A general upper bound in extremal theory of sequences

MARTIN KLAZAR

Abstract. We investigate the extremal function f(u, n) which, for a given finite sequence u over k symbols, is defined as the maximum length m of a sequence $v = a_1a_2...a_m$ of integers such that 1) $1 \le a_i \le n$, 2) $a_i = a_j, i \ne j$ implies $|i - j| \ge k$ and 3) v contains no subsequence of the type u. We prove that f(u, n) is very near to be linear in n for any fixed u of length greater than 4, namely that

$$f(u,n) = O(n2^{O(\alpha(n)^{|u|-4})}).$$

Here |u| is the length of u and $\alpha(n)$ is the inverse to the Ackermann function and goes to infinity very slowly. This result extends the estimates in [S] and [ASS] which treat the case $u = abababa \dots$ and is achieved by similar methods.

Keywords: sequence, Davenport-Schinzel sequence, length, upper bound *Classification:* 05D99

INTRODUCTION

In the Extremal theory of sequences we investigate the quantity

$$f(u, n) = \max\{|v| \mid u \leq v, \|v\| \leq n, v \text{ is } \|u\| \text{-regular}\}.$$

Here u and v are finite sequences of arbitrary symbols, n is a nonnegative integer, |v| stands for the length of v and ||v|| denotes the cardinality of S(v), the set of all symbols that occur in v. If there is a subsequence s in v such that s differs from u only in the names of the symbols we write $u \leq v$ and say that v contains u. For instance $v_1 = 123245131$ contains both $u_1 = xxyy$ and $u_2 = ababa$. A sequence $u = a_1a_2..a_m$ is called k-regular if $a_i = a_j, i \neq j$ implies $|i - j| \geq k$. Example: v_1 and u_2 are 2-regular but are not 3-regular and u_1 is not 2-regular. If $u = a_1a_2..a_m$ and $a_i = a \in S(u)$ then we shall refer to a_i as to the a-letter.

The function f(u, n) extends in a natural way the function F = f(ababa, n)investigated at first by Davenport and Schinzel in [DS]. They proved the upper bound $F = O(n \log n / \log \log n)$ that was later improved by Szemerédi to $O(n \log^* n)$ ([Sz]). Here $\log^* n$ is the minimum number of iterations of the power function 2^m (starting with m = 1) which are needed to get a number greater or equal to n. The question whether F = O(n) (f(abab, n) = 2n - 1 trivially) remained open until 1986 when it was answered by Hart and Sharir in [HS] negatively. They showed

The author is grateful to J. Nešetřil and to J. Kratochvíl for their helpful comments

that $F = \Theta(n\alpha(n))$ where $\alpha(n)$ goes to infinity but very slowly (a precise definition of $\alpha(n)$ will be given in the second part of this paper). M. Sharir obtained later

$$f(al_s, n) = O(n\alpha(n)^{O(\alpha(n)^{s-5})})$$

for arbitrary alternating sequence $al_s = ababab \dots$ of the length $s \ge 5$ ([S]). Recently almost tight estimates were derived ([ASS]):

$$\begin{aligned} f(al_s, n) &\leq n.2^{(\alpha(n))^{\frac{s-5}{2}} \log_2 \alpha(n) + C_s(n)} & \text{for } s \geq 5 \text{ odd} \\ f(al_s, n) &\leq n.2^{(\alpha(n))^{\frac{s-4}{2}} + C_s(n)} & \text{for } s \geq 6 \text{ even} \\ f(al_s, n) &= \Omega(n.2^{K_s.(\alpha(n))^{\frac{s-4}{2}} + Q_s(n)}) & \text{for } s \geq 6 \text{ even} \end{aligned}$$

where $K_s = \frac{1}{(\frac{s-4}{2})!}$ and $C_s(n)$ and $Q_s(n)$ are asymptotically smaller than the main terms. For s = 6 even, $f(ababab, n) = \Theta(n2^{\alpha(n)})$ ([ASS]). How complex the previous formulae may seem on the first view, one thing is clear: $f(al_s, n)$ is almost almost linear in n for all s.

