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Bifurcation for some semilinear elliptic equations
when the linearization has no eigenvalues

WOLFGANG ROTHER

Abstract. We prove existence and bifurcation results for a semilinear eigenvalue problem
in RV (N > 2), where the linearization — A has no eigenvalues. In particular, we show
that under rather weak assumptions on the coefficients A = 0 is a bifurcation point for this
problem in H', H2 and L? (2 < p < o0).

Keywords: bifurcation point, variational method, eigenvalues, exponential decay, standing
waves

Classification: 35P30, 35A30

1. Introduction and presentation of the results.

In the present paper, we consider the nonlinear eigenvalue problem
(1.1) — A u—q(@)|ul" w4+ r(2)|ul’u = du in RY,

where N > 2 and o7 and o9 are positive constants such that o7 < 4/N. In
particular, we are interested in the question if A = 0 is a bifurcation point for the
equation (1.1).

Since the problem (1.1) is considered in RY, the linearization — A has no eigen-
values and A = 0 is the infimum of the spectrum of — A. In case that r = 0, this
problem has been studied by many authors. See for instance [5]-[7], [9], [13]-[18]
and the literature quoted therein. In case that r # 0, we only know some existence
results for the equation (1.1) (see [1], [2], [8] and [12]), but no bifurcation results.
In the following, we will close this gap by presenting some bifurcation results for
the general case.

We always assume that the functions ¢ and r satisfy the subsequent conditions:

(A) The functions ¢,7 : RN — R are measurable and r fulfills r(z) > 0 for
almost all z € RY.

(B) There exist a constant 0 < a < 2 — (61 N/2) and an open ball B ¢ R,
satisfying B # () and 0 ¢ B (B is the closure of B), such that q(z) > f(z)|z|™®
holds for almost all € ¢, where ¢ = {tz;t > 1,2 € B} and f : ( — [0,00) is
a measurable function satisfying f(z) — oo as |z| — oc.

Moreover, we assume that there exists a constant K such that

r(z) < Klz/® holds for almost all z € ¢,
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where b is defined by b = (2 — a)(02/01) — 2.
(C) The functions r and g— = min(g, 0) are locally integrable.
(D) The function g+ = max(q,0) can be written as ¢+ = ¢1 + g2, where
(D1) the function ¢ satisfies 0 < ¢; € L®, and ¢1(z) tends uniformly to zero
as |z| — oo,
(D2) and the function go satisfies 0 < ga € LP° for some constant
2N/(4—01N) < pg < 0.

We want to point out that the above assumptions allow the function ¢ to decay
exponentially to —oo or faster in some direction, and allow the function r to increase
exponentially to +o0o or faster in some direction.

Theorem 1.1. Suppose that the functions q and r satisfy the assumptions (A)—(D)
and that the constant a is defined as in condition (B). Then, there exists a constant
ta € (0,00], depending on a, such that for each i € (0, ) there exists a nonpositive
constant \(u) and a nontrivial nonnegative function u, € H* N L> which solves
equation (1.1) in the sense of distributions. In case that a = 2 — (01N /2), we have
pta = 00. Moreover, it follows that A(;) — 0, ||uy| g1 — 0 and, if p € [2,00], that
|uullp — 0 as u — 0. Hence, A = 0 is a bifurcation point for equation (1.1) in H?!
and in LP for p € [2, c0].

Corollary 1.2. (a) Ifq_,r € L} _ holds for some constant p > N/2, then uy is
positive and locally Holder continuous.

(b) If ¢ and r are locally Holder continuous, then we have u, € C? and the
equation (1.1) holds in the classical sense.

Corollary 1.3. Suppose in addition to (A)—(D) that pg > 2 and that q,r € L™ +
L2. Then, it follows that u, € H? and that ||uy| g2 — 0 as u — 0. Thus, A = 0 is
a bifurcation point for (1.1) in H?.

