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A general upper bound in extremal theory of sequences

Martin Klazar

Abstract. We investigate the extremal function f(u, n) which, for a given finite sequence
u over k symbols, is defined as the maximum length m of a sequence v = a1a2...am of
integers such that 1) 1 ≤ ai ≤ n, 2) ai = aj , i 6= j implies |i − j| ≥ k and 3) v contains
no subsequence of the type u. We prove that f(u, n) is very near to be linear in n for any
fixed u of length greater than 4, namely that

f(u, n) = O(n2O(α(n)
|u|−4)).

Here |u| is the length of u and α(n) is the inverse to the Ackermann function and goes
to infinity very slowly. This result extends the estimates in [S] and [ASS] which treat the
case u = abababa . . . and is achieved by similar methods.
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Introduction

In the Extremal theory of sequences we investigate the quantity

f(u, n) = max{|v| | u 6≤ v, ‖v‖ ≤ n, v is ‖u‖-regular}.

Here u and v are finite sequences of arbitrary symbols, n is a nonnegative integer,
|v| stands for the length of v and ‖v‖ denotes the cardinality of S(v), the set of all
symbols that occur in v. If there is a subsequence s in v such that s differs from u
only in the names of the symbols we write u ≤ v and say that v contains u. For
instance v1 = 123245131 contains both u1 = xxyy and u2 = ababa. A sequence
u = a1a2..am is called k-regular if ai = aj , i 6= j implies |i − j| ≥ k. Example: v1
and u2 are 2-regular but are not 3-regular and u1 is not 2-regular. If u = a1a2..am

and ai = a ∈ S(u) then we shall refer to ai as to the a-letter.
The function f(u, n) extends in a natural way the function F = f(ababa, n)

investigated at first by Davenport and Schinzel in [DS]. They proved the upper
bound F = O(n log n/ log logn) that was later improved by Szemerédi to O(n log∗ n)
([Sz]). Here log∗ n is the minimum number of iterations of the power function 2m

(starting with m = 1) which are needed to get a number greater or equal to n.
The question whether F = O(n) (f(abab, n) = 2n−1 trivially) remained open until
1986 when it was answered by Hart and Sharir in [HS] negatively. They showed
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that F = Θ(nα(n)) where α(n) goes to infinity but very slowly (a precise definition
of α(n) will be given in the second part of this paper). M. Sharir obtained later

f(als, n) = O(nα(n)O(α(n)
s−5))

for arbitrary alternating sequence als = ababab . . . of the length s ≥ 5 ([S]). Recently
almost tight estimates were derived ([ASS]):

f(als, n) ≤ n.2(α(n))
s−5
2 log2 α(n)+Cs(n) for s ≥ 5 odd

f(als, n) ≤ n.2(α(n))
s−4
2 +Cs(n) for s ≥ 6 even

f(als, n) = Ω(n.2Ks.(α(n))
s−4
2 +Qs(n)) for s ≥ 6 even

where Ks =
1

( s−4
2
)!
and Cs(n) and Qs(n) are asymptotically smaller than the main

terms. For s = 6 even, f(ababab, n) = Θ(n2α(n)) ([ASS]). How complex the previous
formulae may seem on the first view, one thing is clear: f(als, n) is almost almost
linear in n for all s.
The first aim of this paper is to show that the same is true for arbitrary se-

quence u. The second aim is to give a brief and clear idea about the techniques
developed by Agarwal, Hart, Sharir and Shor for obtaining almost linear upper
bounds on f(als, n) to the reader that is not familiar with them.
In the first part we show a simple method that leads to the upper bound f(u, n) =

O(n2) for all u. Then, in the second part, we use a slightly generalized method of [S]
to derive the estimate

f(u, n) = O(n.2O(α(n)
|u|−4)).

Part 1

We first define a modification of the function f(u, n) for l-regular sequences:

f(u, n, l) = max{|v| | u 6≤ v, ‖v‖ ≤ n, v is l -regular}

where l ≥ ‖u‖.
Lemma 1.1. a) f(u, n, l) is defined and finite for any n ≥ 1 and moreover

f(u, n, l) = O(|u|.‖u‖.n‖u‖).
b) f(u, n, l) ≤ f(u, n, k) ≤ (1 + f(u, l − 1, k))f(u, n, l) for all l > k ≥ ‖u‖, n ≥ 1.