The first aim of this paper is to show that the same is true for arbitrary sequence u. The second aim is to give a brief and clear idea about the techniques developed by Agarwal, Hart, Sharir and Shor for obtaining almost linear upper bounds on $f(al_s, n)$ to the reader that is not familiar with them.

In the first part we show a simple method that leads to the upper bound $f(u, n) = O(n^2)$ for all u. Then, in the second part, we use a slightly generalized method of [S] to derive the estimate

$$f(u,n) = O(n.2^{O(\alpha(n)^{|u|-4})}).$$

Part 1

We first define a modification of the function f(u, n) for *l*-regular sequences:

$$f(u, n, l) = \max\{|v| \mid u \leq v, ||v|| \leq n, v \text{ is } l \text{ -regular}\}$$

where $l \geq ||u||$.

Lemma 1.1. a) f(u, n, l) is defined and finite for any $n \ge 1$ and moreover $f(u, n, l) = O(|u|.||u||.n^{||u||}).$

b)
$$f(u,n,l) \le f(u,n,k) \le (1 + f(u,l-1,k))f(u,n,l)$$
 for all $l > k \ge ||u||, n \ge 1$.

PROOF: ad a) We suppose there is at least one repetition in u, otherwise the function f(u, n, l) is constant. If n < l then f(u, n, l) = n. If $n \ge l$ then any *l*-regular sequence v satisfying $|v| \ge ||u|| \cdot {\binom{n}{||u||}} (|u|-1)+1$ must contain u. We split $v = v_1v_2 \dots v_c w$ so that $|v_i| = ||v_i|| = ||u||$ and $c = (|u|-1) {\binom{n}{||u||}} + 1$. According to the Dirichlet Principle there exist |u| indices $1 \le i_1 < i_2 < \dots < i_{|u|} \le c$ that $S(v_{i_1}) = S(v_{i_2}) = \dots = S(v_{i_{|u|}})$. Thus $u \le v_{i_1}v_{i_2} \dots v_{i_{|u|}}$.

ad b) The first inequality is obvious. Suppose $v = a_1 a_2 \dots a_m$ is k-regular, does not contain u and $||v|| \leq n$. We choose a subsequence v^* of v in this way: we start with $v^* = a_1$ and i = 1 and search for the minimum j such that j > iand $v^* a_j$ is *l*-regular. If such a j exists then we put $v^* = v^* a_j$ and i = j and repeat. Otherwise the algorithm terminates. Obviously $||v^*|| \leq n$ and v^* is *l*regular. Moreover $|v| \leq (1 + f(u, l - 1, k))|v^*|$ because any interval I in v omitted by the previous algorithm satisfies $||I|| \leq l - 1$. We got the second inequality. \Box

Definition 1.2. Let u, v be sequences. We write $u \leq v$ if $u \leq v^*$ for all v^* obtained from v by restricting v to some ||u|| symbols. Thus in this case v contains u in all possible ways.

Lemma 1.3. For any sequence u there exist positive integers m and s such that $u \leq v$ whenever $||v|| \geq m$ and $al_s \leq v$.

Before proving this lemma we derive the main result of this section.

Theorem 1.4. $f(u,n) = O(n^2)$ for all sequences u. The constant in O depends on u.

PROOF: Let m = m(u) be as in Lemma 1.3. According to Lemma 1.1 b) we have $f(u,n) = f(u,n, ||u||) \leq (1 + f(u,m-1, ||u||))f(u,n,m)$. We estimate f(u,n,m). Suppose v is m-regular, $||v|| \leq n, u \leq v$ and |v| = f(u,n,m). It suffices to estimate the number c in the splitting $v = v_1v_2 \dots v_c w$ where $|v_i| = ||v_i|| = m$ and $|w| \leq m-1$. Let s = s(u) stand for the second number of Lemma 1.3. For any v_i there exist symbols $a, b \in S(v_i)$ such that v restricted on the symbols $\{a, b\}$ does not contain al_s . Otherwise $u \leq v$ according to Lemma 1.3. But the mapping $F : \{v_1, v_2, \dots, v_c\} \to {S(v) \choose 2}$ that maps any v_i on a pair $\{a, b\}$ mentioned above maps only at most $s - 2 v_i$'s on one pair because of the property of the symbols $\{a, b\}$. Thus $c \leq (s-2) {n \choose 2}$. Finally

$$f(u,n) \le (1 + f(u,m-1, ||u||))m(c+1) \le (1 + f(u,m-1, ||u||))m(1 + (s-2)\binom{n}{2}).$$

