Dirac operators on hypersurfaces

JAROLÍM BUREŠ

Abstract. In this paper some relation among the Dirac operator on a Riemannian spinmanifold N, its projection on some embedded hypersurface M and the Dirac operator on M with respect to the induced (called standard) spin structure are given.

Keywords: spin structure, Dirac operator, induced Dirac operator on submanifolds *Classification:* 53A50, 58G03

1. INTRODUCTION

The Dirac operator D belongs to intensively studied operators on manifolds. It usually can be defined on a Riemannian spin-manifold and depends on its spin structure. For flat space, it is intensively studied in Clifford analysis and solutions of the equation $D\phi = 0$, called the Dirac equation (for spinor-valued or Clifford algebra-valued functions ϕ) are described in several ways. In the present paper, some relations among the Dirac operator defined on a given Riemannian spin-manifold N, its projection on some embedded hypersurface M and the Dirac operator on M with respect to the induced spin structure are given. Notations and basic facts from [5] and [9] (or [6]) are used.

2. General theory

2.1 Clifford algebras and spinors.

Let us introduce only some notations and conventions; more details can be found e.g. in [9], [2], [6]. A spinor space $\mathbf{S}_{\mathbf{n}}$ is an irreducible representation of the Clifford algebra $\mathbf{R}_{\mathbf{0},\mathbf{n}}$, the corresponding Spin representation is simply the restriction of action of $\mathbf{R}_{\mathbf{0},\mathbf{n}}$ to the group Spin $(,\mathbf{R})(n) \subset \mathbf{R}_{\mathbf{0},\mathbf{n}}$. Action of $\mathbf{R}^{\mathbf{n}} \subset \mathbf{R}_{\mathbf{0},\mathbf{n}}$ on $\mathbf{S}_{\mathbf{n}}$ gives us a bilinear map $\tilde{\mu} : \mathbf{R}^{\mathbf{n}} \times \mathbf{S} \longrightarrow \mathbf{S}$ which induces a linear map $\mu : \mathbf{R}^{\mathbf{n}} \otimes \mathbf{S} \longrightarrow \mathbf{S}$.

2.2 The Dirac operator on Riemannian spin-manifolds.

Let (M,g) be an *n*-dimensional Riemannian oriented spin-manifold, let $P \to M$ be the principal fibre bundle of orthonormal oriented frames and let $\tilde{P} \to P$ be a spin structure on M. Let ω be an so $(\mathbf{R})(n)$ -valued 1-form on P which corresponds to the Levi-Civita connection. Then there exists a unique spin(n)-valued 1-form $\tilde{\omega}$ on \tilde{P} which is a lifting of ω and gives a canonical connection on \tilde{P} . We have the following diagram of maps.

$$\begin{array}{ccc} T(\tilde{P}) & \underbrace{\omega} & \operatorname{spin}\left(n\right) \\ \downarrow & & \downarrow \lambda_{*} \\ T(P) & \underbrace{\omega} & \operatorname{so}\left(,\mathbf{R}\right)(n) \,. \end{array}$$

The connection $\tilde{\omega}$ induces a covariant derivative ∇^s on the associated spinor bundle S over M. The Clifford multiplication $\mu : \mathbf{R}^{\mathbf{n}} \otimes \mathbf{S} \longrightarrow \mathbf{S}$ induces a vector bundle homomorphism $\mu : TM \otimes S \longrightarrow S$. If h is an identification of $TM \leftrightarrow TM^*$ defined by the Riemannian metric then $\mathbf{D} := \mu \circ (h \otimes id) \circ \nabla^s$ is called the Dirac operator on M.

Let us introduce a more convenient notation, namely denote $\mu(v,\xi) := v \bullet \xi$ for $v \in \mathbf{R}^{\mathbf{n}}$ and $\xi \in \mathbf{S}_{\mathbf{n}}$ and $\mu(X,\xi) := X \bullet \xi$ for a vector field X and a spinor field ξ on M.