Remark 1.4. In case that » = 0, Corollary 1.3 improves Theorem 2.6 (c) in [13].
In [13] it is assumed that ¢ is nonnegative, that ¢ = ¢+ satisfies condition (D) and
that pg > 2. Moreover, it is assumed

(i) that there exist constants A > 0 and 0 < ¢ < 2 — (01N/2) such that
q(z) > A(1 4 |z|)~ holds a.e. in RN, In case that N > 3 the author requires
additionally

(ii) that o1 < 2/(N —2) and pg > 2N/(2 — 01(N — 2)). Hence, Corollary 1.3
shows that the condition (i) can be weakened considerably and that condition (ii)
is superfluous.

The solutions of the equation (1.1) supply standing waves for nonlinear Klein-
Gordon and Schrédinger equations. So, from the standpoint of physics it is an
interesting question if the solutions of (1.1) decay exponentially to 0 at infinity.

For the proof of the exponential decay to 0 we need an additional assumption:

(E) There exists a constant Ry > 0 such that go satisfies

g2(x) =0 for almost all |z| > Ry.
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Theorem 1.5. Suppose that oo < o1 and that the functions q and r satisfy the as-
sumptions (A)—(E). Then, for each yn € (0, puq) the function u,, decays exponentially
to 0 at infinity.

Theorem 1.6. Suppose that 01 < o9 and that the functions q and r satisfy the
assumptions (A)—(E). Then, there exists a decreasing sequence () C (0, f1g) such
that limy,—oo ptn, = 0 and uy,, decays exponentially to 0 at infinity.

The proofs for Theorem 1.5-1.6 can be found in §4.

2. Some preliminaries.

For p € [1,00], LP = LP(RY) and Ly . = Lfoc(RN) are the usual Lebesgue
spaces and || - ||p is the norm on LP. If 1 < p < oo, then the dual index p’
of p is defined by p’ = p/(p — 1). Furthermore, H* (k = 1,2) is the Hilbert space
HERN) = Wk2(RN). The norm on H' is given by |[ul| ;1 = (||Vu||3+|ul3)*/? and
the norm on H2 by ||ull g2 = (|| & ul|3+ || vul3+|u|3)}/2. Finally, C§° = C5°(RY)
denotes the set of all functions which have compact support and derivatives of any
order.

If N = 2, then it follows from the Sobolev imbedding theorem that for each
p € [2,00) there exists a constant A, such that

(2.1) lullp < Apllull 1 holds for all u e H.

In case that N > 3, we define 2* = 2N/(N — 2). Then, there exists a constant
Cp such that

(2.2) lullax < Co||Vullz holds for all u e HY.
In particular we see that for each p € [2,2*] there exists a constant B), such that
(2.3) |ullp < Bpllul|g1 holds for all u e H'.

Let F be one of the Banach spaces H, H2 or LP. Then a real number \ is called
a bifurcation point for the equation (1.1) in F if and only if there exists a sequence
(An,un) C R x F such that up £ 0, Ay, — A, |lunllp — 0 (n — o0) and

/VunVLpd:c—/q|un|01untpd:c—|—/T|un|02un<pdz:/\n/un<pdz

holds for all ¢ € C§° and n € N.
When the domain of integration is not indicated, it is understood to be RN .

Lemma 2.1. Let v € H! be a nonnegative function. Then, there exists a sequence
(¢n) of nonnegative functions ¢, € C§° such that

Ynp — v Iin H'.

PRrOOF: The functions 1, (n € N) may be chosen such that n, € Cg°, 0 < n, <1,
nn(z) = 1 holds for |z] < n, ny(z) =01if [z] > n+ 1 and ||Vnllec < C, where the
constant C' is independent of n. Then 7,v — v in H'.

For a function u € Llloc’ the regularization u. may be defined as in [3, p. 147].
Then, we can find a sequence (gy,) of positive numbers ey, satisfying e, — 0, such
that ¢, = (Nuv)e, — v in HL. O
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Lemma 2.2. Let v € H! be a nonnegative function and, for t > 0, v; may be
defined by vy = min(v,t). Then it follows that v; € H', d;u; = 0;v holds almost
everywhere in {z;v(z) <t} and d;vs = 0 holds almost everywhere in {z;v(x) > t}.
Moreover, for each s € [1,00), we have 0 < vj € H N L>™ and Ovf = svf_laivt
(i=1,...N).

