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Cotorsion-free algebras as endomorphism algebras in L

— the discrete and topological cases

R. Göbel, B. Goldsmith*

Abstract. The discrete algebras A over a commutative ring R which can be realized as the
full endomorphism algebra of a torsion-free R-module have been investigated by Dugas
and Göbel under the additional set-theoretic axiom of constructibility, V = L. Many
interesting results have been obtained for cotorsion-free algebras but the proofs involve
rather elaborate calculations in linear algebra. Here these results are rederived in a more
natural topological setting and substantial generalizations to topological algebras (which
could not be handled in the previous linear algebra approach) are obtained. The results
obtained are independent of the usual Zermelo-Fraenkel set theory ZFC.
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1. Introduction.

The question of which rings can occur as endomorphism rings of torsion-free Abelian
groups and modules has attracted considerable interest ever since the result of
A.L.S. Corner in 1963 in [1]: Every countable, reduced, torsion-free ring is the
endomorphism ring of a countable, reduced, torsion-free Abelian group. This re-
sult has been substantially generalized in the last eight years using techniques from
model theory and set theory; see e.g. [3], [4], [5] and the references therein. One
of the first major breakthroughs came in the work of Dugas and Göbel [4] in 1982;
having introduced the notion of a cotorsion-free module they succeeded in showing
that every cotorsion-free ring is an endomorphism ring. Their approach was based
on the set-theoretic axiom V = L and derived from earlier work of Eklof and Mek-
ler [8] on the construction of indecomposable groups. Both of the works [4] and [8]
are essentially based on linear algebra and require rather elaborate calculations.
Subsequent work (see [3], [6], [11], [12] and [13]) has indicated that a topological
setting using completions seems more natural. This is not too surprising when one
considers that cotorsion-free is a topological notion. The purpose of the first part
of the present work is to derive, in V = L, results similar to the main result of [4]
in a much simpler and concise form. Specifically the complicated calculations in
linear algebra are discarded and the results are obtained in a fashion which shows
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their natural relation with similar work on p-groups, mixed groups and torsion-free
modules over complete discrete valuation rings.
Recall that, for a cardinal κ, an R-module G is said to be κ-free if every submo-

dule of cardinality less than κ is contained in a free submodule of G. An R-module
G is said to be strongly κ-free if G is κ-free and any submodule of cardinality less
than κ is contained in a submodule U of the same cardinality, where G/U is κ-free.
We will show the following

Theorem 1 (V = L). If κ is a regular, not weakly compact cardinal > |A|, where
A is an R-algebra which as R-module is cotorsion-free, then there exists a family of
2κ strongly κ-free A-modules Hα

κ of size κ (α < 2κ) such that

(i) EndR(H
α
κ ) = A

(ii) if (α, κ) 6= (β, λ) then every R-homomorphism : Hα
κ → Hβ

λ
is trivial.

Moreover if A is free as an R-module, then each Hα
κ is a strongly κ-free R-module.

Here, as throughout, End(G) = EndR(G) denotes the algebra ofR-endomorphisms
of the R-module G.
The consequences of such a discrete realization theorem for direct decompositions

are by now widely known. It suffices to say that one can derive the usual pathological
decompositions from a result such as the above by suitable choice of the algebra A;
see [3] for details of such pathologies. Moreover the existence of rigid families of
maximal size and rigid proper classes in both the discrete and topological cases
is easily deduced (cf. [11]). It follows, of course (see [7]), that such results are
independent of the usual ZFC axioms of set theory.
As a consequence of our more elementary proof of Theorem 1, it is also possible

and quite easy to extend this to obtain a topological realization theorem. This
was impossible in [4] because of the difficulties arising from the “linear algebra
approach”. Recall some standard definitions from the corresponding topological
theorems in ZFC; see [3], [7].
The finite topology fin on End(H) is the linear topology having the annihilators

UE = {σ ∈ End(H) | Eσ = 0}

of all finite subsets E of H as a basis of neighbourhoods of 0. Then (End(H), fin)
is a complete topological endomorphism algebra, End(H)/UE is cotorsion-free if H
is cotorsion-free and

⋂
UE = 0. We now derive the converse.