Thus

$$f(u,n) = O(n^2).$$

It remains to prove Lemma 1.3. We use the following well known:

Lemma 1.5 (Erdös P., Szekeres G. 1935 [ES]). Any $(n-1)^2 + 1$ -term sequence (of integers) contains a *n*-term monotone subsequence.

PROOF OF LEMMA 1.3: We denote by X(k, l) the set of all sequences of the form $y_1y_2...y_l$ where $y_i = x_1x_2...x_k$ or $y_i = x_kx_{k-1}...x_1$ for k distinct symbols $x_1, x_2, ..., x_k$. Thus $|X(k, l)| = 2^l$ and |u| = kl and ||u|| = k for any $u \in X(k, l)$. Since $u \leq w$ for any $w \in X(||u||, |u|)$, it suffices to prove the following claim.

Claim. For all positive integers k and l there exist positive integers m and s such that $w \leq v$ for some $w \in X(k, l)$ whenever $||v|| \geq m$ and $al_s \leq v$.

PROOF OF THE CLAIM: We put s = 2l and $m = k_1$ where $k_l = k$ and $k_{t-1} = 4(t-1)k_t^2 + 3$ for $t = l, l-1, \ldots, 2$. Suppose v meets the prescribed conditions. We prove by induction that for all t = 1, 2, ..., l there exists $w \in X(k_t, t)$ such that $w \leq v$. For t = 1 this is obvious. Suppose it is true for $t - 1 \geq 1$. We have $w \in X(k_{t-1}, t-1), w \leq v$. We take a fixed w-copy U in v and split v into t-1intervals $v = v_1 v_2 \dots v_{t-1}$ where v_i contains *i*-th part of U (i.e. y_i). U consists of $k_{t-1}(t-1)$ letters x_i^j , j = 1...t-1, $i = 1...k_{t-1}$ in v, x_i^j occur in $v_j, a < b$ implies that x_a^j precedes x_b^j and $x_1^p = x_1^q, x_2^p = x_2^q, ...$ or $x_1^p = x_{k_{t-1}}^q, x_2^p = x_{k_{t-1}-1}^q, ...$ for all p, q. It remains to give names to the symbols — say that x_i^1 is z(i)-letter for $i = 1, 2, \ldots, k_{t-1}$. There must be other z(i)-letters in v besides those in U $(al_s \leq v)$. Let us consider the pairs of symbols $(z(1), z(k_{t-1})), (z(2), z(k_{t-1} - v))$ 1)),..., $(z(L), z(k_{t-1} - L + 1)), L = [k_{t-1}/2] - 1$. The Dirichlet Principle implies that there are a set $M \subset \{1, 2, \dots, L\}$, $|M| \ge \frac{L}{t-1}$ and an index $r \in \{1, 2, \dots, t-1\}$ that $z(i)z(k_{t-1}-i+1)z(i)$ or $z(k_{t-1}-i+1)z(i)z(k_{t-1}-i+1)$ is a 3-term subsequence of v_r for any $i \in M$. We used that $al_s \leq v$ and s > 2(t-1). We can suppose w.l.o.g. r = 1. Thus we have 2-term subsequence $z(k_{t-1} - i + 1)z(i)$ of v_1 for any $i \in M$ (the opposite order than in U). The z(L+1)-letter x_{L+1}^1 (lies in U) splits v_1 on two intervals $v_1 = v'_1 v''_1$. There are at least |M|/2 i's in M such that z(i)-letter occurs in v_1'' or there are |M|/2 is in M such that $z(k_{t-1}-i+1)$ -letter occurs in v_1' . We obtained t separated areas — namely $v'_1, v''_1, v_2, \ldots, v_{t-1}$ — in which z(i)-letter occurs for at least |M|/2 i's. From those at least |M|/2 i's we choose according to Lemma 1.5 at least $\sqrt{|M|/2}$ is in such a way that we obtain a w'-copy in v, $w' \in X([\sqrt{|M|/2}], t)$. We are finished because $[\sqrt{|M|/2}] \ge [\sqrt{L/2(t-1)}] \ge .. \ge k_t$. \square