PROOF: The first part of the lemma follows from Lemma 1.1 in [10] and Theorem 7.8
in [3]. The functions 7, and the regularizations u. may be defined as in the proof
of Lemma 2.1. Then, there exists a sequence of positive numbers (ey,) such that
en, — 0 and

on = (Mnvt)e, — v¢ in H'

Here, the functions ¢y, satisfy ¢, € C3° and 0 < ¢, < t. Since @, — vt in L2, we
can find a subsequence (¢, (1)) of (¢n) such that ¢, (z) — vi(z) for almost all

zeRN.
Now, suppose that s > 1. Then it follows that ¢ (k) € C& and that

s s—1
8Z<Pn(k) = S‘Pn(k)ai(pn(k) :

Moreover, since |vj — ‘sz(k)| < slvg — wn(k)|t8_1, we see that ‘sz(k) — v in L2
Hence, we obtain: d;v] = svf_l(?ivt. O
The following lemma can be found in [11, p. 93].

Lemma 2.3. Suppose that ¢(t) (t € [tg,00)) is a nonnegative and nonincreasing
function such that ¢(h) < C(h —t)~V¢(t)® holds for all h > t > to. The constants
~v and C' are assumed to be positive and § may satisfy § > 1. Then, for d =
CVYp(tg)O—D/728/(0=1) jt follows that o(tg + d) = 0.

3. Proof of the main results.

In the present paragraph, we will prove Theorem 1.1 and Corollary 1.2-1.3. We
start with

Lemma 3.1. There exist positive constants « and 3, and for each € > 0 a constant
K. > 0, such that

_ 2
@+ o)™ [ arlu o do < effvul + e (Julf + Jul3)

holds for all u € H!.

ProoOF: For € = %, the proof can be found in [5, pp. 568-569]. For general ¢ > 0,
the proof proceeds quite similarly. O

The nonlinear functional £ may be defined by
1
) =3 [ IvulPdo = @+o0) [ aluptor ds

+ 2+ 02)_1 /T|u|2+02 dz.
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By D, we denote the set
D={ue H; / lg—||u|>T7t dz < 0o and /7"|u|2+‘72 dz < oo}
Moreover, for 4 > 0, we define D, = {u € D; |lul]2 < p}. Then, according to

Lemma 3.1, we see that I(u) = inf,ecp, {(u) is a well defined real number.

Lemma 3.2. (a) Suppose that the constant a in condition (B) satisfies a = 2 —
(01N/2). Then it follows that I(y) < 0 holds for all > 0.

(b) Suppose that a < 2 — (01N/2). Then, there exists a constant ug > 0 such that
I(p) < 0 holds for all p € (0, pg,)-

Remark 3.3. In the following, we define pq = 0o if a = 2 — (01 N/2).

PrROOF OF LEMMA 3.2: The ball B may be defined as in condition (B) and v
may be a positive constant. Then, the function ¢y € C§°® may be chosen such
that supp g C B and ||¢o|l2 = v. Moreover, for each t > 1, we define ¢¢(x) =
thpo(t~1z), where k = (a — 2)/o1. Since |lg¢lla = vtFT(V/2) | we see that ¢; €
Dytk+(N/2) and that

_o/1
I(Utk+(N/2)) < E(pr) = (26N 2(§/|V900($)|2 da
=0 @) [ )l de
+ t2tkoz(g 4 gp) 7t / r(tx)| o (x) |22 dx)
B
/1
< N2 (2 [ o) ds
- it f(e)@+ o) [ al o) ds
r€EB B
+@+ a2 [ falllo(e)2 do).
B

Since inf,cp f(tx) — oo as t — oo, we can find a constant ¢ty > 1 such that
(3.1) I(l/tk+(N/2)) < 0 holds for all ¢ > .

Now, suppose that a = 2 — (61 N/2). Then, we have k + (N/2) = 0. Hence, the
part (a) of the lemma follows from (3.1) for ¥ = p. In case that a < 2 — (01.N/2),
we have k 4+ (N/2) < 0. Then, the assertion of the part (b) follows from (3.1) if we

define v =1, pg = tg+(N/2) and p = thT(V/2), 0
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Lemma 3.4. For each p € (0, p4) there exists a function u, € D, such that
up 2 0, lupll2 > 0 and §(uy) = I(p).