Theorem 2 (V = L). Let (A, τ) be a topological R-algebra A with complete
Hausdorff topology τ which admits a basis N of neighbourhoods of 0 such that
each N ∈ N is a right ideal of A with A/N cotorsion-free. Let κ be any regular,
not weakly compact cardinal with κ > ρ =

∑
N∈N |A/N | · |N |. Then there exists

a strongly κ-⊕N A/N -module H such that

(End(H), fin) ∼= (A, τ)

is a topological isomorphism.
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Remarks. “Strongly κ-⊕N A/N” is an obvious generalization of strongly κ-free:
each submodule U of H of cardinality < κ is contained in a direct sum of < κ copies
of A/N with quotient isomorphic to some submodule of ⊕ (⊕N A/N). If κ = ℵ1,
then V = L can be replaced by 2ℵ0 < 2ℵ1 ; see [4] for the obvious changes and
set-theoretic details involving weak diamonds. Theorem 1 follows from Theorem 2
if 0 ∈ N and τ becomes discrete; e.g. put N = {0}.

Finally we apply our topological realization Theorem 2 to derive the existence
of some very decomposable almost free abelian groups. A proof of the existence of
such groups was expected some time ago but is apparently new. We use the rings
A of size κ described by Corner in [2]: Observe that A/N is free for each N ∈ N
(see [2]). Hence ⊕ ⊕N A/N is free and the module H obtained from Theorem 2 is
strongly κ-free. The topological isomorphism and the basic properties of A ensure
that H is κ-decomposable, i.e. every non-zero summand of H is a direct sum of κ
non-zero summands. It is remarkable that H is “almost free” on the one hand but
on the other is κ-decomposable which is a strong measure of being not free.
In conclusion we would like to make the following observation. Comparison of the

principal results in e.g. [4] and [5] or in [3] and the present paper, make it tempting
to conjecture that there should be a general theorem — possibly stated in terms of
model theory or categories — which transports existence results (such as realization
theorems) in ZFC to stronger existence theorems (having more restrictions towards
freeness) in V = L and vice versa.

2. Algebraic preliminaries.

We shall assume throughout that R is a fixed non-zero commutative ring with 1,
with a given countable multiplicatively closed subset S of non-zero divisors such
that 1 ∈ S. R shall always be S-reduced i.e.

⋂
s∈S sR = 0. Recall that S-topology

on an R-module M has the submodules {sM : s ∈ S} as a basis of neighbourhoods
of zero. Such a topology is, of course, Hausdorff precisely if

⋂
s∈S sM = 0. This is

equivalent, in algebraic terminology, to saying thatM is S-reduced. We shall denote
the completion of an S-reduced R-module M (in S-topology) by M̂ . Similarly one
may define the notions of S-pure, S-divisible, S-torsion-free etc. (cf. [3], [4] where
such notions have been used extensively). Since the set S is fixed throughout no
ambiguity will arise if we drop the prefix S from the above terms. If the elements of
S are labelled as {s1, s2, . . . }, then we form the elements qn (n ∈ ω) of S by setting
qn =

∏n
i=1 si; observe that qm/qn is well defined if m ≥ n.

Recall that if M is any torsion-free R-module then M is said to be cotorsion-
free provided Hom(R̂, M) = 0, where R̂ denotes the completion of R. If Â is the

completion of a torsion-free reduced R-algebra A, then every element of Â is a limit
of a Cauchy sequence of elements of A and so we may represent an element a ∈ Â
by a =

∑
n<ω antn where an ∈ A, tn ∈ S and for each k, qk | tn for almost all n.