Locally the Dirac operator can be described in the following way:

Theorem 1. Let $(e_1, e_2, ..., e_n)$ be a local orthonormal frame on an open subset $U \subset M$. Then we have

$$\mathbf{D} = \sum_{i=1}^{n} e_i \bullet \nabla_{e_i}^s$$

 $on \ U.$

2.3 Local computations.

Recall that a basis for spin (n) is $\{\mathbf{e_ie_j}, i < j\}$. Let $\tilde{s} : U \to \tilde{P}$ be a local section (spin frame) on U. Then we have the following trivializations of bundles on U:

$$T(U) = U \times \mathbf{R}^{\mathbf{n}}, \ \mathcal{C}(U) = U \times \mathbf{R}_{\mathbf{0},\mathbf{n}} \text{ and } S(U) = U \times \mathbf{S}.$$

For a basis $(\xi_1, \xi_2, ..., \xi_N)$ of the spinor space **S**, let us denote by $\xi_1 = [(\tilde{s}, \xi_1)], ..., \xi_N = [(\tilde{s}, \xi_N)]$ the corresponding sections of spinor bundle S on U.

It is possible to write the connection form $\tilde{\omega}$ on U in the form

$$\tilde{\omega} = \sum_{i < j} \tilde{\omega}_{ij} \mathbf{e_i} \mathbf{e_j} \,,$$

where $\tilde{\omega}_{ij}$ are 1-forms on U. It is convenient to define $\tilde{\omega}_{ji} := -\tilde{\omega}_{ij}$ for j > i.

The covariant derivative ∇^S corresponding to $\tilde{\omega}$ is defined by

$$\nabla^{S}\xi_{r} = \sum_{i < j} \widetilde{\omega_{ij}} [\tilde{s}, \mathbf{e_{i}e_{j}} \bullet \xi_{r}] = \sum_{i < j} \widetilde{\omega_{ij}} \mathbf{e_{i}e_{j}} \bullet \xi_{r}$$

It remains to express the forms $\widetilde{\omega}_{ij}$ using the forms ω_{ij} of the Levi-Civita connection. Let U be a simply connected domain. The connection form ω on U has the following form

$$\omega = \sum_{i < j} \omega_{ij} \mathbf{E}_{\mathbf{ij}} \,,$$

where \mathbf{E}_{ij} is a canonical basis for so $(\mathbf{R})(n)$. Put again $\omega_{ij} := -\omega_{ji}$ for i > j. Then from the diagram 1 we get

$$\lambda_* (\sum_{i < j} \widetilde{\omega}_{ij} \mathbf{e_i} \mathbf{e_j}) = 2 \sum_{i < j} \widetilde{\omega}_{ij} \mathbf{E_{ij}} = \sum_{i < j} \omega_{ij} \mathbf{E_{ij}}$$

and $\widetilde{\omega}_{ij} = \frac{1}{2}\omega_{ij}$.

For a local orthonormal frame $s = (e_1, ..., e_n)$ on M we have the following formulas:

$$\omega_{ij} = g(\nabla e_i, e_j) \, ,$$

i.e.

$$\omega_{ij}(e_k) = g(\nabla_{e_k} e_i, e_j) := \Gamma_{ki}^j$$

and

$$\nabla_{e_i} e_j = \sum_k \Gamma_{ij}^k e_k \,.$$

If $[e_p, e_q] = \sum_k c_{pq}^r e_r$ then

$$\Gamma_{ij}^{k} = \frac{1}{2} (c_{kj}^{i} - c_{ji}^{k} + c_{ki}^{j}).$$

Finally if we put for $\xi \in \Gamma(U, S), \, \xi = \sum_r \alpha^r \xi_r$

$$X\xi = \sum_{r} X(\alpha^{r})\xi_{r}, \ \mathbf{e_{j}} \bullet \xi = \sum_{r} \alpha^{r}(\mathbf{e_{j}} \bullet \xi_{r}),$$

we get

a) a local expression for spinor connection

$$\nabla_X^S = X(\xi) + \frac{1}{2} \sum_{p < q} \omega_{lm}(X) \mathbf{e_p} \mathbf{e_q} \bullet \xi$$

b) a local expression for the Dirac operator

$$\mathbf{D}\xi = \sum_{j} \mathbf{e_j} \bullet (e_j(\xi) + \frac{1}{2} \sum_{p < q} \omega_{pq}(e_j) \mathbf{e_p} \mathbf{e_q} \bullet \xi)$$

or

$$\mathbf{D}\xi = \sum_{j} \mathbf{e_{j}} \bullet \left(e_{j}(\xi) + \frac{1}{2} \sum_{p < q} \Gamma_{jp}^{q} \mathbf{e_{p}} \mathbf{e_{q}} \bullet \xi \right).$$

3. Differential operators on submanifolds

First of all recall how a differential operator (on functions) on a Riemannian manifold defines an operator (on functions) on any submanifold of N (see [7]).