PROOF: Let p € (0, ug), and (vy,) C D may be a sequence such that &(vy,) — I(u).
Then, we may assume without restriction that £(vy,) < 0 and that v, > 0 holds for
all n. Hence, we obtain from Lemma 3.1:

1 —

1venld+ @+o0)7 [ lofonf do
(3.2)

+ (24097t / Flon 2Tt de < K1/4(u2+a )

Since (vy,) is bounded in H', we can find a subsequence of (v,), still denoted by
(vn), and a uy, € H! such that v, — wu, in H! and vy (z) — uy(x) for almost
w

all z € RN, Then, it follows from the uniform boundedness principle, (3.2) and
Fatou’s lemma that ||uyl|2 < p, || Vuyll2 < liminf [ Vug,||2,

/ |q_||uu|2+01 dx < liminf/ lg—|[on|?FoL dz < oo

and
/r|uu|2+02 dx < liminf/ 7o) T2 dz < co.

Moreover, we see that u, > 0. Since the imbedding H'(G) — L2Ho0r (@) is
compact for all bounded balls G and ¢1(z) — 0 as |x| — oo, it follows that

/q+|vn|2+°1 dx — /q_‘_|uu|2""a1 dx  (see [5, p. 570]).
Moreover, we obtain
I() < €(uy) < liminf €(vn) = I(1) < 0

and consequently that &(u,) = I(p) and ||uyl/2 > 0. O

Lemma 3.5. For pu € (0, uq), the function u, may be chosen as in Lemma 3.4.
Then, it follows that

/VuMVgod:v—/q|uu|01uug0dx+/r|uu|°2uugpdgc:/\(u)/uugodx

holds for all functions ¢ € C§°, where
3G9 = ol (1900l = [l 200 o+ [ i 200 do).

PRrOOF: Let ¢ € C5°. Then d&(|juy||2|luu. + scpHQ_l(uM + ep))/de | e=o= 0 implies
the assertion. |
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Lemma 3.6. The constant A(;) may be defined as in Lemma 3.5. Then, we have
A(p) <0.

PrOOF: For all t € (0, 1], we have
Elup) = I(p) < I(t) < E(tuy).
Hence A(u) = Huu||2_2d§(tuu)/dt | t=1< 0 implies the assertion. O

Proposition 3.7. The constants « and 3 may be chosen as in Lemma 3.1. Then,
there exists a constant C such that

)| < Cu® + 1) and Va3 < C(u*T* + 1**7)
holds for all i € (0, j1q). Hence, A = 0 is a bifurcation point for the equation (1.1)
in HL.
PROOF: Since §(uy) < 0, we obtain from Lemma 3.1 that
2 2+
(33)  [Vuul3 < 4Ky ja(lluall3 ™ + llul37) < 4Ky 4 (077 + 02 ).

Moreover, since A(¢) < 0, it follows from (3.3) and Lemma 3.1 that

M@l = =A0) < el [ vl do

< 2+ 1)K, gy + K1) (luall§ + lualy) < C (6 + ).

O
Lemma 3.8. For all nonnegative functions v € H' we obtain
(3.4) /V’U,MV’U dx < )\(,u)/uuv dx + / Q+U}L+01U dx
and, according to Lemma 3.6, that
(3.5) /Vuqu dx < /q_,_u}["olv dz.

PRrOOF: Clearly, the assertion holds for all nonnegative functions v € C;°. Hence,
the result follows from Lemma 2.1. O

Lemma 3.9. Suppose that N > 3 and that [ q+u}["01+5 dx < oo holds for some
constant s > 1. Then, it follows that u, € L2 (s+1)/2

PRrROOF: For t > 0, the function v; may be defined by vy = min(uy,t). Then,
according to Lemma 2.2, we see that 0 < v} € H'. Inserting vf in (3.5) shows that

4s(s + 1)_2/ |VU§S+1)/2|2 dx < /q+ut+01+s dx.

