML then Id(A) will stand for the
set of all identities which are valid in any L ∈ A.
By a variety (resp. by a quasivariety) in OML we call any class of OML of

the type Mod(Ω), where Ω is a set of identities (resp. a set of quasiidentities).
A quasivariety which is not a variety will be called a proper quasivariety.
The following statement recalls a famous result of universal algebras (see [6]).

Proposition 0.2. Suppose that Q is a subclass of OML. Then Q is a quasivariety
if and only if it is closed under the formation of subalgebras, products, ultraproducts,

isomorphic algebras and it contains a trivial algebra.

A quasivariety Q is a variety if and only if it is closed under the formation of
epimorphic images.

Let us now recall a central notion of our concern in this note. Put

c(x,y) = (x ∧ y) ∨ (x ∧ y⊥) ∨ (x⊥ ∧ y) ∨ (x⊥ ∧ y⊥).

Then the term c(x,y) is called the commutator of x,y.
Let us first observe the following useful property of the commutator (see [1]).

(Following the language of the lattice theory, a set P ⊆ L is called a p-filter in L if

P is filter in L and a ∈ P implies x ∨ (x⊥ ∧ a) ∈ P for all x ∈ L (see [1, p. 182], [7,
p. 75]). A p-ideal in L is defined dually.)

Proposition 0.3. Suppose that L ∈ OML. Put

P = {z ∈ L; ∃a1, . . . , an, b1, . . . , bn ∈ L : ∧n
i=1c(ai, bi) ≤ z}.

Then P is a p-filter in L.

The proof is simple. Let us call the latter p-filter P the commutator p-filter in L.
�
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In the conclusion of preliminaries, let us agree to reserve the symbol F2 for
the free orthomodular lattice over the set {x, y}. It should be noted that F2 has
96 elements and that its representation is treated in detail in [1, p. 82]. Obviously,
for any term s ∈ T2 there exists exactly one term t ∈ F2 such that s ∼ t.

1. The quasivariety NC.

Put

NC = {L ∈ OML; ∀x, y ∈ L : cL(x, y) 6= 0L} ∪ I,

where I is the class of all one-point OMLs and the indices indicate the belongness
to the respective L.
We shall now examine the class NC. (It should be noted that the notion of

commutator has already proved its significance in the study of OMLs — see e.g.
[2], [3], [9], etc. Here we add some universal algebra aspects.)

Proposition 1.1.

(a) Every free orthomodular lattice belongs to NC.
(b) BA is a proper subclass of NC.

Proof: (a) Let F be a free orthomodular lattice over a set M (M 6= ∅). Let P be
the commutator p-filter in F . The factor morphism δ : F → F/P is the reflection
of F into BA (see [7, p. 299]). Then F/P is a free Boolean algebra over δ(M)
(δ(M) 6= ∅). If there were two elements x, y ∈ F such that cF (x, y) = 0F , then
P = F and therefore F/P is a singleton. This is a contradiction since F/P was
a free Boolean algebra. Thus, for all elements x, y ∈ F we have cF (x, y) 6= 0F . It
follows that F ∈ NC.
(b) Suppose that B ∈ BA with card(B) > 1. Then for any couple x, y ∈ B we

have cB(x, y) = 1B . Thus, BA ⊆ NC. On the other hand, the free orthomodular
lattice F2 belongs to NC but it does not belong to BA. �

Corollary 1.2. The class NC is a proper quasivariety of OML.

Proof: By our definition of NC, we immediately see that

NC =Mod({c(x,y) ∼= 0⇒ 1 ∼= 0}).

It follows thatNC is a quasivariety. We have to show thatNC is not a variety. Take
the latticeMO2 of [7] (recall thatMO2 is the horizontal sum of two 4-point Boolean
algebras). One easily checks that MO2 6∈ NC. Since MO2 has two generators, it
is a homomorphic image of F2. But F2 belongs to NC and therefore NC is not
a variety. �

An important class of OMLs is formed by set-representable OML′s (see e.g. [9]).
Since F2 is set-representable, which does not seem to be explicitly known but can
be established easily, and since every Boolean algebra is set-representable, Propo-
sition 1.1 naturally suggests whether all set-representable OMLs belong to NC.
This is however not the case as the following example shows.
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Example 1.3. Let X be a four-point set and let L denote the collection of all
subsets of X with an even number of points. Then L ∈ OML but L 6∈ NC. (The
proof is simple.) �

Another type of OMLs are Hilbertian lattices. Let H be a Hilbert space over
reals and let L(H) denote the (orthomodular) lattice of all closed subspaces of H .
Since the lattice L(H) plays an important role both in the lattice theory and the
applications (see [5], [9], etc.) it may be desirable to situate L(H) within the
class NC.