Proof: ad a) We suppose there is at least one repetition in u, otherwise the
function f(u, n, l) is constant. If n < l then f(u, n, l) = n. If n ≥ l then any l-
regular sequence v satisfying |v| ≥ ‖u‖.(

(

n
‖u‖

)

(|u|−1)+1) must contain u. We split

v = v1v2 . . . vcw so that |vi| = ‖vi‖ = ‖u‖ and c = (|u| − 1)
(

n
‖u‖

)

+ 1. According

to the Dirichlet Principle there exist |u| indices 1 ≤ i1 < i2 < . . . < i|u| ≤ c that

S(vi1) = S(vi2) = . . . = S(vi|u|
). Thus u ≤ vi1vi2 . . . vi|u|

.
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ad b) The first inequality is obvious. Suppose v = a1a2 . . . am is k-regular, does
not contain u and ‖v‖ ≤ n. We choose a subsequence v∗ of v in this way: we
start with v∗ = a1 and i = 1 and search for the minimum j such that j > i
and v∗aj is l-regular. If such a j exists then we put v∗ = v∗aj and i = j and
repeat. Otherwise the algorithm terminates. Obviously ‖v∗‖ ≤ n and v∗ is l-
regular. Moreover |v| ≤ (1 + f(u, l − 1, k))|v∗| because any interval I in v omitted
by the previous algorithm satisfies ‖I‖ ≤ l − 1. We got the second inequality. �

Definition 1.2. Let u, v be sequences. We write u ≤≤ v if u ≤ v∗ for all v∗

obtained from v by restricting v to some ‖u‖ symbols. Thus in this case v contains
u in all possible ways.

Lemma 1.3. For any sequence u there exist positive integers m and s such that
u ≤ v whenever ‖v‖ ≥ m and als ≤≤ v.

Before proving this lemma we derive the main result of this section.

Theorem 1.4. f(u, n) = O(n2) for all sequences u. The constant in O depends
on u.

Proof: Let m = m(u) be as in Lemma 1.3. According to Lemma 1.1 b) we have
f(u, n) = f(u, n, ‖u‖) ≤ (1 + f(u, m − 1, ‖u‖))f(u, n, m). We estimate f(u, n, m).
Suppose v is m-regular, ‖v‖ ≤ n, u 6≤ v and |v| = f(u, n, m). It suffices to estimate
the number c in the splitting v = v1v2 . . . vcw where |vi| = ‖vi‖ = m and |w| ≤
m − 1. Let s = s(u) stand for the second number of Lemma 1.3. For any vi

there exist symbols a, b ∈ S(vi) such that v restricted on the symbols {a, b} does
not contain als. Otherwise u ≤ v according to Lemma 1.3. But the mapping

F : {v1, v2, . . . , vc} →
(S(v)
2

)

that maps any vi on a pair {a, b} mentioned above
maps only at most s − 2 vi’s on one pair because of the property of the symbols
{a, b}. Thus c ≤ (s − 2)

(n
2

)

. Finally

f(u, n) ≤ (1+ f(u, m−1, ‖u‖))m(c+1) ≤ (1+ f(u, m−1, ‖u‖))m(1+(s−2)
(

n

2

)

).

Thus

f(u, n) = O(n2).

�

It remains to prove Lemma 1.3. We use the following well known:

Lemma 1.5 (Erdös P., Szekeres G. 1935 [ES]). Any (n − 1)2 + 1-term sequence
(of integers) contains a n-term monotone subsequence.

Proof of Lemma 1.3: We denote by X(k, l) the set of all sequences of the form
y1y2 . . . yl where yi = x1x2 . . . xk or yi = xkxk−1 . . . x1 for k distinct symbols

x1, x2, . . . , xk. Thus |X(k, l)| = 2l and |u| = kl and ‖u‖ = k for any u ∈ X(k, l).
Since u ≤ w for any w ∈ X(‖u‖, |u|), it suffices to prove the following claim.
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Claim. For all positive integers k and l there exist positive integers m and s such
that w ≤ v for some w ∈ X(k, l) whenever ‖v‖ ≥ m and als ≤≤ v.

