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Deformation of Banach spaces

Józef Banaś, Krzysztof Fra̧czek

Abstract. Using some moduli of convexity and smoothness we introduce a function which
allows us to measure the deformation of Banach spaces. A few properties of this function
are derived and its applicability in the geometric theory of Banach spaces is indicated.
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1. Introduction.

The aim of this paper is to introduce and to study a function which is a kind
of the modulus of deformation of Banach spaces. While the classical modulus of
convexity measures the rotundity of the unit sphere in a Banach space and the
modulus of smoothness classifies Banach spaces with respect to smoothness of their
unit spheres, so the modulus of deformation will allow us to measure simultaneously
both convexity and smoothness of a Banach space.
The mentioned modulus of deformation is introduced with help of the classical

Clarkson’s modulus of convexity [4] and the modulus of smoothness defined by the
first author a few years ago [2] (cf. also [3]).

2. Modulus of convexity and its properties.

Let (E, ‖ · ‖) be a given real Banach space with the zero element θ. Denote by
BE(x, r) the closed ball in E centered at x and with radius r. For simplicity, we
shall denote by BE or B the unit ball BE(θ, 1). Similarly, the symbol SE will stand
for the unit sphere of the space E.
Let us recall that the modulus of convexity introduced by Clarkson [4] is a func-

tion δE : [0, 2]→ [0, 1] defined in the following way:

δE(ε) = inf

[

1− ‖x+ y‖
2

: x, y ∈ BE , ‖x − y‖ ≥ ε

]

.

One can show that this modulus can be defined equivalently as

δE(ε) = inf

[

1− ‖x+ y‖
2

: x, y ∈ SE , ‖x − y‖ = ε

]

(see [5], for example).
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For further purposes let us recall a few properties of the function δE (cf. [1],
[7], [11]).
The number ε0(E) = sup[ε ≥ 0 : δE(ε) = 0] is called the characteristic of

convexity of a space E. A space E is referred to as uniformly convex provided
ε0(E) = 0. For example, the spaces lp and Lp are uniformly convex whenever
1 < p < ∞ [9].
The function δE is nondecreasing on the interval [0, 2] and is increasing on

[ε0(E), 2]. Moreover, δE is continuous on [0, 2) and may be discontinuous at the
point e = 2 only.
For any Banach space E, its modulus of convexity is bounded from above by the

modulus of convexity of a Hilbert space H [12],

(2.1) δE(ε) ≤ δH(ε) = 1−
(

1−
(ε

2

)2
)1/2

.

This means that Hilbert spaces are the most convex among all Banach spaces.

3. Modulus of smoothness.

Our goal in this section is to derive some properties of the modulus of smoothness
defined in the paper [2]. This modulus seems to be defined in a more natural way
than the modulus of smoothness due to Day [6].
Namely, for ε ∈ [0, 2], let us put

ρE(ε) = sup

[

1− ‖x+ y‖
2

: x, y ∈ SE , ‖x − y‖ ≤ ε

]

.

The function ρE will be called the modulus of smoothness of a space E.

Recall that E is a uniformly smooth Banach space if and only if limε→0
ρE(ε)

ε = 0.
Moreover (cf. [2]) the function ρE is increasing on the interval [0, 2] and ρE(ε) ≤ ε

2
for ε ∈ [0, 2]. It is easily seen that ρC(ε) =

ε
2 , where C = C[0, 1].

Using the parallelogram identity it is easy to show that

ρH(ε) = δH(ε) = 1−
(

1−
(ε

2

)2
)1/2

, ε ∈ [0, 2],

where H denotes an arbitrary Hilbert space.
On the other hand, repeating the argumentation from the paper [12] we can show

that for any Banach space the following estimate is true:

ρH(ε) ≤ ρE(ε)

for each ε ∈ [0, 2]. This yields

(3.1) 1−
(

1−
(ε

2

)2
)1/2

≤ ρE(ε) ≤
ε

2
,
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for every Banach space E.
The most important fact needed further on is contained in the following obvious

inequality

(3.2) δE(ε) ≤ ρE(ε), ε ∈ [0, 2],

which is valid for an arbitrary Banach space E.
The remainder of this section is devoted to show that the modulus of smoothness

ρE is continuous on the interval [0, 2].
We start with recalling some facts concerning the geometry of two-dimensional

Banach spaces [8]. Assume that x, y are linearly independent elements. The set
L = L(x, y) defined in the way

L(x, y) = {αx + βy : α ∈ R, β ≥ 0}

will be called two-dimensional half-plane (in the space E). In this case, x is said to
be diametral element of the half-plane L.
We have the following theorem.