Hence, using (2.2) and letting ¢ — oo, we obtain the assertion by Fatou’s lemma.

O
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Lemma 3.10. For each p € [2,00), we have u, € LP.

PrOOF: For N = 2 and for p € [2,2*], if N > 3, the assertion follows from the
Sobolev imbedding theorem. Now, suppose that N > 3 and that the constants
rn and sy are defined by 7, = 2*(1 + €9)™ and sp, = (rn/py) — 1 — o1, where
g0 = (2%/2p}) — (01/2) — 1. Here, the constant pg is defined as in condition (D2).
Since pg > 2N/(4 — 61N + 201) and 7y, > 2%, it follows that £g > 0 and s, > 1.

Now, assume that u, € L™ holds for some n € Ng. Then 2 < 1+ 01 + 5, <
(1+ 01 + sn)py = T implies that

/q+u}t+01+s” dzx < oo.

Hence, we obtain from Lemma 3.9 that u, € L2 (sn+1)/2 Byt

(2°/2)(sn + 1) = (27/2)((rn/pp) — 01)
> (2"/2)(rn/pp) — (rn/2)o1
=rp(l+e9) =rnt1

implies that u, € L™+1. Hence, we see that u;, € LP holds for all p € [2*,00). [
Lemma 3.11. For each p € (0, f1q), we have uy, € L*°.

PRrOOF: For t > 0, we define the function U; by Uy = (u, — t)4+ and the set A(t)
by A(t) = {x; uu(x) >t}. Then, we obtain from (3.5) that

(3.6) / Vuy, VU dr < / q+ui+°1 dx.
A(t)

The constant p; may be defined by p; = 2N/(4 — o1 N). Since pg > p1, we can
find a constant pp € (1,00) such that 1/pf,-1/ph = 1/p}. Then, the inequality (3.6)
implies

(3.7) / |VU3|? da < C()(meas A(t))/P1
for all ¢ > 0, where C(p) is defined by

o 1
68)  Cl = laal( [ T ar)
o1)p! 1/(pop2)
+ ||q2||p0 (/ u}(?'i‘ 1)Pop2 dCC) oP2 .

Now, let us assume that N > 3. Then, it follows from (2.2) and (3.7) that

(3.9) (/Aw (17 )" < CFO() ameas ()71
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Moreover, for each h > t, we have

o2 T
(3.10) (/A(t)(uu —t)? d:c>2 2 > (/A(h)(uu P dz)z 2
(h — t)?(meas A(h))¥/?" .

Y%

Combining (3.9) and (3.10) yields
tmeas A(h) < (CRC(u))? /2 (h — )% (smeas A(1)?" /2

for all h > t > 0. Since 2*/(2p}) = 14 (01N)/2(N —2) > 1, it follows from
Lemma 2.3 that u,, is essentially bounded. Moreover, for each ¢y > 0, we have

[uplloo < d+to,

where d = CoC(11)V/? (meas A(tg))71/421+ RN =2)/71N) " For t5 = ||uy|a, it follows
that

meas A(tg) < HuMHQ_Q/ ui dx < 1.
A(to)

Hence, we obtain that
(3.11) luplloo < CoC()! /22 HEN=2/T1N) 4y,
Finally, we consider the case that N = 2. Here, we obtain for all £ > 0:

/ Ut2 dx < / uﬁ dz
A(t)

1/171 ’
< ( /A " w2 d:c) (meas A(t)) /71 .

Combining (3.7) and (3.12) yields
[Vl < () (meas A() /¥4

(3.12)

for all ¢ > 0, where

(3.13) C*(u) = C(p) + (/ uPt dx

Hence, (2.1) implies

2/p . ,
( /A(t)(”“ — )" dw) < C2C*(u)(meas A(1)) /7

)1/171'

for all t > 0 and p € [2,00). Then, proceeding as in the case that N > 3, one can
show that )
meas A(h) < CBC* (u)P/?(h — t) P (meas A(t))P/ 2PV

holds for all h >t > 0 and p € [2,00). Hence, according to Lemma 2.3, we see that
u is essentially bounded and that

(3.14) oo < CpC*(u)/22®/P)(P/20) 1) 1 ),
if p > 2p). O
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Lemma 3.12. For all p € [2,00) we have |[uy|lp — 0 as y — 0.