Proof of the claim: We put s = 2l and m = k1 where kl = k and kt−1 =
4(t − 1)k2t + 3 for t = l, l − 1, . . . , 2. Suppose v meets the prescribed conditions.
We prove by induction that for all t = 1, 2 . . . , l there exists w ∈ X(kt, t) such
that w ≤ v. For t = 1 this is obvious. Suppose it is true for t − 1 ≥ 1. We have
w ∈ X(kt−1, t − 1), w ≤ v. We take a fixed w-copy U in v and split v into t − 1
intervals v = v1v2 . . . vt−1 where vi contains i-th part of U (i.e. yi). U consists

of kt−1(t − 1) letters xj
i , j = 1 . . . t − 1, i = 1 . . . kt−1 in v, xj

i occur in vj , a < b

implies that xj
a precedes xj

b
and xp

1 = xq
1, x

p
2 = xq

2, .. or xp
1 = xq

kt−1
, xp
2 = xq

kt−1−1
, ..

for all p, q. It remains to give names to the symbols — say that x1i is z(i)-letter
for i = 1, 2, . . . , kt−1. There must be other z(i)-letters in v besides those in U
(als ≤≤ v). Let us consider the pairs of symbols (z(1), z(kt−1)), (z(2), z(kt−1 −
1)), . . . , (z(L), z(kt−1 − L + 1)), L = [kt−1/2]− 1. The Dirichlet Principle implies
that there are a setM ⊂ {1, 2, . . . , L} , |M | ≥ L

t−1 and an index r ∈ {1, 2, . . . , t−1}
that z(i)z(kt−1−i+1)z(i) or z(kt−1−i+1)z(i)z(kt−1−i+1) is a 3-term subsequence
of vr for any i ∈ M . We used that als ≤≤ v and s > 2(t − 1). We can suppose
w.l.o.g. r = 1. Thus we have 2-term subsequence z(kt−1 − i+ 1)z(i) of v1 for any
i ∈ M (the opposite order than in U). The z(L+1)-letter x1L+1 (lies in U) splits v1

on two intervals v1 = v
′

1v
′′

1 . There are at least |M |/2 i’s in M such that z(i)-letter

occurs in v
′′

1 or there are |M |/2 i’s inM such that z(kt−1− i+1)-letter occurs in v
′

1.

We obtained t separated areas — namely v
′

1, v
′′

1 , v2, . . . , vt−1 — in which z(i)-letter
occurs for at least |M |/2 i’s. From those at least |M |/2 i’s we choose according

to Lemma 1.5 at least
√|M |/2 i’s in such a way that we obtain a w

′
-copy in v,

w
′ ∈ X([

√|M |/2], t). We are finished because [√|M |/2] ≥ [√L/2(t − 1)] ≥ .. ≥ kt.
�

Remark 1.6. If we estimate kt−1 = 4(t− 1)k2t +3 ≤ t(2kt)
2 then it may be easily

derived that it suffices to put in Lemma 1.3 s = 2|u|, m = (4|u|.‖u‖)2|u|−1
.

Part 2

In this section we prove a result far stronger than f(u, n) = O(n2). At first we give
the precise (standard) definition of α(n).

For any function B : N → N the symbol B(s)(n) denotes B(B(..(B(n))..))
(s times). We define further the functional inverse of B as B−1(n) = min{s ≥
1 | B(s) ≥ n}. For nondecreasing and unbounded B the functional inverse B−1 is
nondecreasing and unbounded as well. The functions Ak(n) are defined by induc-
tion:

Ak(1) = 2, A1(n) = 2n and Ak(n) = A
(n)
k−1(1).

Thus A2(n) = 2
n, A3(n) = 2

2.
.2

n times. The Ackermann function is diagonal
function of that schema: A(n) = An(n). The function α(n) is defined as α(n) =
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A−1(n). Apart the hierarchy A1, A2, . . . (Ai+1 grows to infinity much faster than

Ai), we have the hierarchy α1, α2, . . . , αi = A−1
i (αi+1 grows to infinity much more

slowly than αi). Thus α1(n) = ⌈n
2 ⌉, α2(n) = ⌈log2n⌉, α3(n) = log∗(n), . . . . The

function α is far “lazier” than any αi. It is easy to prove for αi a recurrent formula

αi+1(n) = min{s ≥ 1 | α
(s)
i (n) = 1}. Thus

(1) αi+1(αi(m)) = αi+1(m)− 1 for all i ≥ 1, m ≥ 3.

Further ([ASS])

(2) αα(n)+1(n) ≤ 4 for all n ≥ 1.