Theorem 3.1. Let L denote the family of all two-dimensional half-planes in E.

Then

ρE(ε) = sup
L∈L ρL(ε), ε ∈ [0, 2].

The proof may be done in the same fashion as the proof of the same assertion
for the modulus of convexity (cf. [6], [8], [11]) and is therefore omitted.

In what follows, we shall also need the following lemma which is contained in the
proof of Theorem 2 in [8].

Lemma 3.1. Let ε1, ε2 be fixed positive numbers such that ε1 < ε2 < 2. Further
assume that y1, y2 are linearly independent elements of the unit sphere SE such that

‖y1 − y2‖ = ε2. Then in the half-plane L(y1, y2) there exist elements z1, z2 ∈ SE
such that

(

1− ‖y1 + y2‖
2

)

−
(

1− ‖z1 + z2‖
2

)

≤ 2
√
5 + 1

2
· ε2 − ε1

2− ε1
.

Now we are prepared to prove the main theorem of this section.

Theorem 3.2. The modulus of smoothness ρE(ε) is continuous on the interval
[0, 2].

Proof: Assume first that ε1, ε2 are fixed arbitrarily 0 < ε1 < ε2 < 2. Further,
let η > 0 be small enough. According to Theorem 3.1 we can find x, y ∈ SE ,
‖x − y‖ = ε2 such that

ρE(ε2)− η ≤ 1− ‖x+ y‖
2

≤ ρE(ε2) .
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Next, in view of Lemma 3.1, we can find two elements x1, y1 in the half-plane
L(x, y) such that x1, y1 ∈ SE , ‖x1 − y1‖ = ε1 and

(

1− ‖x+ y‖
2

)

−
(

1− ‖x1 + y1‖
2

)

≤ 2
√
5 + 1

2
· ε2 − ε1

2− ε1
.

Hence we get

ρE(ε2)− η −
(

1− ‖x1 + y1‖
2

)

≤ 2
√
5 + 1

2
· ε2 − ε1

2− ε1

or equivalently

ρE(ε2)−
(

1− ‖x1 + y1‖
2

)

≤ 2
√
5 + 1

2
· ε2 − ε1

2− ε1
+ η.

Hence, taking into account Theorem 3.1 we derive

ρE(ε2)− ρE(ε1) ≤
2
√
5 + 1

2
· ε2 − ε1

2− ε1
+ η.

Arbitrariness of the number η allows us to write

ρE(ε2)− ρE(ε1) ≤
2
√
5 + 1

2
· ε2 − ε1

2− ε1
.

The above inequality implies that the function ε → ρE(ε) is continuous on the
interval (0, 2).
In order to finish the proof, it is sufficient to notice that the continuity of the

modulus ρE at the endpoints ε = 0 and ε = 2 of the interval [0, 2] is a simple
consequence of the inequality (3.1). This completes the proof. �

It is worthwhile to mention that another proof of the continuity (from the left
side) of the modulus ρE has been given recently by Ullan [13]. He proved also some
relations between the modulus of smoothness ρE and the modulus introduced by
Day [6].

4. Modulus of deformation.

We start with introducing a function which is a kind of modulus of deformation.
Namely, let us consider the function dE : [0, 2]→ [0, 1] defined in the following way:

dE(ε) = ρE(ε)− δE(ε), ε ∈ [0, 2].