Let M be a submanifold of a Riemannian manifold N, let P be a differential operator on N, i.e.

$$P: \mathcal{C}^{\infty}_{c}(N) \to \mathcal{C}^{\infty}_{c}(N) \,,$$

where $\mathcal{C}^{\infty}_{c}(N)$ denotes the space of all smooth functions on N with a compact support.

Let us define an operator $\pi_M P$ called the projection of P on M as follows:

J. Bureš

For every point $x \in M$, let us construct geodesics in N starting in x and orthogonal to M. Taking small enough pieces of such a geodesics, we get a submanifold V_x^{\perp} in N. Moreover for a point $y \in M$ we can take a neighborhood $U(y) \subset M$ in such a way that (after a little change if necessary) the submanifolds V_x^{\perp} for $x \in U(y)$ do not intersect. Then we get a neighborhood $\hat{U}(y) = \bigcup_{x \in U(y)} V_x^{\perp}$ of y in N. Let us call such a neighborhood geodesic-tubular neighborhood and write shortly g-tubular neighborhood of $y \in M$ in N.

If we have a function $F \in \mathcal{C}^{\infty}_{c}(M)$ and a point $y \in M$, we can extend $F_{/U}$ to a function $\hat{F}_{/\hat{U}}$ constantly on every V_{x}^{\perp} for $x \in U(y)$ and put

$$\pi_M(P)(F)(y) := P(\hat{F}_{/\hat{U}})(y).$$

The operator P on N does not increase supports, hence the operator $\pi_M P$ is a well defined operator on M.

Let us denote the Laplace-Beltrami operator on a Riemannian manifold X by Δ_X .

Then we have:

Theorem 2 ([7]). Let M be a submanifold of a Riemannian manifold N, then

$$\pi_M(\Delta_N) = \Delta_M \,.$$

Remark 3.1. As we shall see later, we can similarly define a projection of the Dirac operator from Riemannian spin manifold N to an oriented hypersurface M (which is a spin manifold with the induced "standard" spin structure), because we are able to imbed canonically the spinor bundle on M to the spinor bundle on N. We have a possibility to extend a spinor field from the hypersurface constantly to the *g*-tubular neighborhood and to define the projection as explained above.

3.1 Spin structures on submanifolds.

3.1.1 Algebraic preliminaries.

For any $n \in \mathbf{Z}_+$ we can define natural imbeddings

$$\operatorname{Spin}(2n, \mathbf{R}) \subset \operatorname{Spin}(2n+1, \mathbf{R}) \subset \operatorname{Spin}(2n+2, \mathbf{R})$$

induced by natural imbeddings of the corresponding Clifford algebras

$$\mathbf{R}_{0,2n} \subset \mathbf{R}_{0,2n+1} \subset \mathbf{R}_{0,2n+2}$$

and we can also discuss the relations among the corresponding basic spinor spaces, considered as Clifford modules.

We have the following situation:

a) For m even, m = 2n + 2, there is a unique spinor space \mathbf{S}_{2n+2} which is irreducible as a module over $\mathbf{R}_{0,2n+2}^+$ but decomposes as $\text{Spin}(2n+2,\mathbf{R})$ -module as follows:

(1)
$$\mathbf{S}_{2n+2} = \mathbf{S}_{2n+2}^{+} \oplus \mathbf{S}_{2n+2}^{-},$$

where the decomposition is given by eigenspaces of the multiplication by an element $\omega := e_1 \dots e_{2n+2}$ from the left.

b) For m odd m = 2n+1 there are two spinor spaces \mathbf{S}_{2n+1} and \mathbf{S}_{2n+1} which can be identified with the corresponding spinor spaces for dimension 2n+2 as follows:

$$\mathbf{S}_{2n+1} := \mathbf{S}_{2n+2}^+, \ \widehat{\mathbf{S}_{2n+1}} := \mathbf{S}_{2n+2}^-.$$

c) For m even, m = 2n there is again a unique spinor space \mathbf{S}_{2n} which is irreducible as a module over $\mathbf{R}_{0,2n}$ and decomposes as in a) as a Spin $(2n, \mathbf{R})$ module as follows

$$\mathbf{S}_{2n} = \mathbf{S}_{2n}^{+} \oplus \mathbf{S}_{2n}^{-},$$

we can identify again

$$\mathbf{S}_{2n} := \mathbf{S}_{2n+1}$$
 or $\mathbf{S}_{2n} := \widehat{\mathbf{S}_{2n+1}}$.