Theorem 1.4. The lattice L(H) belongs to NC if and only if dim(H) is a (finite)
odd number.

Proof: Suppose first that dimH < ∞ and dimH is an odd number. Assume that
A, B ∈ L(H). Since dimA + dimA⊥ = dimH , we have either dimA > dimA⊥

or dimA < dimA⊥, and we have the analogous situation for B, too. Obviously,
c(A, B) = c(A, B⊥) = c(A⊥, B) = c(A⊥, B⊥) (where commutator is considered in
L(H)). We have to show that each of the latter commutators is different from 0.

Without any loss of generality, we may assume that dimA > dimA⊥ and
dimB > dimB⊥. Then we obtain dimA+ dimB > dimH . Since

dim(A ∨ B) = dimA+ dimB − dim(A ∩ B) and dim(A ∨ B) ≤ dimH,

we infer that dim(A∩B) > 0. Thus, A∩B 6= {0H} and therefore c(A, B) 6= 0L(H).
Suppose now that dimH < ∞ and dimH is an even number. Thus, dimH = 2n.

Let {a1, a2, . . . , an, b1, b2, . . . , bn} be an orthonormal base of H . Let A (resp. B)
be the linear subspace of H generated by a1, a2, . . . , an (resp., generated by a1 +

b1, a2+b2, . . . , an+bn). One can check easily that A
⊥ is generated by b1, b2, . . . , bn

andB⊥ is generated by a1−b1, a2−b2, . . . , an−bn. It implies that A∩B = A∩B⊥ =
A⊥ ∩ B = A⊥ ∩ B⊥ = {0H}.
Finally, if dimH is infinite, we can write H as a direct sum of (infinitely many)

copies of R2. Since L(R2) ∈ NC and the commutator of L(H) is formed “coordi-
natewise”, we immediately obtain that L(H) 6∈ NC. This completes the proof of
Theorem 1.4. �

2. Special terms in OML (the set Tex ).

Let us denote byTex the set of all terms t(x1,x2, . . . ,xn) (n ≥ 1) with the follow-
ing property: Supposing that f : K → L is a surjective morphism in OML, then
the equality tL(b1, b2, . . . , bn) = 0L implies the existence of elements a1, a2, . . . ,
an ∈ K such that f(ai) = bi (i = 1, 2, . . . , n) and tK(a1, a2, . . . , an) = 0K .
The following proposition indicates the significance of the class Tex :

Proposition 2.1. Suppose that s(x1,x2, . . . ,xn) ∈ Tex and suppose that t(x1,x2,
. . . ,xn) is an arbitrary term. Put Q =Mod({s ∼= 0⇒ t ∼= 0}). Then Q is variety.

Proof: Since s ∈ Tex, the class Q is closed under the formation of epimorphic
images. The rest follows from Proposition 0.2. �
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In what follows in this paragraph we shall concentrate on the study of when
a term belongs to Tex. We shall succeed in clarifying this question for the case of
two variables.

We shall first prove some auxiliary results.

Lemma 2.2.

(a) Suppose that s, t ∈ T and suppose that s ∼ t. If s ∈ Tex, then t ∈ Tex.

(b) Suppose that t(x1,x2, . . . ,xn) ∈ T. Suppose that we are given natural
numbers i1, i2, . . . , im (m ∈ N) such that 1 ≤ i1 < i2 < . . . < im ≤ n. Put

s = t[xi1 → xi1
⊥,xi2 → xi2

⊥, . . . ,xim → xim
⊥]. Then s ∈ Tex if and only

if t ∈ Tex.

Proof: (a) Evident.