Remark 1.6. If we estimate $k_{t-1} = 4(t-1)k_t^2 + 3 \le t(2k_t)^2$ then it may be easily derived that it suffices to put in Lemma 1.3 $s = 2|u|, m = (4|u|.||u||)^{2|u|-1}$.

Part 2

In this section we prove a result far stronger than $f(u, n) = O(n^2)$. At first we give the precise (standard) definition of $\alpha(n)$.

For any function $B : \mathbf{N} \to \mathbf{N}$ the symbol $B^{(s)}(n)$ denotes B(B(..(B(n))..))(s times). We define further the functional inverse of B as $B^{-1}(n) = \min\{s \ge 1 \mid B(s) \ge n\}$. For nondecreasing and unbounded B the functional inverse B^{-1} is nondecreasing and unbounded as well. The functions $A_k(n)$ are defined by induction:

$$A_k(1) = 2, A_1(n) = 2n$$
 and $A_k(n) = A_{k-1}^{(n)}(1)$.

Thus $A_2(n) = 2^n, A_3(n) = 2^{2^{n^2}} n$ times. The Ackermann function is diagonal function of that schema: $A(n) = A_n(n)$. The function $\alpha(n)$ is defined as $\alpha(n) =$

 $A^{-1}(n)$. Apart the hierarchy $A_1, A_2, \ldots, (A_{i+1} \text{ grows to infinity much faster than } A_i)$, we have the hierarchy $\alpha_1, \alpha_2, \ldots, \alpha_i = A_i^{-1}$ (α_{i+1} grows to infinity much more slowly than α_i). Thus $\alpha_1(n) = \lceil \frac{n}{2} \rceil, \alpha_2(n) = \lceil \log_2 n \rceil, \alpha_3(n) = \log^*(n), \ldots$ The function α is far "lazier" than any α_i . It is easy to prove for α_i a recurrent formula $\alpha_{i+1}(n) = \min\{s \ge 1 \mid \alpha_i^{(s)}(n) = 1\}$. Thus

(1)
$$\alpha_{i+1}(\alpha_i(m)) = \alpha_{i+1}(m) - 1 \text{ for all } i \ge 1, m \ge 3.$$

Further ([ASS])

(2)
$$\alpha_{\alpha(n)+1}(n) \le 4 \text{ for all } n \ge 1.$$

A sequence u is called a 1-chain if no symbol occurs repeatedly in u. Y(k, l) denotes the set of all sequences of the form $y_1y_2 \ldots y_l$ where any y_i is a permutation of kfixed symbols x_1, x_2, \ldots, x_k . $Y(k, l) \leq v$ means that $u \leq v$ for no $u \in Y(k, l)$. We modify a bit the function $\Psi_s(m, n)$ of [S] and introduce the function

> $\Psi_r^s(m,n) = \max\{|v| \mid v \text{ is } r\text{-regular}, \|v\| \le n, v = v_1 v_2 \dots v_m$ where any v_i is 1-chain and $Y(r,s) \le v\}.$

We will estimate f(u, n) in four steps. We will proceed induction on s. At first we estimate $\Psi_r^3(m, n)$. Then we derive, supposing we have an upper bound on $\Psi_r^{s-1}(m, n)$, a recurrent inequality for $\Psi_r^s(m, n)$. In the third step using that inequality the upper bound considered in Step 2 is extended on $\Psi_r^s(m, n)$. Finally we estimate f(u, n) by appropriate $\Psi_r^s(m, n)$.

Step 1.

Lemma 2.1. $\Psi_r^3(m,n) \le 2rn$.