We shall use the following description of the spinor spaces and also the calculus which follows from it (see [5]). The element I_{n+1} is an idempotent in $R_{0,n}$.

$$\mathbf{S}_{2n+2} := \Lambda \mathbf{W}_{n+1} \bullet \mathbf{I}_{n+1} = \Lambda^{ev} \mathbf{W}_{n+1} \bullet \mathbf{I}_{n+1} \oplus \Lambda^{odd} \mathbf{W}_{n+1} \bullet \mathbf{I}_{n+1}$$

further we put

$$\mathbf{S}_{2n+1} := \Lambda^{ev} \mathbf{W}_{n+1} \bullet \mathbf{I}_{n+1}, \ \mathbf{S}_{2n+1} := \Lambda^{odd} \mathbf{W}_{n+1} \bullet \mathbf{I}_{n+1},$$

and

$$\mathbf{S}_{2n} := \Lambda^{ev} \mathbf{W}_{n+1} \bullet \mathbf{I}_{n+1} = \mathbf{S}_{2n}^+ \oplus \mathbf{S}_{2n}^-,$$

where

$$\begin{split} \mathbf{S}_{2n}^{+} &:= \{ \boldsymbol{\xi} \bullet \mathbf{I}_{n+1} \in \Lambda^{ev} \mathbf{W}_{n+1} \bullet \mathbf{I}_{n+1} | \bar{f}_{n+1} \boldsymbol{\xi} = 0 \} \\ \mathbf{S}_{2n}^{-} &:= \{ \boldsymbol{\xi} \bullet \mathbf{I}_{n+1} \in \Lambda^{ev} \mathbf{W}_{n+1} \bullet \mathbf{I}_{n+1} | f_{n+1} \boldsymbol{\xi} = 0 \} \,. \end{split}$$

An intertwining map ϕ between isomorphic $\mathbf{R}_{0,2n+1}$ representations \mathbf{S}_{2n+1} and $\widehat{\mathbf{S}_{2n+1}}$ is defined by:

$$\phi((s+lf_{n+1})\mathbf{I}_{n+1}) := (-1)^n \mathbf{i}(l+sf_{n+1})\mathbf{I}_{n+1}; \ s \in \Lambda^{ev} \mathbf{W}_{n+1}, \ l \in \Lambda^{odd} \mathbf{W}_{n+1}$$

and the vector e_{2n+2} acts on \mathbf{S}_{2n+2} with respect to the decomposition (1) as

$$e_{2n+2}[u+\hat{v}] = (-1)^n \mathbf{i}[v+\hat{u}).$$

Finally the action of e_{2n+1} on the space $\mathbf{S}_{2n} := \mathbf{S}_{2n+1}$ with respect to the decomposition (2) is the following

$$e_{2n+1}[s+lf_{2n+1}]\mathbf{I}_{n+1} = (-1)^n \mathbf{i}[s-lf_{2n+1}]\mathbf{I}_{n+1}; \ s \in \Lambda^{ev} \mathbf{W}_{n+1}, \ l \in \Lambda^{odd} \mathbf{W}_{n+1}.$$

Remark 3.2. We shall use the isomorphism of $\Lambda \mathbf{W}_n \simeq \Lambda^{ev} \mathbf{W}_{n+1}$ given by

$$s+l \to s+lf_{n+1}\,,$$

where s is an even element and l is an odd element of \mathbf{W}_n .

3.1.2 Spin-structures on submanifolds of codimension 1.

Let $M^{\overline{m}}$ be an oriented submanifold of codimension 1 in the Riemannian spin manifold N^{m+1} . Then there exists a uniquely defined standard (with respect to the embedding) spin-structure on M^m induced from the spin structure on N^{m+1} . This spin-structure is defined in the following way: using the unit normal field on M^m , an embedding of $\mathcal{B}_{SO}(M)$ into $\mathcal{B}_{SO}(N)$ on M^m is defined and then we take the corresponding pull-back of $\mathcal{B}_{SO}(M)$ in $\mathcal{B}_{Spin}(N)$.

