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A uniform boundedness principle of Ptak

CHARLES SWARTZ

Abstract. The Antosik-Mikusinski Matrix Theorem is used to give an extension of a uni-
form boundedness principle due to V. Ptk to certain metric linear spaces. An application
to bilinear operators is given.
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In [P] V. Ptdk used the classical sliding hump technique to give an extension
of the classical uniform boundedness principle for pointwise bounded families of
continuous linear operators on Banach spaces and in [NP] used an abstract sliding
hump construction to give a further extension. This generalization of the uniform
boundedness principle was used to establish automatic continuity results. A sim-
ilar generalized uniform boundedness principle was established earlier by Lorentz
and MacPhail to give a generalization of the Silvermann-Toeplitz Theorem from
summability ([LM]). The Antosik-Mikusinski Matrix Theorem ([AS, 2.2]) can also
be considered to be an abstraction of the sliding hump technique and has been used
to treat a number of topics in classical functional analysis and measure theory in-
cluding the uniform boundedness principle (see [AS], especially §4 for the uniform
boundedness principle). In this note we show that the Antosik-Mikusinski Matrix
Theorem can be used to extend V. Ptak’s version of the uniform boundedness prin-
ciple to metric -spaces. As an application we use the extended form of the uniform
boundedness principle to generalize a result of Ptak on bilinear operators.

We fix the notation to be used. Throughout the sequel X will denote a metric
linear space and Y a normed linear space. A sequence {z}} is K convergent if
every subsequence of {z}} has a further subsequence {xy, } such that the subseries
> xn, converges in X. A K convergent sequence converges to 0, but a sequence
can converge to 0 and not be K convergent ([AS, 3.3]). A space in which every
sequence which converges to 0 is K convergent is called a KC-space. A complete
metric linear space is a K-space ([AS, 3.2]), but there are (normed) K-spaces which
are not complete ([K]). The notion of a K-space is a weakened form of completeness
which has proven to be a good substitute for completeness in several topics in
functional analysis ([AS]).

We first establish a special case of Ptak’s uniform boundedness principle for
metric KC-spaces. This result was established for Banach spaces by Lorentz and
MacPhail [LM]; see also [M, 4.1].
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Theorem 1. Let X be a metric K-space. For each k € N let T}, : X — Y be
linear and let M}, be a closed subspace of X such that T}, is continuous on M}, and
My D Myy. If {T}} is pointwise bounded on X, then there exists p such that
{T}, : k € N} is equicontinuous on M.

PROOF: Let {Uy} be a neighborhood base at 0 in X with Uy D Ugi1, ey Uk =
{0}. If the conclusion fails, for each k there exist n, and zp € Up N My such
that || Ty, x| > k, where we may assume ng,j > nj. For notation convenience
assume that nj = k. Consider the matrix M = [(1/4)T;x;]. Since {T;} is pointwise
bounded, the columns of M converge to 0. Since z; — 0 in X, a K-space, given
any increasing sequence of positive integers {p;} there is a subsequence {g;} of {p;}
such that E]Oil rq; = x € X. For each fixed i, qu'zi Tq; € M; since M; is closed
and M; D My, so that

21 1 1 1
j;l ;Tixqj = ;TZ(Z Iq]‘) + ;TZ(Z Iq]‘) = ;T,x

q;<t qj >t

since T; is continuous on M;. Therefore, since {T;} is pointwise bounded,

=1 !
hinzl ETiIQj = hin ZTix =0.
j:

Hence, M is a K-matrix ([AS, §2]) and the diagonal of M converges to 0 by the
Antosik-Mikusinski Matrix Theorem (AS, 2.2). This contradicts || T;z;|| > 1 above.
0

This result was obtained in [LM)] for Banach spaces by a sliding hump technique.
It was obtained for the case when X is a Banach space and My, is the (closed) kernel
of T}, by Pték in [P]. It is shown in 2.1.3 of [PB] that the assumption that My, is
a closed kernel cannot be replaced with the assumption that M}, is a Baire space. It
is also shown in 2.7. of [PB] that the assumption that Y is a normed space cannot
be replaced with Y is a metric linear space.

From Theorem 1 we can easily obtain the general form of the uniform bounded-
ness principle given in [NP].

Theorem 2. Let X be a metric K-space. For each a € A let Ty : X — Y be
linear and M, be a closed linear subspace of X such that Ty is continuous on M.
If T ={T, : a € A} is pointwise bounded on X, then there exists a finite subset
F C A such that T is equicontinuous on (), Ma.

PRrROOF: Let {Uy} be as in the proof of Theorem 1. Suppose the conclusion fails.
Pick a1 € A. There exist ag € A, x93 € My, NUy such that ||Tg,z2|| > 1. There exist
ag € A, x3 € Mg, N My, NUs such that ||Tgsz3|| > 1. Continuing this construction
produces sequences {ag} C A, z € Mg, N--- N Mg, N Uy such that ||Ty, zg| > 1.
Since Ty, is continuous on Mg, N ---N Mg, , Theorem 1 implies that {Taj :j €N}
is equicontinuous on some Mg, N---MN Mg, . Since x; — 0, this is impossible by the
construction. 0
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This result was extended to Fréchet spaces X in 4.9.15 of [PB]. It was also shown
in 4.9.16 of [PB] that X is a Banach space cannot be replaced in Theorem 1 by X
is normed Baire even if each M}, is a Baire space. Since a metric KC-space is a Baire
space but need not be complete, Theorem 2 gives an improvement of 4.9.15 of [PB].
The methods employed above are much simpler than those employed in [PB].

As an application of Theorem 2 we give an extension of Theorem 3.2 of [P] to
families of bilinear maps. Let Z be a normed linear space. If b: X xY — Z is
bilinear, for z € X (y € Y) we let b(z,-) : Y — Z (b(-,y) : X — Z) be the linear
map b(z,-)(y) = blz,y) (b(,y)(x) = b(z,y)). If B = {bg : a € A} is a family of
bilinear maps from X x Y — Z, B is said to be right equicontinuous if for each
x € X the family {bq(z,-) : a € A} is an equicontinuous family of linear maps ([AS,
§6]).

Theorem 3. Let X be a metric K-space and B = {bq : a € A} a family of bilinear
maps from X XY to Z. Assume
(1) B is right equicontinuous,
(2) for each a € A y € Y there is a closed subspace M(a,y) of X such that
ba(,y) is continuous on M (a,y).

Then there exist y1,...,yr € Y, a1,...,a € A such that B is equicontinuous on
M xY where M = ﬂ?zl M(aj,y;)-

PRrROOF: Set T = {ba(-,y) : a € A, ||y|| < 1}. Since B is right equicontinuous, 7
is a pointwise bounded family of linear maps from X to Z. By Theorem 2 there
exist ai,...,ap € A, y1,...,yp € Y with [Jy;|| < 1 such that T is equicontinuous
on M = m?:l M (aj,y;). Therefore, given ¢ > 0 there exists a neighborhood U of 0

in X such that ||bg(z,y)|| < e for z € UN M, ||y|]| < 1. Hence, B is equicontinuous
on M xY. O

The case when B consists of a single bilinear map is just Theorem 3.2 of [P].
Theorem 3 gives a generalization of the uniform boundedness principle for bilinear
maps given in 6.16 of [AS].
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