A sequence u is called a 1-chain if no symbol occurs repeatedly in u. Y (k, l) denotes
the set of all sequences of the form y1y2 . . . yl where any yi is a permutation of k
fixed symbols x1, x2, . . . , xk. Y (k, l) 6≤ v means that u ≤ v for no u ∈ Y (k, l). We
modify a bit the function Ψs(m, n) of [S] and introduce the function

Ψs
r(m, n) = max{|v| | v is r-regular, ‖v‖ ≤ n, v = v1v2 . . . vm

where any vi is 1-chain and Y (r, s) 6≤ v}.

We will estimate f(u, n) in four steps. We will proceed induction on s. At first
we estimate Ψ3r(m, n). Then we derive, supposing we have an upper bound on
Ψs−1

r (m, n), a recurrent inequality for Ψs
r(m, n). In the third step using that in-

equality the upper bound considered in Step 2 is extended on Ψs
r(m, n). Finally we

estimate f(u, n) by appropriate Ψs
r(m, n).

Step 1.

Lemma 2.1. Ψ3r(m, n) ≤ 2rn.
Proof: Suppose v is r-regular, ‖v‖ ≤ n and Y (r, 3) 6≤ v (we ignore here the first
variable in Ψ). We split v = v1v2 . . . vcw where |vi| = ‖vi‖ = r and |w| < r. Any vi

must contain the first letter or the last letter of some symbol (otherwise u ≤ v for
some u ∈ Y (r, 3)). Thus

|v| = cr + |w| ≤ (2‖v‖ − |w|)r + |w| ≤ 2rn.

�

Step 2.

Lemma 2.2. Suppose Ψs−1
r (m, n) ≤ Fs−1(m)m + Gs−1(m)n for m, n ≥ 1 for

some nondecreasing functions Fs−1, Gs−1 : N → N. Then for any partition m =
m1+. . .+mb, mi ≥ 1, 1 < b < m there exists a partition n = n0+n1+. . .+nb, ni ≥ 0
such that

(3) Ψs
r(m, n) ≤ Σ

b
i=1 Ψ

s
r(mi, ni) + 2Ψ

s
r(b, n0)Gs−1(m) +mHs−1(m)
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where Hs−1(m) = 3(r − 1) + 2Fs−1(m) + 2(r − 1)Gs−1(m).

Proof: We start with a preliminary consideration. Suppose an r-regular sequence
u is splitted into o 1-chains u = u1u2 . . . uo. Then a subsequence v of u need not
be r-regular but it suffices to delete at most (r − 1)(o − 1) letters from v and what
remains is r-regular. This consideration will be used in this proof and then again
in the fourth step.
Let v be r-regular, ‖v‖ ≤ n, Y (r, s) 6≤ v, v consists of m 1-chains and |v| =

Ψs
r(m, n). We group 1-chains of v in b layers (the partition m = m1 + . . . +mb is
given) L1, L2, . . . , Lb where Li consists of mi 1-chains. Thus v = L1L2 . . . Lb. We
split any Li in three subsequences v1i , v2i and v3i , v1i consists of those letters that

occur only in Li (i.e. S(v1i ) ∩ S(Lj) = ∅ for i 6= j), v2i consists of those that occur

also before Li and v3i consists of the remaining ones (i.e. do not occur before Li

but occur after Li). Obviously

(4) Ψs
r(m, n) = |v| =Σ

b
i=1 |v1i |+Σ

b
i=1 |v2i |+Σ

b
i=1 |v3i |.

The upper bound on the first term in (4) is clearly

Σ
b
i=1 (Ψ

s
r(mi, ni) + (mi − 1)(r − 1)) =Σ

b
i=1 Ψ

s
r(mi, ni) + (m − b)(r − 1)

where ni = ‖v1i ‖. We come naturally to the partition n = n0 + n1 + . . .+ nb, n0 is

the number of all symbols figurating in all v2i , v3i . Observe that Y (r, s− 1) 6≤ v2i , v3i
for all i. This fact enables us to estimate the remaining two terms in (4). We
do it only for the second one, the third one is treated similarly. According to the
hypothesis

Σ
b
i=1 |v2i | ≤ Σ

b
i=1 (Fs−1(mi)mi +Gs−1(mi)‖v2i ‖+ (mi − 1)(r − 1)) ≤

≤ Fs−1(m)m+Gs−1(m)Σ
b
i=1 ‖v2i ‖+ (m − b)(r − 1).