(b) Without any loss of generality, we may suppose that s = t[x1 → x1
⊥] (the

general case can be obtained by induction). Suppose first that t ∈ Tex. Suppose fur-
ther that we are given an epimorphism f : K → L and we have sL(b1, b2, . . . , bn) =

0L for some elements b1, b2, . . . , bn ∈ L. Then tL(b1
⊥, b2, . . . , bn) = sL(b1, b2, . . . ,

bn) = 0L. Since t ∈ T
ex, there exist elements a1

⊥, a2, . . . , an ∈ K such that f(ai) =

bi (i = 1, 2, . . . , n) and tK(a1
⊥, a2, . . . , an) = 0K . It follows that sK(a1, a2, . . . , an)

= tK(a1
⊥, a2, . . . , an) = 0K .

Conversely, suppose that s ∈ Tex. Put t1 = s[x1 → x1
⊥]. According to the

argument above, we have t1 ∈ Tex. Since t ∼ t1, we infer that t ∈ Tex. This
completes the proof of Lemma 2.2. �

Lemma 2.3. Suppose that s(x1,x2, . . . ,xn) ∈ T. Then the following three con-
ditions are equivalent:

(i) BA |= s ∼= 1,
(ii) Put

cn =
∨

ǫ∈{1,⊥}{1,... ,n}(x1
ǫ(1) ∧ x2

ǫ(2) ∧ . . . ∧ xn
ǫ(n)),

where xi
1 = xi. Then OML |= cn(x1,x2, . . . ,xn) ≤ s(x1,x2, . . . ,xn).

(iii) If B1 = {0, 1} is a two-point Boolean algebra and v : {x1,x2, . . . ,xn} → B1
is a mapping, then sB1(v(x1), v(x2), . . . , v(xn)) = 1.

Proof: (i) ⇐⇒ (ii) See [1, Ch. 7, Th. 2.19].
(i) ⇒ (iii) Evident.
(iii) ⇒ (i) The assumption (iii) means that B1 |= s ∼= 1. It is well known that

Id(B1) = Id(BA). Thus, s ∼= 1 ∈ Id(BA) which gives BA |= s ∼= 1. �

Let us now recall that the center of an orthomodular lattice L, C(L), is the set
of all absolutely commutative elements in L (see e.g. [1], [7]). As known, C(L) is
a Boolean subalgebra of L (in fact, C(L) is the intersection of all maximal Boolean
subalgebras of L).
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Lemma 2.4. Suppose s(x1,x2) ∈ T. Then there exist a term t(x1,x2) ∈ C(F2)
such that the following two conditions are satisfied:

(i) s(x1,x2) ≤ t(x1,x2),
(ii) OML |= s(x1,x2) ∼= 0⇒ t(x1,x2) ∼= 0.

Proof: All the terms u(x1,x2) ∈ F2 such that OML |= s(x1,x2) ∼= 0 ⇒
u(x1,x2) ∼= 0, form a p-ideal, I, in F2. As F2 has only finite Boolean subalge-
bras, I has a maximal element, some t(x1,x2). According to [7, Exercise 8, p. 117],
this element belongs to C(F2). �

We are now ready to state one of the main results of this paper.

Theorem 2.5. Suppose that s(x,y) ∈ T. Then s ∈ Tex if and only if BA 6|= s ∼= 1.

Proof: Suppose first that s ∈ Tex. Consider a homomorphism of a two-point
Boolean algebra B1 onto a one-point Boolean algebra B0. Then there is a mapping
v : {x,y} → {0, 1} such that sB1(v(x), v(y)) = 0. Since 0 6= 1, we see that
BA 6|= s ∼= 1 (Lemma 2.3).
Suppose now that BA 6|= s ∼= 1. Then there is a valuation v : {x,y} → {0, 1}

such that sB1(v(x), v(y)) = 0. Without any loss of generality, let us assume that
v(x) = v(y) = 0. (Obviously, if e.g. v(x) = 1, then we could consider the term

s1 = s[x → x⊥] (Lemma 2.2).)
Suppose that t ∈ C(F2) with s ≤ t, OML |= s ∼= 0 ⇒ t ∼= 0. We are going to

show that s[x → x ∧ t⊥,y→ y ∧ t⊥] ∼ 0.
We have t ∈ C(F2) and therefore F2 = (t]⊕(t

⊥]. Let us write L1 = (t], L2 = (t
⊥].