We shall assume throughout that A is cotorsion-free.
Let F = ⊕i∈IeiA be a free A-module and x ∈ F . The support [x] of x (with

respect to the given decomposition of F ) is defined by

[x] = {i ∈ I : ai 6= 0 where x =
∑

eiai}.
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Clearly [x] is a finite subset of I. Moreover if y ∈ F̂ then it is well known that

y may be represented uniquely as y =
∑

eiai where ai ∈ Â and {ai} is a null
sequence. Thus the support of y may be defined in a similar manner and in this
case [y] is a countable subset of I. More generally if X is a subset of F̂ , we may
define [X ] =

⋃
x∈X [x]. If φ ∈ EndR(F ) and G is a submodule of F , then we define

the φ-closure of G as follows:
Let I0 = [G], In+1 = In ∪ [{ejaφ : j ∈ In, a ∈ A}] and set Iω =

⋃
n<ω In. Then

the φ-closure of G is defined by Gcφ = ⊕i∈Iω
eiA. Clearly G ≤ Gcφ and the latter

is a canonical summand of F which is invariant under φ. Moreover if G has infinite
rank ≥ |A| then Gcφ has rank equal to rk(G).

Our algebraic terminology and notation is standard following Fuchs [10] with
the exceptions that maps are written on the right and [ denotes a direct summand.
Terminology and notation relating to set theory may be found in the standard work
of Jech [13].

Constructions of the type we are interested in separate nicely in V = L into two
distinct phases: algebraic step-lemmas and combinatorial set-theoretic arguments.
We now derive the necessary algebraic step-lemmas.

3. Step-Lemmas for discrete realizations.

Let F be a free A-module with a strictly increasing chain of summands {Fn}, say

Fn+1 = Fn ⊕ Dn, so that F = F0 ⊕ D where D = ⊕n<ωDn. An element y ∈ F̂ is
said to be a branch (relative to the chain of summands) if there exist basis elements
ei in F \ F0 with y =

∑
eiqi such that the set {n | ei ∈ Dn for some i} is infinite.

An element z in F̂ is said to be branch-like if z = y + x, where x = x̄π with
x̄ ∈ F , π ∈ R̂ and y is a branch satisfying [y] ∩ [x] = ∅. There is a clear similarity
between the branch elements introduced above and the concept of branch used in
ZFC constructions such as [3]; similar constructions in V = L have been used by
the present authors in [12].

Lemma 1. Let F be a free A-module with strictly increasing chain of summands
{Fn} and y ∈ F̂ a branch. Then the submodule F ′ = 〈F, yA〉∗ of F̂ is a free
A-module and Fn [ F

′ for all n.

Proof: Let F = F0 ⊕ ⊕n<ωDn and suppose y =
∑

eiqi is a branch. For each n
let In = {i | ei ∈ Dn}; so Dn = ⊕i∈In

eiA ⊕ Cn. Thus F = ⊕enA ⊕ ⊕Cn ⊕ F0 =
⊕enA ⊕ F ∗ say. For convenience we shall write B = ⊕n<ω enA. Now define
elements yn ∈ B̂ by yn =

∑
j≥n ejqj/qn and note that y0 = y. We claim that the

pure submodule F ′ of F is equal to X = F ∗ ⊕ ⊕n<ω ynA.

It is a simple (and standard) exercise to see that the sum in X is direct. Moreover
since yn − sn+1y

n+1 = en ∈ F , it is immediate that F ≤ X . The purification of
〈F, yA〉 ensures that X is contained in F ′ and so it suffices to establish the reverse
inclusion. If g ∈ F ′ then we have qNg = f + ya for some a ∈ A, f ∈ F and N < ω.
However

qNyN = y − (e0 + · · ·+ eN−1qN−1) and so qN (g − yNa) ∈ F.
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It follows immediately from the purity of F in F̂ that g = yNa+f0 for some f0 ∈ F .
Since F ≤ X we conclude that F ′ ≤ X .
It remains only to show that Fn [ F

′ for all n and it clearly suffices to show that
for any N , ⊕j<N ejA is a direct summand of ⊕j<ω yjA. We establish this directly
by showing that

⊕j<ω yjA = ⊕j<N ejA ⊕ ⊕j≥N yjA.