Remark 3.3. Let M be a submanifold of arbitrary codimension in a Riemannian spin manifold N and let \mathcal{N}_M be the normal bundle of M in N. For each spin structure on M a unique spin structure on the normal bundle \mathcal{N}_M can be defined such that their direct sum is the restriction on M of given spin structure on N. Also for any spin structure on the normal bundle \mathcal{N}_M there correspond spin structure on M such that their direct sum is the restriction on M of given spin structure on N. If M is an oriented hypersurface in N, the standard spin structure on M corresponds to the trivial spin-structure on \mathcal{N} (unconnected 2-1 covering). Generally spinstructures on an oriented hypersurface M in N correspond to the double covering of M.

For the corresponding spinor bundles we get the following possibilities which differ in the even and odd cases:

1) For m even, m = 2n, there is an isomorphism of bundles

$$\mathcal{S}_{M^{2n}} \equiv \mathcal{S}_{N^{2n+1}}/M^{2n}$$

and we get a picture:

If ξ is a unit normal field on M^{2n} in N^{2n+1} , then for any spinor field ϕ on N^{2n+1} (resp. on a neighborhood of M^{2n} in N^{2n+1}) we have the following formulas:

a) For the action of the normal field ξ on the spinor space

$$\xi \bullet (\phi^+ + \phi^-) = \mathbf{i}(-1)^n (\phi^+ - \phi^-).$$

b) For the covariant derivatives ∇^{S_M} and ∇^{S_N} on the corresponding spinor bundles

$$\nabla_X^{S_M}(\phi/M) = (\nabla_X^{S_N}\phi)/M + \frac{1}{2}(\nabla_X^N\xi) \bullet \xi \bullet \phi$$

for $X \in T_x M, x \in M$.

c) For the corresponding Dirac operators D_N on N^{2n+1} and D_M on M^{2n} :

$$D_M(\phi/M) = (D_N\phi)/M + \frac{1}{2}\sum_{j=1}^{2n} e_j \bullet (\nabla_{e_j}^N \xi) \bullet \xi \bullet \phi - \xi \bullet \nabla_{\xi}^{S_N} \phi.$$

d) Let e_j be principal directions on M and let λ_j be the corresponding principal curvatures, i.e.

$$\nabla_{e_j}^N \xi = -\lambda_j e_j \,.$$

Then we can write

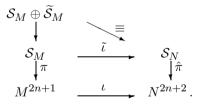
$$D_M(\phi/M) = (D_N\phi)/M - \frac{1}{2}\sum_{j=1}^{2n}\lambda_i\xi \bullet \phi - \xi \bullet \nabla_{\xi}^{S_N}\phi$$

and

$$D_M(\phi/M) = (D_N\phi)/M - nH\xi \bullet \phi - \xi \bullet \nabla_{\xi}^{S_N}\phi,$$

where $H = \frac{1}{2n} \sum_{j=1}^{2n} \lambda_j$ is the mean curvature of M in N.

2) For m odd, m = 2n + 1, there is an isomorphism of bundles $S_M \oplus \widetilde{S}_M$ and restriction of S_N on M. We have the following picture:



If ξ is a unit normal field on M^{2n+1} in N^{2n+2} then for any spinor field ϕ on N^{2n+2} (resp. on a neighborhood of M^{2n+1} in N^{2n+2}) we have the following formulas:

a) For the action of the normal field ξ on the spinor space

$$\xi \bullet (\phi_1 + \widehat{\phi}_2) = \mathbf{i}(-1)^n (\phi_2 + \widehat{\phi}_1)$$

b) For the covariant derivatives ∇^{S_M} and ∇^{S_N} on the corresponding spinor bundles

$$(\nabla_X^{S_N}\phi)/M = \nabla_X^{S_M}(\phi_1/M) + \nabla_X^{\hat{S}_M}(\hat{\phi}_2/M) - \frac{1}{2}\nabla_X^N\xi \bullet \xi \bullet \phi,$$

where $X \in T_x M$, $x \in M$ and where $\phi = \phi_1 + \hat{\phi}_2$ is a decomposition of ϕ with respect to the identification described above.