PROOF: We start with the case that N = 2. Then, according to (2.1), we obtain:
lupllp < Cplluplla for all pu € (0, pa).

Hence, the assertion follows from Proposition 3.7. In case that N > 3 and p € [2,2%],
the assertion is obtained by (2.3) and Proposition 3.7. Now, assume that N > 3 and
that p € (2%, 00). Then, we can find a constant ¢ > 0 such that p = (1 + (¢/2))2*.
Thus, by the Sobolev inequality (2.2), we see that

|2+t ” 1+(t/2) 1+(t/2 H%

[[upl 13- < CFlIvuy

(3.15) =C3(1+ (t/2)*(1 + 1)1 / VuuVulle dx.

The right hand side of (3.15) is well defined since u,, is bounded. From (3.5), we
conclude that

(3.16) /VuuVu}L+t darg/q u2+01+t dx

2401 +t)p} 1/p;
< llarlloe / a7 da + gl / uf T g ) R

Since
Py < 2N/(2(N —2) + 01 N) < 2N/(2(N —2) + 01(N — 2))
< (2N +tN)/((2+ 01)(N — 2) + t(N — 2))
=240 +t)"1 - (2N +tN)/(N —2)
=@2+01+t)"p
we see that there is a constant 7 € (0,1) such that
(2401 +t)py =71p+ (1 —7)2.

Hence, by Holder’s inequality, we obtain
(2+01+1)p! 1/pg pT/D) 2(1—7)/p}
(f a2t o) P < P 5.

Then, using again the fact that pf < 2N/(2(N —2) 4+ o1N), it is not difficult to
show that pr/pjy < 2+ t.

Quite similarly, one can prove that there exist constants ¢; € (0,2+t) and ¢3 > 0
such that [ w2t ™ de < |ju,l|S uulS2. Hence, we conclude from (3.15), (3.16)
and Young’s inequality that ||u,|, — 0 as p — 0. O
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Lemma 3.13. We have ||uy||coc — 0 as . — 0.

PrROOF: The constants C(u) and C*(p) may be defined as in (3.8) and (3.13).
Then, according to Lemma 3.12, it follows that C'(1) — 0 and C*(u) — 0 as u — 0.
Hence, the assertion follows from (3.11) and (3.14). O

PROOF OF COROLLARY 1.2: Suppose that the assumptions of part (a) are fulfilled.
Then, according to Lemma 3.5, we see that

— A uy + c(x)uy =0 holds in D' (RV),

where c(z) = —q(x)uy (z) + r(z)up? (x) — A(p). Since pg > N/2 and uy, € L™, we
see that ¢ € Lfolc, where p; = min(pg, p) satisfies p; > N/2. Now, the assertion
follows from Theorem 7.1 and Corollary 8.1 in [10].

Next, we suppose that the assumptions of the part (b) are fulfilled. Then, it
follows from part (a) that u is locally Holder continuous. Hence, the distribution
A uy, can be represented by a locally Holder continuous function. Thus, the assertion
of the part (b) follows by a well known result from the regularity theory of elliptic

differential equations. O

PROOF OF COROLLARY 1.3: According to Lemma 3.5, we see that

(3.17) — A uy = MNp)uy + qullj'gl - Tu}["m holds in D' (RV).

Then, it follows from the assumptions and from Lemma 3.10 — Lemma 3.13 that
the right hand side of (3.17) defines a function Fj, € L? such that ||Fj,[2 — 0 as
1t — 0. Consequently, we see that u, € H? and that |lu,| g2 — 0 as u — 0. O

4. Exponential decay.

Lemma 4.1. Suppose that the functions q and r satisfy the assumptions (A)—(E)
and that for p € (0, p1q) the function u, and the constant \(u) are defined as in
Lemma 3.4 resp. Lemma 3.5. Moreover, we assume that A\(u) < 0 holds for some
€ (0, pig). Then, for each ¢ € (0, —A(u)) there exists a constant A. such that

up(x) < Acexp(—(=A(p) — )?z))

holds for almost all x € RV,

ProoF: Using the fact that w, is bounded, we conclude from (D1) and (E) that
there exists a constant R, > Rg such that

(4.1) g+ (z)upt (x) < ¢ holds for almost all x € {y; |y| > Rc}.
The function ¥ may be defined by

(@) = Acexp(—(=A(p) — )?|z]) (z € RY).