PROOF: Suppose v is r-regular, $||v|| \leq n$ and $Y(r, 3) \leq v$ (we ignore here the first variable in Ψ). We split $v = v_1 v_2 \dots v_c w$ where $|v_i| = ||v_i|| = r$ and |w| < r. Any v_i must contain the first letter or the last letter of some symbol (otherwise $u \leq v$ for some $u \in Y(r, 3)$). Thus

$$|v| = cr + |w| \le (2||v|| - |w|)r + |w| \le 2rn.$$

Step 2.

Lemma 2.2. Suppose $\Psi_r^{s-1}(m,n) \leq F_{s-1}(m)m + G_{s-1}(m)n$ for $m, n \geq 1$ for some nondecreasing functions $F_{s-1}, G_{s-1} : \mathbf{N} \to \mathbf{N}$. Then for any partition $m = m_1 + \ldots + m_b, m_i \geq 1, 1 < b < m$ there exists a partition $n = n_0 + n_1 + \ldots + n_b, n_i \geq 0$ such that

(3)
$$\Psi_r^s(m,n) \leq \sum_{i=1}^b \Psi_r^s(m_i,n_i) + 2\Psi_r^s(b,n_0)G_{s-1}(m) + mH_{s-1}(m)$$

M. Klazar

where $H_{s-1}(m) = 3(r-1) + 2F_{s-1}(m) + 2(r-1)G_{s-1}(m)$.

PROOF: We start with a preliminary consideration. Suppose an *r*-regular sequence u is splitted into o 1-chains $u = u_1 u_2 \ldots u_o$. Then a subsequence v of u need not be *r*-regular but it suffices to delete at most (r-1)(o-1) letters from v and what remains is *r*-regular. This consideration will be used in this proof and then again in the fourth step.

Let v be r-regular, $||v|| \leq n$, $Y(r,s) \not\leq v$, v consists of m 1-chains and $|v| = \Psi_r^s(m,n)$. We group 1-chains of v in b layers (the partition $m = m_1 + \ldots + m_b$ is given) L_1, L_2, \ldots, L_b where L_i consists of m_i 1-chains. Thus $v = L_1L_2 \ldots L_b$. We split any L_i in three subsequences v_i^1, v_i^2 and v_i^3, v_i^1 consists of those letters that occur only in L_i (i.e. $S(v_i^1) \cap S(L_j) = \emptyset$ for $i \neq j$), v_i^2 consists of those that occur also before L_i and v_i^3 consists of the remaining ones (i.e. do not occur before L_i but occur after L_i). Obviously

(4)
$$\Psi_r^s(m,n) = |v| = \sum_{i=1}^b |v_i^1| + \sum_{i=1}^b |v_i^2| + \sum_{i=1}^b |v_i^3|.$$

The upper bound on the first term in (4) is clearly

$$\sum_{i=1}^{b} (\Psi_r^s(m_i, n_i) + (m_i - 1)(r - 1)) = \sum_{i=1}^{b} \Psi_r^s(m_i, n_i) + (m - b)(r - 1)$$

where $n_i = ||v_i^1||$. We come naturally to the partition $n = n_0 + n_1 + \ldots + n_b$, n_0 is the number of all symbols figurating in all v_i^2, v_i^3 . Observe that $Y(r, s - 1) \not\leq v_i^2, v_i^3$ for all *i*. This fact enables us to estimate the remaining two terms in (4). We do it only for the second one, the third one is treated similarly. According to the hypothesis

$$\sum_{i=1}^{b} |v_i^2| \le \sum_{i=1}^{b} (F_{s-1}(m_i)m_i + G_{s-1}(m_i)||v_i^2|| + (m_i - 1)(r - 1)) \le \\\le F_{s-1}(m)m + G_{s-1}(m)\sum_{i=1}^{b} ||v_i^2|| + (m - b)(r - 1).$$

We transform any v_i^2 to w_i by taking any $a \in S(v_i^2)$ just once (the 1-chain w_i is a subsequence of v_i^2). The sequence $w = w_1 w_2 \dots w_b$ meets (after deleting at most (b-1)(r-1) letters) all conditions to be estimated by $\Psi_r^s(b, n_0)$. Thus

$$\sum_{i=1}^{b} \|v_i^2\| = |w| \le \Psi_r^s(b, n_0) + (b-1)(r-1).$$

We substitute all derived bounds in (4):

$$\begin{aligned} \Psi_r^s(m,n) &\leq \sum_{i=1}^b \Psi_r^s(m_i,n_i) + (m-b)(r-1) + \\ &+ 2[F_{s-1}(m)m + G_{s-1}(m)(\Psi_r^s(b,n_0) + (b-1)(r-1)) + (m-b)(r-1)]. \end{aligned}$$

We got (3).