Observe firstly that the sum on the RHS is direct: this follows immediately by
examining supports. Moreover as ej = yj − sj+1y

j+1 we can deduce that RHS ⊆

LHS. Thus it only remains to show that for i < N , y ∈ RHS. But yN−1− sNyN =
eN−1 and so yN1 ∈ RHS. Repeating this argument we get yN−2 − sN−1y

N−1 =

eN−2 and so yn−2 is also in RHS. Continuing this process completes the proof. �

Step-Lemma A. Let F be a free A-module with a strictly ascending chain of
summands {Fn}. If φ : F → G is a non-zero homomorphism into a cotorsion-free
A-module G, then there exists a free A-module F ′ containing F such that

(i) F ′/F is a torsion-free, divisible rank one A-module
(ii) φ does not extend to a homomorphism : F ′ → G
(iii) Fn [ F

′ for all n < ω.

Proof: If there is a branch y ∈ F̂ with yφ /∈ G, choose F ′ = 〈F, yA〉∗ ≤ F̂ . The
result then follows from Lemma 1. If no such branch exists then yφ ∈ G for all
branches y ∈ F̂ . Since φ is non-zero, there exists x ∈ F with xφ 6= 0. However
G cotorsion-free implies that, for some π ∈ R̂, (xπ)φ is not in G. (We are here

identifying xπ in a natural way as an element of F̂ .) Choose a branch element
b =

∑
n<ω enqn such that [b]∩ [x] = ∅; this is clearly possible since [x] is a finite set.

Define for each k < ω, bk =
∑

n≥k enqn/qk and note that b0 = b. The element π is

in R̂ and there will be no loss of generality in assuming π has the form
∑

n<ω rnqn

with rn ∈ R; set, for each k < ω, πk =
∑

n≥k rnqn/qk and define xk = xπk ∈ F̂ .

Note that x0 = xπ. Consider now the elements of F̂ given by zk = xk+bk. A simple
calculation shows that

zn − sn+1zn+1 = en + rnx.

Let F = ⊕n<ω enA ⊕ F ∗; observe that qnxn − qn+1xn+1 ∈ F ∗.

Set F ′ = 〈F, z0A〉∗ ≤ F̂ ; we claim that F ′ has the required properties. Properties
(i) and (ii) are immediate as z0φ = x0φ+ bφ /∈ G and so we only need to verify that
F ′ is free and Fn [ F

′ for all n.
We show freeness directly by proving that F ′ = X , where X = F ∗⊕ ⊕n<ω znA.

It is a straightforward exercise to show that the sum on the RHS above is direct.
Moreover since zn − sn+1zn+1 = en + rnx and rnx ∈ F ∗, it follows that F ≤ X .
Next observe that for each n, zn ∈ F ′. This follows by direct calculation: qnzn =
qnxn+qnbn and qnbn = b+fn where fn ∈ F . Hence we have qnzn = b+fn+qnxn =
b + fn + (qnxn − x0) + x0. But we also have qnxn − x0 = rx for some r ∈ R and
so we conclude that qnzn = (b + x0) + f̄ where f̄ ∈ F . Thus zn ∈ 〈F, z0A〉∗ as
claimed. The final step in showing X = F ′ is to establish that F ′ ≤ X . So suppose
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g ∈ F ′, then qng = f + z0a for some n < ω, f ∈ F , a ∈ A. But z0 = qnzn − f̄ and
so qng = qnzn − f̄ + f . Thus we have qn(g − zn) = f − f̄ ∈ F . Now purity of F in

F̂ gives g − zn ∈ F and so, since F ≤ X , g ∈ X as required.
Our proof of the Step-Lemma will be completed by showing Fn [ F

′ for all n. For
this it clearly suffices to show that ⊕i<n eiA [ X for each n. Again we show this
directly by establishing the decomposition

X = F ∗ ⊕ ⊕i<n eiA ⊕⊕i≥n ziA.