We transform any v2i to wi by taking any a ∈ S(v2i ) just once (the 1-chain wi is

a subsequence of v2i ). The sequence w = w1w2 . . . wb meets (after deleting at most
(b − 1)(r − 1) letters) all conditions to be estimated by Ψs

r(b, n0). Thus

Σ
b
i=1 ‖v2i ‖ = |w| ≤ Ψs

r(b, n0) + (b − 1)(r − 1).

We substitute all derived bounds in (4):

Ψs
r(m, n) ≤ Σ

b
i=1 Ψ

s
r(mi, ni) + (m − b)(r − 1)+

+ 2[Fs−1(m)m+Gs−1(m)(Ψ
s
r(b, n0) + (b − 1)(r − 1)) + (m − b)(r − 1)].

We got (3). �
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Step 3.

Lemma 2.3. Let Fs−1, Gs−1 and Hs−1 be as in Lemma 2.2. Then for any m, n ≥
1, k ≥ 2

(5) Ψs
r(m, n) ≤ αk(m)m.Hs−1(m).(5Gs−1(m))

k−2 + 2n.(2Gs−1(m))
k−1.

Proof: For m ≤ 4 (5) holds because of the trivial inequality Ψs
r(m, n) ≤ mn. We

prove (5) induction on k, for k fixed induction on m. We start with k = 2. It
suffices to verify induction on m the estimate

Ψs
r(m, n) ≤ Hs−1(m)⌈log2m⌉m+ 4Gs−1(m)n

((5) for k = 2) using the inequality

Ψs
r(m, n) ≤ Ψs

r(⌊
m

2
⌋, n1) + Ψs

r(⌈
m

2
⌉, n2) + 4Gs−1(m)n0 +mHs−1(m)

((3) for b = 2). It is left to the reader.
In case k > 2, m ≥ 3 we put in (3) b = ⌈ m

αk−1(m)
⌉, mi ≤ ⌈m

b ⌉ ≤ αk−1(m).

Thus αk(mi) ≤ αk(m)− 1 (according to (1)) and bαk−1(b) ≤ bαk−1(m) ≤ 2m. We
estimate the term Ψs

r(mi, ni) in (3) by (5) for k, mi, and the term Ψ
s
r(b, n0) by (5)

for k − 1, b. Then

Ψs
r(m, n) ≤ Σ

b
i=1 (Hs−1(mi)(5Gs−1(mi))

k−2αk(mi)mi + 2(2Gs−1(mi))
k−1ni)+

+ (Hs−1(b)(5Gs−1(b))
k−3αk−1(b)b + 2(2Gs−1(b))

k−2n0)2Gs−1(m) +mHs−1(m) ≤
≤ Hs−1(m)(5Gs−1(m))

k−2(αk(m)− 1)m+ 2(2Gs−1(m))
k−1(n − n0)+

+Hs−1(m)((5Gs−1(m))
k−2 − 1)m+ 2(2Gs−1(m))

k−1n0 +mHs−1(m) ≤
≤ Hs−1(m)(5Gs−1(m))

k−2αk(m)m+ 2(2Gs−1(m))
k−1n.

�

Lemma 2.4. For any s ≥ 4 the inequality

(6) Ψs
r(m, n) ≤ m(10r)α

s−3(m)+4αs−4(m) + n(4r)α
s−3(m)+2αs−4(m) m, n ≥ 1

holds.

Proof: We consider the functions F s, Gs, s ≥ 3 that are defined by the following
recurrent relations (we write F s instead F s(m), Gs instead Gs(m) and α instead
of α(m) for the sake of brevity):

F 3 = 0, G3 = 2r
F s = 4(3(r − 1) + 2F s−1 + 2(r − 1)Gs−1)(5Gs−1)

α−1, Gs = 2(2Gs−1)
α.
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Induction on s shows that

