A uniform boundedness principle of Pták

CHARLES SWARTZ

Abstract. The Antosik-Mikusinski Matrix Theorem is used to give an extension of a uniform boundedness principle due to V. Pták to certain metric linear spaces. An application to bilinear operators is given.

Keywords: uniform boundedness, linear operator, bilinear operator

Classification: 46A99

In [P] V. Pták used the classical sliding hump technique to give an extension of the classical uniform boundedness principle for pointwise bounded families of continuous linear operators on Banach spaces and in [NP] used an abstract sliding hump construction to give a further extension. This generalization of the uniform boundedness principle was used to establish automatic continuity results. A similar generalized uniform boundedness principle was established earlier by Lorentz and MacPhail to give a generalization of the Silvermann-Toeplitz Theorem from summability ([LM]). The Antosik-Mikusinski Matrix Theorem ([AS, 2.2]) can also be considered to be an abstraction of the sliding hump technique and has been used to treat a number of topics in classical functional analysis and measure theory including the uniform boundedness principle (see [AS], especially §4 for the uniform boundedness principle). In this note we show that the Antosik-Mikusinski Matrix Theorem can be used to extend V. Pták's version of the uniform boundedness principle to metric \mathcal{K} -spaces. As an application we use the extended form of the uniform boundedness principle to generalize a result of Pták on bilinear operators.

We fix the notation to be used. Throughout the sequel X will denote a metric linear space and Y a normed linear space. A sequence $\{x_k\}$ is \mathcal{K} convergent if every subsequence of $\{x_k\}$ has a further subsequence $\{x_{n_k}\}$ such that the subseries $\sum x_{n_k}$ converges in X. A \mathcal{K} convergent sequence converges to 0, but a sequence can converge to 0 and not be \mathcal{K} convergent ([AS, 3.3]). A space in which every sequence which converges to 0 is \mathcal{K} convergent is called a \mathcal{K} -space. A complete metric linear space is a \mathcal{K} -space ([AS, 3.2]), but there are (normed) \mathcal{K} -spaces which are not complete ([K]). The notion of a \mathcal{K} -space is a weakened form of completeness which has proven to be a good substitute for completeness in several topics in functional analysis ([AS]).

We first establish a special case of Pták's uniform boundedness principle for metric \mathcal{K} -spaces. This result was established for Banach spaces by Lorentz and MacPhail [LM]; see also [M, 4.1].

Theorem 1. Let X be a metric \mathcal{K} -space. For each $k \in \mathbb{N}$ let $T_k : X \to Y$ be linear and let M_k be a closed subspace of X such that T_k is continuous on M_k and $M_k \supset M_{k+1}$. If $\{T_k\}$ is pointwise bounded on X, then there exists p such that $\{T_k : k \in \mathbb{N}\}$ is equicontinuous on M_p .

PROOF: Let $\{U_k\}$ be a neighborhood base at 0 in X with $U_k \supset U_{k+1}$, $\bigcap_{k=1}^{\infty} U_k = \{0\}$. If the conclusion fails, for each k there exist n_k and $x_k \in U_k \cap M_k$ such that $||T_{n_k}x_k|| > k$, where we may assume $n_{k+1} > n_k$. For notation convenience assume that $n_k = k$. Consider the matrix $M = [(1/i)T_ix_j]$. Since $\{T_i\}$ is pointwise bounded, the columns of M converge to 0. Since $x_j \to 0$ in X, a \mathcal{K} -space, given any increasing sequence of positive integers $\{p_j\}$ there is a subsequence $\{q_j\}$ of $\{p_j\}$ such that $\sum_{j=1}^{\infty} x_{q_j} = x \in X$. For each fixed $i, \sum_{q_j \ge i} x_{q_j} \in M_i$ since M_i is closed and $M_i \supset M_{k+1}$ so that

$$\sum_{j=1}^{\infty} \frac{1}{i} T_i x_{q_j} = \frac{1}{i} T_i \left(\sum_{q_j < i} x_{q_j} \right) + \frac{1}{i} T_i \left(\sum_{q_j \ge i} x_{q_j} \right) = \frac{1}{i} T_i x_{q_j}$$

since T_i is continuous on M_i . Therefore, since $\{T_i\}$ is pointwise bounded,

$$\lim_{i} \sum_{j=1}^{\infty} \frac{1}{i} T_{i} x_{q_{j}} = \lim_{i} \frac{1}{i} T_{i} x = 0.$$

Hence, M is a \mathcal{K} -matrix ([AS, §2]) and the diagonal of M converges to 0 by the Antosik-Mikusinski Matrix Theorem (AS, 2.2). This contradicts $||T_i x_i|| > 1$ above.

This result was obtained in [LM] for Banach spaces by a sliding hump technique. It was obtained for the case when X is a Banach space and M_k is the (closed) kernel of T_k by Pták in [P]. It is shown in 2.1.3 of [PB] that the assumption that M_k is a closed kernel cannot be replaced with the assumption that M_k is a Baire space. It is also shown in 2.7. of [PB] that the assumption that Y is a normed space cannot be replaced with Y is a metric linear space.

From Theorem 1 we can easily obtain the general form of the uniform boundedness principle given in [NP].