135
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Here, the constant A, may be chosen such that
(4.2) (x) > uy(x) holds for almost all = € {y; |y| < Rc}.

Then it follows that v € H! and that
(4.3) / vyvode > (Au) + ¢) / Yudz

holds for all nonnegative functions v € H!.

Inequality (4.2) shows that (uy, — )4+ is a nonnegative function on H' satisfying
(up — )4 (x) = 0 for almost all = € {y; |y| < Rc}. Hence, we obtain from (3.4),
(4.1) and (4.3) that

19 = )18 = [ Pl = 09— )1 o
<) [l = 0 do e [ u -0 do
=) +) [ Vs~ ¥ do

= (A1) + )| (up =)+ 113 < 0

and consequently that u, < . O

Lemma 4.2. Let g and r satisfy the assumptions (A)—(D) and suppose that og <
o1. Then A(u) < 0 holds for all p € (0, ug)-

PROOF: Since §(uy) < 0, we see that

/r|uu|2+02 de < —((2+ 02)/2)||Vuu|\% +((24092)/(2+01)) / qluu|2+01 de
and that
) < ol (~(o2/ DTl + (o2 ~ 00)/(2 + 01) [ gl ).

Then using the fact that

/q|uu|2+01 dr > —(2+ 01)&(uy) > 0,

we obtain the assertion. O

Now, we consider the case that o1 < o3. Since I(-) is a monotone decreas-
ing function on [0, ug), we can find a measurable subset M of [0, ug) such that
[0, f1q) \ M has measure zero and I(-) is differentiable on M (see [4, Theorem 17.12]).
Then, we see that

(4.4) I'(1) <0 holds for all € M.
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Lemma 4.3. The function I(-) is Lipschitz continuous on [0, ug) and for all p € M
we have I'() > =l |BA(1).

PROOF: Let 0 < v < p < pg. Then, we obtain

I(v) < &((v/mup)

and therefore that
(/2 =D [ [V do

(4.5) — @+ o) (/w7 —1) / aluy > da

N =

I(v) - I(n) <

4@ 02 (/) = 1) [ rlu o e
Thus, (4.5) implies for € M: I'(1) > = |lupu |3\ (). Moreover, we obtain

1I(p) = Il — vt = (I(v) = T(p))(n — v)
<@+o) = /P -0 [ g do
<= W=7 [ arduordo
= u_1/q+llml2+"1 da.
Hence, Lemma 3.1 and Proposition 3.7 show that
() = I()| < O™ + p P — .

O

Lemma 4.4. There exists a monotone decreasing sequence (un) C (0, pg) such
that limy— o0 tn, = 0 and A(py) < 0 holds for all n.

PROOF: Suppose that A(x) > 0 holds for all u € (0,pq). Then, according to
Lemma 3.6, we see that A(u) = 0 holds for all p € (0, yg). Furthermore, (4.4) and
Lemma 4.3 would imply that I’(x) = 0 for all u € M and consequently that I(-) is
constant on [0, 114) (see [4, Theorem 18.15]). In particular, we would obtain that

0=1(0) = I(min((pa/2),1)) < 0.

Hence, there exists a constant 11 € (0, p1g) such that A(u1) < 0. Now, repeating this
procedure, we can find a po € (0, min(p1,1/2)) such that A(u2) < 0. Moreover, by
induction we can show that for each n there is a constant p, € (0, min(up—1,1/n))
so that A(un) < 0. O

Finally, we see that Lemma 4.1 and Lemma 4.2 imply Theorem 1.5 and that
Theorem 1.6 is obtained by Lemma 4.1 and Lemma 4.4.
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