Observe firstly, by a simple support argument, that this sum is direct and that the
RHS is certainly in X . It then suffices to show that zi ∈ RHS for i < n. However

zn−1 − snzn = (xn−1 − snxn) + (b
n−1 − snbn) = xrn−1 + en−1

= en−1 + f where f = xrn−1 ∈ F ∗.

Thus zn−1 = en−1 + snzn + f ∈ RHS. Repeating this argument we obtain zn−2 −
sn−1zn−1 = en−2 + f1, etc. This completes the proof. �

An examination of the argument in the last portion of the above Step-Lemma
shows that we have the following corollary (cf. [13, Lemma 2]).

Corollary. If F is a free A-module with a strictly ascending chain of summands
{Fn} and the pair (z, y) is branch-like, then F ′ = 〈F, zA〉∗ ≤ F̂ is a free A-module
and Fn [ F

′ for all n < ω.

Lemma 2. Let F be a free A-module and φ ∈ End(F ) \ A, then there exists
a canonical summand P of F such that
(i) rk(P ) ≤ |A|, (ii) φP = φ ↾ P ∈ End(P ), (iii) φP /∈ A.

Proof: Suppose Lemma 2 does not hold and let B be any free summand of F of
rank ≤ |A|. Set B0 = Bcφ, the φ-closure of B. Clearly B0 is a canonical summand
of F and satisfies (i) and (ii). Thus φ ↾ B0 ∈ A by hypothesis; say φ ↾ B0 = a.
Since φ ∈ End(F ) \ A, there is an x ∈ F such that x(φ − a) is non-zero. Let

B1 = 〈B0, xA〉cφ, a canonical summand of F which clearly satisfies (i) and (ii). By
assumption φ ↾ B1 ∈ A and since B0 ⊆ B1, we conclude that φ ↾ B1 = a. But then
x(φ − a) = 0 — a contradiction. This establishes the lemma. �

For further reference we point out (without proof) the following rather simple
result on purity.

Lemma 3. If F is a free A-module of infinite rank then A is pure in End(F ).

If F has rank ≤ |A|, we can choose P = F . Hence we may assume that F has
infinite rank.

Step-Lemma B. Let F be a free A-module of rank > |A|, with a strictly ascending
chain of summands {Fn} and suppose φ ∈ End(F ) \ A. Then there exists a free
A-module F ′ containing F such that

(i) F ′/F is a torsion-free, divisible rank one A-module
(ii) φ does not extend to an endomorphism of F ′

(iii) Fn [ F
′ for all n < ω.
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Proof: By assumption and Lemma 2 we may write F = P ⊕ B where P is a φ-
canonical summand and B has the same rank as F . If there is a branch element
y with respect to {Fn} in B̂ with yφ /∈ 〈B, yA〉∗ ≤ F̂ , then we choose F ′ =

P ⊕ 〈B, yA〉∗ ≤ F̂ and the result follows from Lemma 1. So suppose that no such

branch y exists. Then for every branch y ∈ B̂ there exists a pair (n, a) ∈ ω × A
such that y(snφ − a) ∈ B. However it follows from Lemma 3 that snφ− a 6= 0 and

so, since A is cotorsion-free and P is a free A-module, there is an xna in P̂ of the
form xπ(x ∈ P, π ∈ R̂) such that such that xna(snφ − a) ∈ P̂ \ P . Now consider

the branch-like pair (z, y) where z = y + xna. We claim zφ /∈ 〈F, zA〉∗ ≤ F̂ . For
if not, there exists a pair (m, c) ∈ ω × A such that z(smφ − c) ∈ F . By absorbing
appropriate multiples there is no loss in assuming n = m. So (y + xna)(snφ − c) ∈
P ⊕ B. However y(snφ − a) ∈ B and so on subtracting we get

y(a − c) + xna(snφ − c) ∈ P ⊕ B.