Theorem 2. Let X be a metric \mathcal{K} -space. For each $a \in A$ let $T_a : X \to Y$ be linear and M_a be a closed linear subspace of X such that T_a is continuous on M_a . If $\mathcal{T} = \{T_a : a \in A\}$ is pointwise bounded on X, then there exists a finite subset $F \subset A$ such that \mathcal{T} is equicontinuous on $\bigcap_{a \in F} M_a$.

PROOF: Let $\{U_k\}$ be as in the proof of Theorem 1. Suppose the conclusion fails. Pick $a_1 \in A$. There exist $a_2 \in A$, $x_2 \in M_{a_1} \cap U_1$ such that $||T_{a_2}x_2|| > 1$. There exist $a_2 \in A$, $x_3 \in M_{a_1} \cap M_{a_2} \cap U_2$ such that $||T_{a_3}x_3|| > 1$. Continuing this construction produces sequences $\{a_k\} \subset A$, $x_k \in M_{a_1} \cap \cdots \cap M_{a_k} \cap U_k$ such that $||T_{a_k}x_k|| > 1$. Since T_{a_k} is continuous on $M_{a_1} \cap \cdots \cap M_{a_k}$, Theorem 1 implies that $\{T_{a_j}: j \in \mathbb{N}\}$ is equicontinuous on some $M_{a_1} \cap \cdots \cap M_{a_p}$. Since $x_j \to 0$, this is impossible by the construction. This result was extended to Fréchet spaces X in 4.9.15 of [PB]. It was also shown in 4.9.16 of [PB] that X is a Banach space cannot be replaced in Theorem 1 by X is normed Baire even if each M_k is a Baire space. Since a metric \mathcal{K} -space is a Baire space but need not be complete, Theorem 2 gives an improvement of 4.9.15 of [PB]. The methods employed above are much simpler than those employed in [PB].

As an application of Theorem 2 we give an extension of Theorem 3.2 of [P] to families of bilinear maps. Let Z be a normed linear space. If $b: X \times Y \to Z$ is bilinear, for $x \in X$ $(y \in Y)$ we let $b(x, \cdot): Y \to Z$ $(b(\cdot, y): X \to Z)$ be the linear map $b(x, \cdot)(y) = b(x, y)$ $(b(\cdot, y)(x) = b(x, y))$. If $\mathcal{B} = \{b_a : a \in A\}$ is a family of bilinear maps from $X \times Y \to Z$, \mathcal{B} is said to be right equicontinuous if for each $x \in X$ the family $\{b_a(x, \cdot): a \in A\}$ is an equicontinuous family of linear maps ([AS, § 6]).

Theorem 3. Let X be a metric \mathcal{K} -space and $\mathcal{B} = \{b_a : a \in A\}$ a family of bilinear maps from $X \times Y$ to Z. Assume

- (1) \mathcal{B} is right equicontinuous,
- (2) for each $a \in A$ $y \in Y$ there is a closed subspace M(a, y) of X such that $b_a(\cdot, y)$ is continuous on M(a, y).

Then there exist $y_1, \ldots, y_k \in Y$, $a_1, \ldots, a_k \in A$ such that \mathcal{B} is equicontinuous on $M \times Y$ where $M = \bigcap_{j=1}^k M(a_j, y_j)$.

PROOF: Set $\mathcal{T} = \{b_a(\cdot, y) : a \in A, \|y\| \leq 1\}$. Since \mathcal{B} is right equicontinuous, \mathcal{T} is a pointwise bounded family of linear maps from X to Z. By Theorem 2 there exist $a_1, \ldots, a_k \in A, y_1, \ldots, y_k \in Y$ with $\|y_j\| \leq 1$ such that \mathcal{T} is equicontinuous on $M = \bigcap_{j=1}^k M(a_j, y_j)$. Therefore, given $\varepsilon > 0$ there exists a neighborhood U of 0 in X such that $\|b_a(x, y)\| < \varepsilon$ for $x \in U \cap M$, $\|y\| \leq 1$. Hence, \mathcal{B} is equicontinuous on $M \times Y$.

The case when \mathcal{B} consists of a single bilinear map is just Theorem 3.2 of [P]. Theorem 3 gives a generalization of the uniform boundedness principle for bilinear maps given in 6.16 of [AS].

References

- [AS] Antosik P., Swartz C., Matrix Methods in Analysis, Springer-Verlag, Heidelberg, 1985.
- [K] Klis C., An example of noncomplete normed K-spaces, Bull. Acad. Polon. Sci. 26 (1978), 415–420.
- [LM] Lorentz G., MacPhail M., Unbounded operators and a theorem of A. Robinson, Trans. Royal Soc. Canada 46 (1952), 33–37.
- [M] Maddox I., Infinite Matrices of Operators, Springer-Verlag, Heidelberg, 1980.
- [NP] Neumann M., Pták V., Automatic continuity, local type and casuality, Studia Math. 82 (1985), 61–90.
- [P] Pták V., A uniform boundedness theorem and mappings into spaces of operators, Studia Math. 31 (1968), 425–431.
- [PB] Perez Carreras P., Bonet J., Barrelled Locally Convex Spaces, North Holland, Amsterdam, 1987.

DEPARTMENT OF MATHEMATICS, NEW MEXICO STATE UNIVERSITY, LAS CRUCES, NM 88003, USA