Suppose that πi : F2 → Li (i = 1, 2) are the respective projections onto Li (thus,

π1(p) = p ∧ t, π2(p) = p ∧ t⊥ ). Put σ = s[x → x ∧ t⊥,y → y ∧ t⊥]. We can (and
shall) assume that σ ∈ F2. We shall now prove that π1(σ) = π2(σ) = 0. Making
use of s(x,y) ≤ t(x,y), we have

π1(σ) = π1(σ(x,y)) = σL1(π1(x), π1(y)) = σL1(x ∧ t,y ∧ t) = sL1((x ∧ t) ∧

t⊥, (y ∧ t) ∧ t⊥) = sL1(0,0) = 0,
and
π2(σ) = σL2(x∧t⊥,y∧t⊥) = sL2((x∧t⊥)∧t⊥, (y∧t⊥)∧t⊥) = sL2(π2(x), π2(y))=

π2(s(x,y)) = s(x,y) ∧ t⊥(x,y) = 0,
while s(x,y) ≤ t(x,y).
We shall now complete the proof by showing that s ∈ Tex. Suppose that K, L ∈

OML and suppose that f : K → L is a surjective homomorphism. Suppose further
that we have sL(b1, b2) = 0L for b1, b2 ∈ L. Since OML |= s ∼= 0 ⇒ t ∼= 0, we
obtain tL(b1, b2) = 0L.
Take elements d1, d2 ∈ K such that f(di) = bi (i = 1, 2). Let K1 be the

orthomodular lattice generated in K by {d1, d2}. Then there is an epimorphism
g : F2 → K1 such that g(x) = d1 and g(y) = d2. Put ai = di ∧ tK

⊥(d1, d2)
(i = 1, 2). Obviously a1, a2 ∈ K1. Moreover, we obtain

f(ai) = f(di)∧(f(tK
⊥(d1, d2))) = bi∧(tL(f(d1), f(d2)))

⊥ = bi∧(tL(b1, b2))
⊥ =

bi ∧ 1L = bi (i = 1, 2).
Utilizing the above part of the proof, we finally have
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sK(a1, a2) = sK(d1 ∧ t⊥(d1, d2), d2 ∧ t⊥(d1, d2)) = σK(d1, d2) = g(σ) = g(0) =
0K .

This completes the proof of Theorem 2.5. �

Remark. In the paper [8], R. Mayet obtained the following result which is related
to Theorem 2.5: Suppose that t(x1,x2, . . . ,xn) ∈ T is a term with the following
properties:

(i) the term t can be constructed from the terms of the set {x1,x1
⊥, . . . ,xn,xn

⊥}
applying only the operation symbols ∧,∨,

(ii) at most one of the terms xi,xi
⊥ (i = 1, 2, . . . , n) is a subterm of t.

Then t ∈ Tex.

Theorem 2.6. The class NC is the smallest proper quasivariety in OML which
can be described by means of a single quasiidentity in the variables x,y.

Proof: Put Q = Mod(s(x,y) ∼= 0 ⇒ t(x,y) ∼= 0). Suppose that Q is proper
quasivariety. Since Q is not a variety, we have s 6∈ Tex. By Proposition 2.5 and
Lemma 2.3, we infer that c(x,y) ≤ s(x,y). Suppose that L ∈ NC. Further,
suppose that sL(a, b) = 0L for some elements a, b ∈ L. Since c ≤ s, we see that
cL(a, b) = 0L. It forces 1L = 0L and therefore L is a one-point algebra. It implies
that tL(a, b) = 0L. Thus, L ∈ Q and the proof is complete. �

3. Related open questions.

In the conclusion of this note we would like to formulate two open questions.

1. Suppose that F is a finitely generated orthomodular lattice. Suppose that
x ∈ F and Ix is the smallest p-ideal in F containing x. When is Ix a principal
ideal?

2. Can we generalize Theorem 2.5 for the case of the terms with an arbitrary
numbers of variables?
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