But xna ∈ P̂ and P is φ-invariant, hence xna(snφ − c) ∈ P̂ and y(a − c) ∈ B̂.

However y(a − c) ∈ B̂ \ B unless a = c, since y is a branch. Hence a = c follows

and xna(snφ − c) = xna(snφ − a) ∈ P̂ ∩ P ⊕ B = P — a contradiction. Since
the pair (z, y) is branch-like, it follows from the Corollary to Step-Lemma A that

F ′ = 〈F, zA〉∗ ≤ F̂ has the desired properties. This completes the proof. �

4. Step-Lemmas for topological realizations.

In order to adopt part of [3], we make some further adjustments to our notation.
Let κ be a regular cardinal greater than ρ =

∑
n∈N |A/N | · |N |, with A, N as in

Theorem 2. Let (α, N) ∈ κ × N be a generator of an A-algebra (α, N)A with
Ann(α, N) = N . Define

F [N ] = ⊕α∈κ(α, N)A and F = ⊕N∈NF [N ].

Observe that A ⊆ EndF can be identified by scalar multiplication. Also A/N is
cotorsion-free and S ⊆ R (as in § 2) gives rise to S-topology on A/N and on F .

As usual we denote the S-completion of F by F̂ . Supports now refer to κ only:
if f ∈ F̂ , then f =

∑
(αn, Nn)an with an ∈ (A/Nn)̂ and we denote the support

of f by [f ] = {αn ∈ κ | an ∈ (A/Nn)̂ \ {0}}. A direct summand D of F will be
called a (topological) canonical summand if there exists I ⊆ κ with |I| ≤ ρ and
D = ⊕N ⊕α∈I (α, N)A.

We are interested in the case where F is the union of a strictly increasing chain
{Fn} (n ∈ ω) of summands, say F =

⋃
n∈ω Fn, D = ⊕n∈ωDn, Fn+1 = Fn ⊕ Dn

and Dn = ⊕m≥nDm. An element y ∈ F̂ of the form y =
∑

i∈ω eiqi with ei ∈ Dn

for large enough i, will be called a branch. Moreover if N ∈ N and ei ∈ F [N ],

then y is called an N -branch of F̂ . An element z ∈ F̂ is said to be N -branch-like,
provided z = y + x with y an N -branch, x ∈ (F [N ])̂ and [x] ∩ [y] = ∅.
The crucial algebraic step for Theorem 2 is the following
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Step-Lemma B∗. Let F, Fn (n ∈ ω) be as above and suppose φ ∈ EndF \ A.

Then there exist N ∈ N and an N -branch-like element z ∈ F̂ such that

(i) F ′ = 〈F, zA〉∗ ≤ F̂ is isomorphic to F
(ii) φ does not extend to an endomorphism of F ′

(iii) Fn [ F
′ for all n ∈ ω.

Proof: We provide only an outline of the proof; it is a combination of ideas from
Step-Lemma B and [3], Lemmas 4.5 and 4.6. The essential steps are as follows:
suppose φ ∈ EndF \ A. An examination of the proof of Lemma 4.5 in [3] shows
that, in the notation above, there exist N ∈ N and a canonical submodule P ⊆ F
such that the following property (∗) holds:

P̂ [N ](sφ − a) * F for all (s, a) ∈ S × A with s = 1 or a /∈ sA+N.

Using the Corollary to Step-Lemma A and the arguments from the proof of
Lemma 4.6 in [3] with (∗) in place of (4.5), we derive the existence of an N -branch-
like element z having the appropriate properties to ensure (i), (ii) and (iii) hold.

�

5. The combinatorics.

The construction of the modules with the properties stated in Theorems 1 and 2
follows now in a very standard fashion. It is only at this point that the hypothesis
V = L is used and then indirectly in the form of Jensen’s Diamond Principle.
Since the construction is by now routine we omit the details and refer the reader to
such works as [4], [6], [8], [11] and [12] where the combinatorics and the inductive
construction are worked out in detail.
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