J. Bureš

c) For the corresponding Dirac operators D_N on N^{2n+2} and D_M , \hat{D}_M on M^{2n+1} :

$$(D_N\phi)/M = D_M(\phi_1/M) + \widehat{D}_M(\widehat{\phi}_2/M) - \frac{1}{2}\sum_{j=1}^{2n+1} e_j \bullet (\nabla_{e_j}^N \xi) \bullet \xi \bullet \phi + \xi \bullet \nabla_{\xi}^{S_N} \phi \,.$$

d) Let e_j be principal directions on M and let λ_j be the corresponding principal curvatures, i.e.

$$\nabla_{e_j}^N \xi = -\lambda_j e_j \,.$$

Then we can write

$$(D_N\phi)/M = D_M(\phi_1/M) + \widehat{D}_M(\widehat{\phi}_2/M) + \frac{1}{2}\sum_{j=1}^{2n+1}\lambda_j\xi \bullet \phi + \xi \bullet \nabla_{\xi}^{S_N}\phi$$

and if e.g. $\widehat{\phi}_2 \equiv 0$ we get

$$D_M(\phi_1/M) = (D_N\phi_1)/M - \frac{2n+1}{2}H\xi \bullet \phi - \xi \bullet \nabla_{\xi}^{S_N}\phi,$$

where $H = \frac{1}{2n} \sum_{j=1}^{2n} \lambda_j$ is the mean curvature of M in N.

Moreover for both cases (odd or even dimensional), we have the following formula for the projection of the Dirac operator from N^{k+1} to M^k :

$$\pi_M(D_N)\psi = D_M\psi + \frac{k}{2}H\cdot\xi\cdot\psi\,,$$

where ψ is a spinor field on M.

Example. The sphere Σ^m in \mathbb{R}^{m+1} .

There is a unique spin structure on the sphere Σ^m defined by the following diagram:

Spin
$$(, \mathbf{R})(m+1, \mathbf{R})$$

 \downarrow
 $SO(m+1, \mathbf{R})$
 π
 Σ^m

The sphere Σ^m is a homogeneous space $SO(m+1, \mathbf{R})/SO(m, \mathbf{R})$ and can be represented as an orbit of the point $P := [0, \ldots, 0, r]$ in \mathbf{R}^{m+1} .

It can be also represented as a homogeneous space $\text{Spin}(m+1, \mathbf{R})/\text{Spin}(m, \mathbf{R})$, so the maps in the picture above are well defined, and we have a quite natural identification

$$\mathcal{B}_{SO}(\Sigma^m) \equiv SO(m+1, \mathbf{R}), \ \mathcal{B}_{Spin}(\Sigma^m) \equiv Spin(m+1, \mathbf{R}).$$

Moreover using the natural isomorphisms of spinor spaces in (3.1), we have the following diagram for the sphere:

$$\begin{array}{ccc} \operatorname{Spin}\left(m+1,\mathbf{R}\right) & \stackrel{\iota}{\longrightarrow} & \mathcal{B}_{\operatorname{Spin}}\left(\mathbf{R}^{m+1}\right) = \mathbf{R}^{m+1} \times \operatorname{Spin}\left(m+1,\mathbf{R}\right) \\ & \downarrow^{\pi} & \downarrow^{\hat{\pi}} \\ & \Sigma^{m} & \stackrel{\iota}{\longrightarrow} & \mathbf{R}^{m+1} \end{array}$$

The group Spin $(m + 1, \mathbf{R})$ is embedded as Spin (m, \mathbf{R}) -principal fibre subbundle into $\mathcal{B}_{\text{Spin}}(\mathbf{R}^{m+1})$ by

$$s \in \operatorname{Spin}(m+1, \mathbf{R}) \longmapsto [\tilde{\pi}(s), s].$$

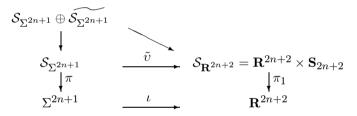
The corresponding associated spinor bundles are also related, but there is a difference between odd and even dimensional cases: a) For m even, m = 2n,

$$\begin{array}{ccc} \mathcal{S}_{\Sigma^{2n}} & \xrightarrow{\tilde{\upsilon}} & \mathcal{S}_{\mathbf{R}^{2n+1}} = \mathbf{R}^{2n+1} \times \mathbf{S}_{2n+1} \\ \downarrow^{\pi} & & \downarrow^{\pi_1} \\ \Sigma^{2n} & \xrightarrow{\iota} & \mathbf{R}^{2n+1} \end{array}$$

and after the restriction on Σ^{2n} , we have a trivialization of $\mathcal{S}_{\Sigma^{2n}}$:

$$\mathcal{S}_{\Sigma^{2n}} \leftrightarrow \Sigma^{2n} \times \mathbf{S}_{2n+1}$$

b) for m odd, m = 2n + 1,



and after the restriction to the sphere Σ^{2n+1} , we have a trivialization

$$\mathcal{S}_{\Sigma^{2n+1}} \oplus \widetilde{\mathcal{S}_{\Sigma^{2n+1}}} \leftrightarrow \Sigma^{2n+1} \times \mathbf{S}_{2n+2}.$$

Let us compute the relation between the Dirac operator on \mathbb{R}^{m+1} and on the sphere Σ^m under the identifications defined above.