Step 3.

Lemma 2.3. Let F_{s-1}, G_{s-1} and H_{s-1} be as in Lemma 2.2. Then for any $m, n \ge 1, k \ge 2$

(5)
$$\Psi_r^s(m,n) \le \alpha_k(m)m.H_{s-1}(m).(5G_{s-1}(m))^{k-2} + 2n.(2G_{s-1}(m))^{k-1}$$

PROOF: For $m \leq 4$ (5) holds because of the trivial inequality $\Psi_r^s(m,n) \leq mn$. We prove (5) induction on k, for k fixed induction on m. We start with k = 2. It suffices to verify induction on m the estimate

$$\Psi_r^s(m,n) \le H_{s-1}(m) \lceil \log_2 m \rceil m + 4G_{s-1}(m)n$$

((5) for k = 2) using the inequality

$$\Psi_{r}^{s}(m,n) \leq \Psi_{r}^{s}(\lfloor \frac{m}{2} \rfloor, n_{1}) + \Psi_{r}^{s}(\lceil \frac{m}{2} \rceil, n_{2}) + 4G_{s-1}(m)n_{0} + mH_{s-1}(m)n_{0} + mH_{s-$$

((3) for b = 2). It is left to the reader.

In case k > 2, $m \ge 3$ we put in (3) $b = \lceil \frac{m}{\alpha_{k-1}(m)} \rceil$, $m_i \le \lceil \frac{m}{b} \rceil \le \alpha_{k-1}(m)$. Thus $\alpha_k(m_i) \le \alpha_k(m) - 1$ (according to (1)) and $b\alpha_{k-1}(b) \le b\alpha_{k-1}(m) \le 2m$. We estimate the term $\Psi_r^s(m_i, n_i)$ in (3) by (5) for k, m_i , and the term $\Psi_r^s(b, n_0)$ by (5) for k - 1, b. Then

$$\begin{split} \Psi_r^s(m,n) &\leq \sum_{i=1}^b \left(H_{s-1}(m_i)(5G_{s-1}(m_i))^{k-2}\alpha_k(m_i)m_i + 2(2G_{s-1}(m_i))^{k-1}n_i \right) + \\ &+ \left(H_{s-1}(b)(5G_{s-1}(b))^{k-3}\alpha_{k-1}(b)b + 2(2G_{s-1}(b))^{k-2}n_0 \right) 2G_{s-1}(m) + mH_{s-1}(m) \leq \\ &\leq H_{s-1}(m)(5G_{s-1}(m))^{k-2}(\alpha_k(m) - 1)m + 2(2G_{s-1}(m))^{k-1}(n - n_0) + \\ &+ H_{s-1}(m)((5G_{s-1}(m))^{k-2} - 1)m + 2(2G_{s-1}(m))^{k-1}n_0 + mH_{s-1}(m) \leq \\ &\leq H_{s-1}(m)(5G_{s-1}(m))^{k-2}\alpha_k(m)m + 2(2G_{s-1}(m))^{k-1}n. \end{split}$$

Lemma 2.4. For any $s \ge 4$ the inequality

(6)
$$\Psi_r^s(m,n) \le m(10r)^{\alpha^{s-3}(m)+4\alpha^{s-4}(m)} + n(4r)^{\alpha^{s-3}(m)+2\alpha^{s-4}(m)} \quad m,n \ge 1$$

holds.