This function will be called the modulus of deformation of a space E.
Obviously in view of (3.2) we get that dE is a nonnegative function. So we can

formulate the following definition.
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Definition 4.1. Let E1, E2 be two Banach spaces. We say that E1 is deformed

less than E2 whenever

dE1(ε) ≤ dE2(ε)

for all ε ∈ [0, 2].
Now observe that in view of the inequalities (2.1) and (3.1) we can deduce the

following estimate

(4.1) 0 ≤ dE(ε) ≤
ε

2

for any ε ∈ [0, 2] and for every Banach space E.
It is easily seen that the equality sign may be attained on both sides of (4.1).

Indeed, if we take the space C = C[0, 1] with the standard maximum norm then it
is easy to calculate that

δC(ε) = 0 for ε ∈ [0, 2]

and
ρC(ε) =

ε

2
, ε ∈ [0, 2].

Thus dC(ε) =
ε
2 for any ε ∈ [0, 2],

On the other hand, take an arbitrary Hilbert spaceH . Then, taking into account
formulas for δH and ρH we obtain that

dH(ε) = 0, ε ∈ [0, 2].

This means that Hilbert spaces have the smallest deformation among all Banach
spaces while the space C is the worst with respect to the modulus of deformation.
In what follows we indicate some further properties of the modulus of deforma-

tion.
First of all let us notice that in view of Theorem 3.2 (cf. also Section 2) we

deduce that the modulus of deformation is continuous on the interval [0, 2) and
may be eventually discontinuous at the point ε = 2 only. Taking into account the
properties of the moduli δE and ρE we can state the following assertion:

The modulus dE is continuous at the point ε = 2 if and only if the
modulus of convexity δE is continuous at this point.

Particularly, if E is uniformly convex then dE is continuous on the whole interval
[0, 2].
Further let us observe that a space E is strictly convex if and only if dE(2) = 0.
Moreover, keeping in mind the inequality (2.1) we deduce easily that

lim
ε→0

dE(ε)

ε
= lim

ε→0

ρE(ε)

ε
.

Thus we derive the following assertion.
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Theorem 4.1. A Banach space E is uniformly smooth if and only if

lim
ε→0

dE(ε)

ε
= 0.

Finally let us observe that the function dE(ε) is increasing on the interval
[0, ε0(E)].
In order to illustrate our considerations let us take the following example.

Example 4.1. Fix a number λ, λ > 1, and consider the plane R
2 with the norm

‖ · ‖λ defined in the following way

‖(x1, x2)‖λ = max

{

λ|x1|,
√

x21 + x22

}

.

The space R
2 with the norm ‖ · ‖λ will be denoted by R

2
λ.

It can be calculated that the modulus of convexity of the space R
2
λ has the form

δ
R
2

λ
(ε) =























0 for 0 ≤ ε ≤ 2
√

1− 1
λ2

.

1− λ

√

1− ε2
4 for 2

√

1− 1
λ2

≤ ε ≤ 2λ√
1+λ2

.

1−
√

1− ε2

4λ2
for 2λ√

1+λ2
≤ ε ≤ 2.

Hence we obtain that ε0(R
2
λ) = 2

√

1− 1
λ2
, δ

R
2

λ
(2) = 1−

√

1− 1
λ2
.

Similarly, we can derive

ρ
R
2

λ
(ε) =











1−
√

1− ε2

4λ2
for 0 ≤ ε ≤ 2λ√

1+λ2
,

1− λ

√

1− ε2
4 for 2λ√

1+λ2
≤ ε ≤ 2.

It is easy to check (for example, in the case λ = 2) that the function d
R
2

λ
(ε) is

increasing on the interval [0, ε0(R
2
λ)], where ε0(R

2
λ) =

√
3.

Moreover, the function d
R
2

λ
(ε) is decreasing on the interval [

√
3, 4√

5
], which im-

plies that this function attains its local maximum at the point ε = ε0(R
2
λ).

By the way, it is easy to show that the function ε → δ
R
2

λ
(ε) is not convex on the

interval [0, 2] (cf. [10]).
In the light of the above example we can raise the following question.

Does the function ε → dE(ε) attain its local maximum at the point
ε = ε0(E)?
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