Simple construction of spaces without the Hahn-Banach extension property

JERZY KAKOL*

Abstract. An elementary construction for an abundance of vector topologies ξ on a fixed infinite dimensional vector space E such that (E,ξ) has not the Hahn-Banach extension property but the topological dual $(E,\xi)'$ separates points of E from zero is given.

Keywords: Hahn-Banach extension property, topological vector space *Classification:* 46A22

A topological vector space (tvs) $E = (E, \tau)$ over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ is said to have the Hahn-Banach extension property (HBEP) if for every subspace F of E and every continuous linear functional f on E there is a continuous linear extension of f to the whole space E. Then the topological dual E' of E is separating, i.e. E'separates points of E from zero. Clearly every locally convex space has HBEP. In [1] Duren, Romberg, Shields gave an example of an F-space E, i.e. a metrizable and complete tvs, such that E' is separating and E has a subspace M such that E/M has a closed weakly dense subspace; hence E has not HBEP. In [5] Shapiro showed that every sequence space ℓ^p , 0 , also contains such subspaces. In [2]Kalton developing basic sequence techniques to <math>F-spaces proved that all F-spaces with HBEP are locally convex. (It is still unknown if the completeness in the above result is necessary.) Hence no non-locally convex F-space has HBEP.

This note gives an elementary construction for an abundance of vector topologies ξ on a fixed infinite dimensional vector space E such that (E, ξ) has not the HBEP, but $(E, \xi)'$ separates points of E from zero. We prove the following

Theorem. Let *E* be an infinite dimensional vector space and $\Delta = \{(x, x) : x \in E\}$ the diagonal of $E \times E$. For every non-zero linear functional *f* on Δ there are two vector topologies ϑ_1, ϑ_2 on *E* such that *f* is $\vartheta_1 \times \vartheta_2 \mid \Delta$ -continuous but *f* cannot be extended to a continuous linear functional on $(E, \vartheta_1) \times (E, \vartheta_2)$.

We shall need the following simple

Lemma ([6, Example 2.5] or [4, Theorem 1.6]). Let (E, F) be a dual pair and $\sigma(E, F)$ the weak topology on E. Let ξ be a Hausdorff nearly exotic vector topology on E, i.e. $(E, \xi)' = 0$. Then the topology inf $\{\sigma(E, F), \xi\}$, i.e. the strongest vector topology on E weaker than ξ and $\sigma(E, F)$, is indiscrete.

Note that every infinite dimensional vector space E admits a nearly exotic Hausdorff vector topology, cf. e.g. [4].

^{*}This work is supported by AvH.

PROOF OF THEOREM: By Q we denote the map $x \to (x, x)$ of E onto Δ . Choose on E a normed topology ξ such that $h := f \circ Q$ is ξ -discontinuous. Set $E' = (E, \xi)'$. Let τ_1 be a Hausdorff nearly exotic topology on E. Fix $y \in E$ such that h(y) = 2. Let $\tau_2 := T(\tau_1)$ be the image topology on E under the map T(x) = x - h(x)y. Since T is injective, τ_2 is Hausdorff and nearly exotic. Set $\vartheta_i = \sup\{\sigma(E, E'), \tau_i\}, i = 1, 2$. By Lemma, $\inf\{\sigma(E, E'), \tau_i\}, i = 1, 2$, is indiscrete, so Δ is dense in $(E, \sigma(E, E') \times (E, \tau_i)), i = 1, 2$; clearly (E, ϑ_i) is isomorphic to $(\Delta, \sigma(E, E') \times \tau_i \mid \Delta), i = 1, 2$. This and the fact that τ_i is nearly exotic, i = 1, 2, imply that ϑ_i and $\sigma(E, E')$ have the same continuous linear functionals. On the other hand h is continuous in $\sup\{\vartheta_1, \vartheta_2\}$ (since it is $\sup\{\tau_1, \tau_2\}$ -continuous). Hence $h \circ Q^{-1}(=f)$ is $\vartheta_1 \times \vartheta_2 \mid \Delta$ -continuous. If $h \circ Q^{-1}$ had a continuous linear extension to the whole space, then h would be ξ -continuous. This completes the proof.

Remark. It is known that every infinite dimensional separable normed space (E, ξ) admits a weaker metrizable nearly exotic vector topology, cf. e.g. [3, Lemma 2.1]. Let h be a ξ -discontinuous linear functional on E. Then (E, ϑ_1) (where ϑ_1 is defined as above) has HBEP. We do not know however if (E, ϑ_2) has also HBEP.

Problem. Are there tvs E, F with HBEP whose product has not HBEP?

References

- Duren P.L., Romberg R.C., Shields A.L., Linear functionals in H^p-spaces with 0 J. Reine Angew. Math. 238 (1969), 32–60.
- [2] Kalton N.J., Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974), 151–167.
- Kakol J., Nonlocally convex spaces and the Hahn-Banach extension property, Bull. Acad. Polon. Sci. 33 (1985), 381–393.
- Klee V., Exotic topologies for linear spaces, Proc. Symposium on General Topology and its Relations to Modern Algebra, Prague, 1961.
- [5] Shapiro J.H., Examples of proper closed weakly dense subspaces in non-locally convex Fspaces, Israel J. Math. 7 (1969), 369–380.
- [6] Wilansky A., Topics in Functional Analysis, Springer Verlag 45 (1967).

Institute of Mathematics, A. Mickiewicz University, 60-769 Poznań, Poland

(Received April 28, 1992)