PROOF: We consider the functions $\overline{F}_s, \overline{G}_s, s \ge 3$ that are defined by the following recurrent relations (we write \overline{F}_s instead $\overline{F}_s(m), \overline{G}_s$ instead $\overline{G}_s(m)$ and α instead of $\alpha(m)$ for the sake of brevity):

$$\overline{F}_3 = 0, \ \overline{G}_3 = 2r$$

$$\overline{F}_s = 4(3(r-1) + 2\overline{F}_{s-1} + 2(r-1)\overline{G}_{s-1})(5\overline{G}_{s-1})^{\alpha-1}, \ \overline{G}_s = 2(2\overline{G}_{s-1})^{\alpha}.$$

Induction on s shows that

$$\Psi_r^s(m,n) \le \overline{F}_s(m)m + \overline{G}_s(m)m$$

for any $m, n \ge 1, s \ge 3$. Indeed, for s = 3 it follows from Step 1 and for general s we obtain this inequality from (5) where we put $k = \alpha(m) + 1$ and use (2). We count explicit upper bounds on both functions. Clearly $\overline{G}_s = 2.4^{\alpha^{s-4} + \alpha^{s-5} + \ldots + \alpha}.(4r)^{\alpha^{s-3}}$ for $s \ge 5$ and $\overline{G}_4 = 2(4r)^{\alpha}$. Hence $\overline{G}_s \le (4r)^{\alpha^{s-3} + 2\alpha^{s-4}}$ for $s \ge 4$. Further $\overline{F}_4 = \frac{2}{5}(4r - 1 - \frac{3}{r})(10r)^{\alpha} \ge \overline{G}_4$ and therefore $\overline{F}_s \ge \overline{G}_s$ for all $s \ge 4$. Thus

Further $\overline{F}_4 = \frac{2}{5}(4r-1-\frac{3}{r})(10r)^{\alpha} \geq \overline{G}_4$ and therefore $\overline{F}_s \geq \overline{G}_s$ for all $s \geq 4$. Thus $\overline{F}_s \leq 4(3(r-1)+2r\overline{F}_{s-1})(5\overline{F}_{s-1})^{\alpha-1} \leq 4r(5\overline{F}_{s-1})^{\alpha}$. If we solve this recurrent relation as an equation then an upper bound on \overline{F}_s is obtained. We start with $\overline{F}_4 \leq 2r(10r)^{\alpha}$ and derive

$$\overline{F}_s \le (2r)^{\alpha^{s-4}} \cdot (4r)^{\alpha^{s-5} + \dots + 1} \cdot 5^{\alpha^{s-4} + \dots + \alpha} \cdot (10r)^{\alpha^{s-3}} \le (10r)^{\alpha^{s-3} + 4\alpha^{s-4}} \cdot \square$$

Step 4.

Lemma 2.5.

(7)
$$f(u,n) \le 2||u||.2^{|u|-4} \cdot n \cdot (10||u||)^{2\alpha^{|u|-4}(n)+8\alpha^{|u|-5}(n)}$$

for any sequence $u, |u| \ge 5$.

PROOF: We will find the upper bound $nE_s(n)$ ($E_s(n)$ is a nondecreasing function) on the quantity

$$\max\{|v| \mid v \text{ is } r\text{-regular}, \|v\| \le n, Y(r,s) \le v\}.$$

It suffices because $u \leq v$ for any $v \in Y(||u||, |u| - 1)$ except $u = aa \dots a$ (*i* times) but $f(aa \dots a, n) = n(i - 1)$. We derive for E_s a recurrent relation. Let v be r-regular, $||v|| \leq n$ and $Y(r,s) \not\leq v$. We split $v = v_1 l_1 v_2 l_2 \dots v_n l_n$ where l_1, \dots, l_n are the last letters of all $x \in S(v)$. Observe that $Y(r, s - 1) \not\leq v_i$ and hence $|v| = \sum_{i=1}^n |v_i| + n \leq (\sum_{i=1}^n ||v_i||) E_{s-1}(n) + n$. The sum $\sum_{i=1}^n ||v_i||$ may be estimated by $\Psi_s^r(n, n) + (n - 1)(r - 1)$ (we use the same trick as in Lemma 2.2 replace v_i by 1-chain of the length $||v_i||$). Thus

$$|v| \le 2nE_{s-1}(n).(10r)^{\alpha^{s-3}(n)+4\alpha^{s-4}(n)}$$

by (6). Hence we may choose

$$E_3(n) = 2r \text{ (see Step 1)} E_s(n) = 2E_{s-1}(n).(10r)^{\alpha^{s-3}(n) + 4\alpha^{s-4}(n)}$$