Let (e_1, \ldots, e_m, ξ) be an orthonormal frame field on an open subset of sphere, let ξ be a unit normal field to Σ^m in \mathbf{R}^{m+1} .

If (x_1, \ldots, x_{m+1}) are cartesian coordinates in \mathbf{R}^{m+1} and

$$\Sigma^m := \{ (x_1, \dots, x_{m+1}) \in \mathbf{R}^{m+1} \mid \sum_{i=1}^{m+1} x_i^2 = r^2 \},\$$

then $\xi = \frac{1}{r} \sum_{i=1}^{m+1} x_i \partial_i x.$

If $X \in \mathcal{T}_x \Sigma^m$ then the relation between covariant derivative $\tilde{\nabla}$ on \mathbb{R}^{m+1} and induced covariant derivative ∇ on Σ^m is the following one:

$$\widetilde{\nabla_X}Y = \nabla_XY + h(X,Y)\xi\,,\ \widetilde{\nabla_X}\xi = -A(X)\,,$$

where $A: \mathcal{T}_x \Sigma^m \to \mathcal{T}_x \Sigma^m$ is a linear map, h(X, Y) = g(A(X), Y).

For the sphere Σ^m and for the frame field defined above we have

$$\begin{split} A(e_j) &= -\frac{1}{r} e_j, \ \tilde{\nabla e_j} \xi = -\frac{1}{r} e_j \\ \tilde{\nabla e_i} e_j &= \nabla e_i e_j - \frac{1}{r} \delta_{ij} \xi \end{split}$$

and furthermore for a spinor field ϕ on U

$$\tilde{D}\phi = D(\phi_{/\Sigma^m}) - \frac{1}{2}\sum_{i=1}^m e_i(-\frac{1}{r}e_i) \bullet \xi \bullet \phi + \xi \bullet \tilde{\nabla_{\xi}}\phi,$$

hence

$$\tilde{D}\phi = D(\phi_{/\Sigma^m}) + \xi \bullet (\xi(\phi) + \frac{m}{2r}\phi) \,.$$

Remark 3.4. There is a connection between the operator Γ on the sphere, defined in [8] and Dirac operators \tilde{D} and D, namely if we change the values of operator from the spinor-valued to the Clifford algebra-valued functions and use the standard procedure, we get

$$\Gamma \phi = \xi \bullet D(\phi_{/\Sigma^m}) + \frac{m}{2r}\phi$$

and we may obtain relations as in [8].

From the relations among the operators D_N , D_M , $\phi_M(D_N)$ and Γ we can deduce relations among the elements of the corresponding kernels and further results which will be presented in the next paper.

References

- Baston R., Eastwood M., The Penrose Transform: its interaction with representation theory, Oxford Univ. Press, Oxford, 1989.
- [2] Baum H., Spin-Strukturen und Dirac-Operatoren über pseudo-riemannschen Mannigfaltigheiten, Leipzig, 1981.
- [3] Baum H., Friedrich Th., Grunewald R., Kath I., Twistor and Killing spinors on Riemannian manifolds, Seminarbericht Nr. 108, Berlin, Juli 1990.
- [4] Brackx F., Delanghe R., Sommen F., *Clifford analysis*, Research Notes in Math., 76, Pitman, 1982.
- [5] Delanghe R., Sommen F., Souček V., Clifford Algebra and Spinor-Valued Functions, Math. and Its Applications, Kluwer, 1992.
- [6] Bureš J., The Dirac operator, Mimeographed lecture notes MÚKU, 1991.
- [7] Helgason S., Analysis on Lie groups and homogeneous spaces, Reg. conf. series in Math. 14 (1972), American Math. Society.
- [8] Sommen F., Monogenic functions on surfaces, Journal Reine Angew. Math. 361 (1985), 145– 181.
- [9] Lawson B., Michelsohn M.-L., Spin Geometry, Princeton University Press, Princeton, 1989.

MATHEMATICAL INSTITUTE, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAHA 8, CZECH REPUBLIC