Ψs
r(m, n) ≤ F s(m)m+Gs(m)n

for any m, n ≥ 1, s ≥ 3. Indeed, for s = 3 it follows from Step 1 and for general s we
obtain this inequality from (5) where we put k = α(m) + 1 and use (2). We count

explicit upper bounds on both functions. Clearly Gs = 2.4
αs−4+αs−5+..+α.(4r)α

s−3

for s ≥ 5 and G4 = 2(4r)
α. Hence Gs ≤ (4r)αs−3+2αs−4

for s ≥ 4.
Further F 4 =

2
5 (4r−1− 3r )(10r)α ≥ G4 and therefore F s ≥ Gs for all s ≥ 4. Thus

F s ≤ 4(3(r − 1) + 2rF s−1)(5F s−1)
α−1 ≤ 4r(5F s−1)

α. If we solve this recurrent
relation as an equation then an upper bound on F s is obtained. We start with
F 4 ≤ 2r(10r)α and derive

F s ≤ (2r)αs−4
.(4r)α

s−5+..+1.5α
s−4+..+α.(10r)α

s−3 ≤ (10r)αs−3+4αs−4
. �

Step 4.

Lemma 2.5.

(7) f(u, n) ≤ 2‖u‖.2|u|−4.n.(10‖u‖)2α|u|−4(n)+8α|u|−5(n)

for any sequence u, |u| ≥ 5.
Proof: We will find the upper bound nEs(n) (Es(n) is a nondecreasing function)
on the quantity

max{|v| | v is r-regular, ‖v‖ ≤ n, Y (r, s) 6≤ v}.

It suffices because u ≤ v for any v ∈ Y (‖u‖, |u| − 1) except u = aa . . . a ( i times)
but f(aa . . . a, n) = n(i − 1). We derive for Es a recurrent relation. Let v be r-
regular, ‖v‖ ≤ n and Y (r, s) 6≤ v. We split v = v1l1v2l2 . . . vnln where l1, . . . , ln
are the last letters of all x ∈ S(v). Observe that Y (r, s − 1) 6≤ vi and hence
|v| = Σ

n
i=1 |vi| + n ≤ (Σn

i=1 ‖vi‖)Es−1(n) + n. The sum Σ
n
i=1 ‖vi‖ may be

estimated by Ψs
r(n, n) + (n − 1)(r − 1) (we use the same trick as in Lemma 2.2 —

replace vi by 1-chain of the length ‖vi‖). Thus

|v| ≤ 2nEs−1(n).(10r)
αs−3(n)+4αs−4(n)

by (6). Hence we may choose

E3(n) = 2r (see Step 1)

Es(n) = 2Es−1(n).(10r)
αs−3(n)+4αs−4(n).

The solution of this relation is:

Es(n) = 2r.2
s−3.(10r)α

s−3(n)+αs−4(n)+..+α(n)+4αs−4(n)+..+4.

If replaced r by ‖u‖ and s by |u| − 1 then (7) is obtained. �
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Concluding remarks

We achieved the exponent α|u|−4(n) in (7) by induction starting with s = 3. It

is possible that this bound might be improved to (roughly) α
1
2
|u|(n) but it would

require computations far more complex as in [ASS].
More interesting than the best value in (7) is perhaps the fact that f(u, n) is al-

most linear for any sequence u. Hence a double induction must be used in some form
whenever we want to obtain a superlinear lower bound on f(u, n) (cf. [HS], [ASS],

[K], [FH] and [WS]). Methods giving such “huge” functions as n
7
6 or n log logn

or n log∗ n cannot be successful. It is a remarkable difference in comparison with
extremal problems concerning graphs or hypergraphs (Turán theory). Here most

common functions are nβ , β > 1. A certain hybrid occurs in Davenport-Schinzel
theory of matrices in [FH] where the maximum number of 1’s in a 0-1 matrix (of
the size n×n) which does not contain a forbidden subconfiguration is investigated.

Here nα(n) figurates as an upper bound as well as n
3
2 and n logn.

For obtaining a good general upper bound on f(u, n) only basic features of u —
such as the length and the number of symbols — were important. It is demonstrated
by the fact that we worked instead of u itself with the sets X(k, l) resp. Y (k, l)
that are determined by |u| and ‖u‖. It is probable that this changes if we start
to investigate finer properties of the asymptotic growth of f(u, n). But except for
the case u = als where we know the magnitude of f(u, n) with high precision due
the deep result of [ASS] only little about that function is known. One of the basic
questions is to determine the set

Lin = {u | f(u, n) = O(n) }

— see [AKV] and [Kl] for a partial solution.
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118 01 Praha 1, Czechoslovakia

(Received February 27, 1992, revised May 6, 1992)