The solution of this relation is:

$$E_s(n) = 2r \cdot 2^{s-3} \cdot (10r)^{\alpha^{s-3}(n) + \alpha^{s-4}(n) + \dots + \alpha(n) + 4\alpha^{s-4}(n) + \dots + 4\alpha^{s-4}(n) +$$

If replaced r by ||u|| and s by |u| - 1 then (7) is obtained.

744

Concluding remarks

We achieved the exponent $\alpha^{|u|-4}(n)$ in (7) by induction starting with s = 3. It is possible that this bound might be improved to (roughly) $\alpha^{\frac{1}{2}|u|}(n)$ but it would require computations far more complex as in [ASS].

More interesting than the best value in (7) is perhaps the fact that f(u, n) is almost linear for any sequence u. Hence a double induction must be used in some form whenever we want to obtain a superlinear lower bound on f(u, n) (cf. [HS], [ASS], [K], [FH] and [WS]). Methods giving such "huge" functions as $n^{\frac{7}{6}}$ or $n \log \log n$ or $n \log^* n$ cannot be successful. It is a remarkable difference in comparison with extremal problems concerning graphs or hypergraphs (Turán theory). Here most common functions are $n^{\beta}, \beta > 1$. A certain hybrid occurs in Davenport-Schinzel theory of matrices in [FH] where the maximum number of 1's in a 0-1 matrix (of the size $n \times n$) which does not contain a forbidden subconfiguration is investigated. Here $n\alpha(n)$ figurates as an upper bound as well as $n^{\frac{3}{2}}$ and $n \log n$.

For obtaining a good general upper bound on f(u, n) only basic features of u such as the length and the number of symbols — were important. It is demonstrated by the fact that we worked instead of u itself with the sets X(k, l) resp. Y(k, l)that are determined by |u| and ||u||. It is probable that this changes if we start to investigate finer properties of the asymptotic growth of f(u, n). But except for the case $u = al_s$ where we know the magnitude of f(u, n) with high precision due the deep result of [ASS] only little about that function is known. One of the basic questions is to determine the set

$$Lin = \{u \mid f(u, n) = O(n) \}$$

— see [AKV] and [Kl] for a partial solution.

References

- [AKV] Adamec R., Klazar M., Valtr P., Generalized Davenport-Schinzel sequences with linear upper bound, Topological, algebraical and combinatorial structures (ed. J.Nešetřil), North Holland, to appear.
- [ASS] Agarwal P., Sharir M., Shor P., Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences, J. of Comb. Th. A 52 (1989), 228–274.
- [DS] Davenport H., Schinzel M., A combinatorial problem connected with differential equations I and II, Amer. J. Math. 87 (1965), 684–689; and Acta Arithmetica 17 (1971), 363–372.
- [ES] Erdös P., Szekeres G., A combinatorial problem in geometry, Composito Math. 2 (1935), 464–470.
- [FH] Füredi Z., Hajnal P., Davenport-Schinzel theory of matrices, Discrete Math. (1991).
- [HS] Hart S., Sharir M., Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986), 151–177.
- [K] Komjáth P., A simplified construction of nonlinear Davenport-Schinzel sequences, J. of Comb. Th. A 49 (1988), 262–267.
- [KI] Klazar M., A linear upper bound in extremal theory of sequences, to appear in J. of Comb. Th. A.
- [S] Sharir M., Almost linear upper bounds on the length of generalized Davenport-Schinzel sequences, Combinatorica 7 (1987), 131–143.

M. Klazar

[WS] Wiernick A., Sharir M., Planar realization of nonlinear Davenport-Schinzel sequences by segments, Discrete Comp. Geom. 3 (1988), 15–47.

Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 01 Praha 1, Czechoslovakia

(Received February 27, 1992, revised May 6, 1992)